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ABSTRACT

We propose a novel approach, technical language la-
belling, to facilitate supervised intelligent fault diag-
nosis on unlabelled but annotated industry datasets
using technical language processing. Condition mon-
itoring (CM) is vital for high safety and resource ef-
ficiency in the green transition and digital transfor-
mation of the process industry. Computerised main-
tenance systems are required to facilitate CM scala-
bility, and learning-based Intelligent Fault Diagnosis
(IFD) methods are required to automate maintenance
decisions and improve support for human analysts.
A major challenge is the lack of labelled datasets
from industry and the difficulty of transferring fea-
tures from labelled lab datasets to unlabelled industry
datasets. In this study, we investigate how the fault
description annotations and maintenance work orders
present in many CM datasets can be understood and
used for IFD through Technical Language Process-
ing, based on insights from recent advances in Nat-
ural Language Supervision joint pre-training of im-
ages and captions. We identify two distinct pipelines,
one based on pre-training on large datasets, and one
based on a human-centric approach and unsupervised
clustering methods to transform annotations into la-
bels, aided by insights from dimensionality reduction
and visualisation techniques. Finally, we showcase
one example of the small-data fault classification im-
plementation on a CM industry dataset with a Sen-
tence BERT model and conventional signal process-
ing methods. Sets of features are used to overcome
data imbalance and label misalignment, and we show
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that our model can separate sets of cable and sen-
sor fault recordings from sets of bearing-related fault
recordings with an F1-score of 92.6%. To our knowl-
edge, this is the first system to create labels for CM
data through pre-trained language models without re-
quiring pre-defined taxonomies.

1. INTRODUCTION

In the digital and green transformation of the process
industry to more sustainable production and opera-
tion, prognostics and health management of equip-
ment is critical. Intelligent fault diagnosis (IFD) has
been widely investigated to improve condition moni-
toring (CM) based maintenance (Manikandan & Du-
raivelu, 2021; T. Zhang et al., 2022). A major chal-
lenge in IFD implementation is that machines oper-
ate in different working conditions and processes, and
industry data is almost exclusively unlabelled (Zhao
et al., 2021). Furthermore, the data is imbalanced as
faults are undesirable and critical fault development is
largely prevented (T. Zhang et al., 2022). Therefore,
labelled data is typically generated in lab environ-
ments where fault development can be induced, con-
trolled, accelerated, and measured. However, there is
a significant shift in features and noise levels between
lab and industry environments, which has motivated
research into transfer learning approaches (Lei et al.,
2020; W. Li et al., 2022; T. Zhang et al., 2022), with
the fundamental goal being to facilitate optimisation
using unlabelled or weakly labelled industry data.

While strict labels are lacking, maintenance work or-
der annotations are often present in condition moni-
toring datasets, with fault descriptions providing in-
formation similar to labels that sometimes include
rich contextual and descriptive details, as well as
uncertainties. Technical language processing (TLP)
(Brundage et al., 2021) has been proposed to ad-
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dress the challenges present in low-resource techni-
cal language such as key technical terms not being
present during pre-training of publicly available lan-
guage models, being effectively out-of-vocabulary,
while the data amount is insufficient to train a model
specifically for technical language. Many approaches
feature rule-based expert systems for language rep-
resentation (Conte et al., 2021; Navinchandran et al.,
2022), but more recently pre-trained language mod-
els have been integrated as well (Lowenmark et al.,
2022; Cadavid et al., 2022). Can mapping annota-
tions through TLP with the associated signals facil-
itate IFD models directly optimised on industry CM
data?

Recent progress in machine learning combines visual
and textual information through natural language su-
pervision (NLS) (Radford et al., 2021; Kim et al.,
2021; J. Li et al., 2022; Mu et al., 2022), and recent
work in transferring NLS to technical language su-
pervision (TLS) (Löwenmark et al., 2021) illustrates
the potential of pre-training on hybrid datasets. How-
ever, obtaining large annotated industry datasets can
be challenging due to intellectual property and pri-
vacy restrictions, and the scarce nature of annotations
in comparison to signals. Therefore, we investigate a
small-data solution for facilitating human-centric IFD
based on unlabelled CM datasets with technical lan-
guage annotations, and relate its strengths and weak-
nesses to technical and natural language supervision.
We also visualise the properties of the signal and the
text embedding spaces and show how they can offer
insights about the data through joint embedding mod-
els.

The main contributions of this paper can be summa-
rized as follows:

• We summarise work done on joint representa-
tions of images and captions (Section 2) and de-
scribe challenges and knowledge gaps in joint
representations of CM signals and annotations or
maintenance work orders (Section 3).

• We describe a human-centric framework to auto-
mate IFD on unlabelled but annotated CM data
by unsupervised processing and clustering of an-
notations (Section 4). This method requires min-
imal human intervention compared to normal
CM data analysis, and can be used to target spe-
cific fault classes through language-guided selec-
tion of clusters.

• We showcase how joint representations can be
used to illustrate annotated CM datasets, imple-
ment a case-study method based on this frame-
work by using sets of recording features to over-
come weak supervision challenges, and present a
cable and sensor fault detector using this method
(Sections 5 and 6).

2. BACKGROUND

Early work in mapping language and signals focused
mainly on a uni-directional pipeline, going for in-
stance from image to caption through image caption-
ing (Hossain et al., 2019), or from image + question
to image and question-based answer through visual
question answering (VQA) (Wu et al., 2017). In im-
age captioning and VQA, datasets typically consist
of images with associated text and tags written by hu-
man annotators, with captions for image captioning
datasets and pairs of questions and answers for VQA
(You et al., 2016). During training, images are en-
coded with a vision model, and decoded into text with
a language model.

For image captioning, the decoding produces a cap-
tion that can be compared to human captions, and
the error can then be backpropagated (Anderson et
al., 2018). For VQA, the question is encoded along-
side the image, and the output is compared to human-
written question answers (Selvaraju et al., 2017). Af-
ter the breakthroughs of GPT1 (Radford et al., 2018)
and BERT (Devlin et al., 2019), vision language
tasks benefited from improved language representa-
tions, with research moving towards computing joint
image-text representations during training then de-
coding the joint representation to text during caption-
ing or question answering testing (X. Li et al., 2020).
This also facilitated self-supervision, such as masked
language modeling as used in e.g. BERT, but condi-
tioned on CNN image features (Sariyildiz et al., n.d.;
Desai & Johnson, 2020), using either a pre-trained
BERT model (Sariyildiz et al., n.d.) or by training the
entire model from randomly initialised weights (De-
sai & Johnson, 2020).

However, training still relied on structured human
captions and tags. Ideally, models would be trained
in an unsupervised or self-supervised fashion from
unstructured datasets without manually created cap-
tions, tags, or question-answer pairs. This would fa-
cilitate an immense upscaling of dataset size, and in
turn model size, which per the general scaling laws of
language models (Brown et al., 2020) should improve
general understanding and representation of image-
text properties. Furthermore, by correctly utilising
the prompting capabilities of large language models
and improved joint representations, unlabelled data
could potentially even be used for supervision task,
which will be described in the next section.

2.1. Natural Language Supervision

Natural language supervision (NLS) models require
large datasets of unstructured captioned images from
e.g. social media websites, resulting in millions of
unique image-text pairs. With NLS, both image cap-
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Figure 1. A general natural language supervision pipeline showcasing the five steps of natural language su-
pervision. In the input step, unstructured pairs of images and captions are gathered from online sources, e.g.
Wikipedia images with descriptions. In the augmentation step, multiple pairs based on the same image can
be derived by altering either source, or certain images or captions can be removed based on conditions such
as NSFW-filters. In the encoding step, features are computed through large encoders, sometimes pre-trained,
which are then transformed to feature projections through feed-forward networks in the projection step. Finally,
image and caption projections are mapped in the joint representation learning step, typically through contrastive
learning.

tioning and visual question answering are possible,
especially when fine-tuned for those tasks. The main
difference compared to prior solutions to those tasks
is the datasets used for pre-training of joint embed-
ding spaces through noisy supervision (Jia et al.,
2021), which no longer require reliable labels created
by humans for supervision purposes. For example,
ImageNet (Deng et al., 2009), one of the largest an-
notated datasets, consists of 1.35M images with 1 000
object categories, while LAION5B, one of the largest
image-text-pair datasets available, consists of 5.85B
samples. A large batch of images and captions are
used in each training step, and the model is optimised
to map correct pairs of images and captions to the
same space in a high-dimensional projection space,
for example by defining correct pairs as having a tar-
get dot product of 1 and all other pairs as having a
target dot product of 0. Contrastive learning (Chen et
al., 2020) is the most common technique used for this
kind of pre-training, and was used in for instance the
CLIP model (Radford et al., 2021), which popularised
the term NLS and established its general framework.

To perform supervision tasks such as image classi-
fication, only general knowledge of what is repre-
sented in the images present in the test dataset is re-
quired. Classification is then achieved by choosing
the image-caption pair with the highest dot product
from a manually created query space representing the
desired granularity of the classification, e.g. “a photo
of an animal” vs “a photo of a vehicle”, or “a photo
of a dog” vs “a photo of a cat”.

In total, we identify five major steps of an NLS model
pipeline, as illustrated in Figure 1:

1. Input step – Gathering, selecting, and structuring
input data.

2. Augmentation step – Overcoming challenges
with data imbalance and label misalignment by
modifying input images or text. This module can
be added to the encoder and the joint representa-
tion steps as well.

3. Encoding step – Generating image and text fea-
tures through large encoders, e.g. BERT or GPT3
and ResNet or the Vision Transformer (ViT). The
encoders can be frozen or fine-tuned during opti-
misation of joint embedding spaces.

4. Projection step – Projecting high-dimensional
features to a lower-dimensional space, typically
through a feed-forward neural network.

5. Joint representation step – Comparing projec-
tions of text and image through, for instance, dot
products of a large batch of captioned images.

The input step is one major improvement compared
to previous vision language models, where data now
can be gathered from any source of captioned images,
without requiring human labelling efforts. This al-
lows for considerably more training data and scaling
to new data sources without requiring expensive la-
belling practices, which was shown by the ALIGN
model to improve performance despite the added
noise from poor samples (Jia et al., 2021).

The augmentation step, if used, is most commonly
associated with the input data, where for instance
text can be filtered based on hate speech detection
and images based on a not-safe-for-work (NSFW) fil-
ter. For instance, LAION5B filtered its input sam-
ples with CLIP, featuring detection scores for water-
marks, NSFW, and toxic content. However, data aug-
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mentation can also be introduced inside the encoding
step, as in BLIP (J. Li et al., 2022), where synthetic
captions are generated and noisy text-image pairs fil-
tered through models fine-tuned on manually anno-
tated datasets, after which the filtered dataset is used
to pre-train a new model.

The encoding step is mainly based on established im-
age and text encoder architectures, either with pre-
trained weights or trained from scratch with the joint
representation learning step. If weights are down-
loaded from a previous model, they can be either
frozen or further trained during the optimisation of
the model. CLIP uses two different image encoders,
one based on ResNet-50 (K. He et al., 2016) and one
based on the ViT (Dosovitskiy et al., 2020), and the
GPT-2 text transformer from (Radford et al., 2019).
Neither text nor image encoders are pre-trained in
CLIP, though other models, such as Oscar (X. Li et
al., 2020) and VinVL (P. Zhang et al., 2021), rely
on pre-trained object detectors to extract region-of-
interest features from images before learning joint
representations.

Finally, the joint representation learning step typi-
cally consists of contrastive learning in a large batch
of image-text pairs. Contrastive learning pushes posi-
tive samples closer in the projection space, while neg-
ative pairing projections are pushed away. This pro-
cess can be assisted by conditioning positive and neg-
ative pairs on various properties, such as the covari-
ance of encoding features used in CLOOB (Fürst et
al., 2021). Alternatively, the contrastive step can be
treated as a bidirectional loss from text to image and
image to text, as was used in (Y. Zhang et al., 2020),
which used annotated medical x-rays for contrastive
pre-training. Another similar approach is to maximise
the similarity between text and image segment tokens,
as done in FILIP (Yao et al., 2021).

3. CHALLENGES AND KNOWLEDGE GAPS

While there are similarities between sets of images
with captions, and CM signals with annotations and
maintenance work orders, there are also important
differences to consider and knowledge gaps to over-
come. The transition from common natural language
to technical language in the upper part of Figure 1,
from images to CM signals in the blue part, and
data imbalances and fault properties in the joint rep-
resentation learning green part, all face challenges,
namely:

1. Technical language encoding challenges

(a) OOV: The language used in annotations
contains technical terms and abbreviations
that are semantically critical but out-of-

vocabulary of conventional NLP language
models.

(b) Interoperability: Annotations and work or-
ders have varying, non-standard formats,
including unstructured free-text, semi-
structured text in several fields, and tabular
structured data. Varying vocabularies are
used even in similar industries.

2. Signal encoding challenges
(a) Feature complexity: Features contained in

condition monitoring signals differ consid-
erably from images. Most notably, some
fault properties, such as severity, can de-
pend on the evolution of features over multi-
ple signals and operational data such as ma-
chine rotational speed.

(b) Physics-based features: Additional analysis
is often performed on signals, such as trans-
forming from the time domain to the fre-
quency domain, and analysing condition in-
dicators based on characteristic frequencies,
which is crucial for human analysis and an-
notation writing, compared to the straight-
forward learning-based encoding of images.

3. Joint Representation Learning challenges
(a) Imbalance: Annotations associated with

signals are considerably fewer than captions
associated with images, and most signals in
CM datasets are unannotated, resulting in
imbalanced data (T. Zhang et al., 2022) and
incomplete supervision (Zhou, 2017).

(b) Time range: An annotation has one time
stamp, while signals containing a fault has
a time range. Therefore it is not trivial how
the association between signals and annota-
tions should be mapped.

(c) Inexactness: Annotations are typically con-
nected to an asset or sub-asset, which might
contain multiple sensors or data types, with
multiple recordings per day per sensor.
Thus each annotation is connected to a set
of features, without a clear definition of
which recordings should be included in the
set or which features indicate a fault. This is
typically referred to as inexact supervision
in weak supervision terminology (Zhou,
2017).

Based on these challenges we identify two viable
paths for using annotations as supervision signals for
associated CM signals: technical language supervi-
sion (TLS) and technical language labelling (TLL).
Both paths rely on TLP integrated with a pre-trained
language model to address the technical language
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Figure 2. A technical language pipeline inspired by the NLS pipeline shown in Figure 1, with possibilities
for both technical language supervision through joint representation learning (Löwenmark et al., 2021) and
technical language labelling (this work). Image-caption pairs are now replaced by signal-annotation pairs.
Augmentation is now based on human insight into industry specific properties of signals and annotations, and
encoding models have significantly less data to train on, necessitating technical language processing and pre-
trained language models in the language encoder, and signal processing, physics-based kinematics and IFD
insights in the signal encoder. There is no significant change in the FFN projector, but clustering can also
be employed when data is scarce but human insight is rich. Finally, the joint representation step can now be
contrastive or mappings between clusters, based on the projection step.

encoding challenges. In TLS, signal encodings are
learned through contrastive learning in the joint rep-
resentation step, relying on scaling up data and model
size for improved performance. TLL instead relies on
signal processing methods for the signal encoding and
unsupervised methods such as clustering, and inte-
grating human knowledge for the joint representation
step, to facilitate language-based learning without re-
quiring large data. These paths go beyond present
IFD state-of-the-art by integrating supervision signals
in the form of unstructured text annotations, and are
further detailed in the following sections.

4. THEORY

4.1. Technical Language Supervision

TLS was introduced in 2021 (Löwenmark et al.,
2021), with an emphasis on IFD and a case-study
to showcase the practical usefulness of the approach.
Figure 2 showcases a pipeline both for TLS and TLL
(introduced next section) based on the NLS pipeline
shown in Figure 1. CM signals and technical lan-
guage annotations are mapped to a joint embedding
space in a similar approach as in natural language su-
pervision, but with different types of input data, aug-
mentation, and encoding steps.

In cases where annotations are scarce, it is both diffi-
cult to pre-train or fine-tune a language model to ac-
curately represent technical language, and to find suf-
ficiently large samples of data to train a TLS model.
Therefore, it is desirable to make use of language
model developments to represent knowledge stored
in annotations as supervision signals in an unsuper-

vised manner, without requiring large datasets. This
is beneficial for the transfer and development of IFD
models on industry data, and can also serve to develop
pre-trained signal encoders for TLS, similarly to us-
ing a pre-trained vision transformer (Dosovitskiy et
al., 2020) to represent images in natural language su-
pervision.

4.2. Technical Language Labelling

TLL substitutes the data- and computationally-
demanding learned projection in the joint representa-
tion step in Figure 2 with unsupervised methods, such
as dimensionality reduction techniques and cluster-
ing algorithms, to project data from feature space to
projection space. The joint representation learning is
treated unidirectionally, mapping signal features to
annotation clusters, annotation features to signal clus-
ters, annotation/signal clusters to annotation/signal
clusters, or joint cluster features, depending on which
projections that are replaced with unsupervised meth-
ods. These clusters can be visualised and analysed
through dimensionality reduction techniques such as
PCA or t-SNE (Liu et al., 2018), which offer a tool
for explorative data analysis of how TLP implemen-
tations affect language encodings. The process used
in this study to predict the fault class based on signal
features and annotation clusters can be described as
follows:

1. Input step – Extract annotations and associate
them with the related assets in the machinery.
Choose which sensor recordings to include with
regard to parameters such as the recording date
compared to the annotation date. Associate
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each annotation with all recordings in that time
window, creating one annotation-signal pair per
recording.

2. Augmentation step – Resample recordings to
balance the fault classes by creating sets of fea-
tures, as described below. Use visualisation in-
sights to augment the class cluster distribution.

3. Encoding step – Embed the annotations using a
language model and substitute technical terms
with natural language descriptions (Lowenmark
et al., 2022). Encode the signals using conven-
tional signal processing techniques.

4. Projection step – Project the embeddings to clus-
ters using unsupervised clustering techniques
such as k-Means. Visualise the clusters using t-
SNE. Cluster either the embedding space or the
visualisation space.

5. Joint representation learning and classification
step – Project the signal features to the clusters
using a classifier such as a support vector ma-
chine. Evaluate classifier performance by pre-
dicting cluster labels based on unseen signal-
annotation pairs.

The replacement of the feed-forward projection heads
with an indirect mapping through clustering drasti-
cally reduces the complexity of the learning step,
but also the potential for pre-training, as a signifi-
cant amount of information is lost going from fea-
tures to projection. Thus, pre-training or fine-tuning
the encoders through joint representation learning be-
comes difficult, necessitating the use of a pre-trained
language model augmented with TLP, and a sig-
nal encoder based either on signal processing meth-
ods, known physical properties such as characteris-
tic frequencies, or a pre-trained IFD model. How-
ever, the same challenges that were listed regarding
TLS are also present for language-based labelling,
though with the possibility to apply a human-centric
approach rather than data scaling to amend them.

4.3. Dealing with Imbalanced Data

CM industry datasets are typically highly imbal-
anced with regard to fault class distribution and
healthy/unhealthy data distribution (Akhbardeh et al.,
2021; Usuga-Cadavid et al., 2021; T. Zhang et al.,
2022). Therefore, methods required to deal with this
challenge are added after the feature extraction set.

Three common methods for dealing with imbalanced
data are oversampling, undersampling, and synthetic
sampling (H. He & Garcia, 2009). In oversampling,
data and labels from the minority classes are ran-
domly resampled to increase the number of samples
until all classes are balanced, which results in a much
larger dataset and prevents information loss, but also

increases the risk for overfitting. In the case of under-
sampling, data is removed from the majority classes,
resulting in a smaller dataset and loss of informa-
tion, but with less risk for overfitting due to duplicate
oversamples. Synthetic sampling attempts to generate
new samples from minority classes to prevent both
information loss and overfitting. A common algo-
rithm is SMOTE (Chawla et al., 2002), which itera-
tively generates synthetic samples based on the five
nearest neighbours of an existing sample. Syntheti-
cally upsampling time-series based signals is not triv-
ial due to such signals typically being shift-variant.
Therefore, algorithms such as SMOTE should (ide-
ally) be applied only to shift-invariant signals, e.g.
directly on low dimensional shift-invariant features
computed from shift-variant signals, which also re-
duces the computation time.

However, we have not identified work done in data
augmentation based on joint properties of annotations
and signals. Thus, there are potential gains for both
IFD and TLS by implementing for instance bootstrap-
ping of noisy data with artificial annotations similar
to BLIP (J. Li et al., 2022), where an NLS model is
augmented with synthetic captions. These captions
are generated from uncaptioned web images with the
image-grounded text decoder and filtered with the
image-grounded text encoder, then used to expand the
pre-training dataset for the NLS model. A similar ap-
proach for annotated industry data could thus be used
to annotate unannnotated signals that share features
with the annotated samples.

Alternatively, contrastive learning (Chen et al., 2020),
or contrastive self-supervision (Grill et al., 2020), can
be used purely on the signal level. Contrastive learn-
ing on images augments the data by using image
properties such as that a picture of a dog, even if ro-
tated, cropped, or colour shifted, etc., remains a dog,
or that a picture of a another dog should share more
latent features compared to a picture of e.g. a car. In
these scenarios, contrastive models learn joint repre-
sentations by passing two or more images with known
properties, such as ”related” and ”unrelated”. By aug-
menting the data, the possible scope of the dataset
is drastically increased, which typically leads to bet-
ter downstream performance. Adopting the same ap-
proach for industry sensor data can thus alleviate the
issue of annotation scarcity by increasing the number
of ”samples” associated with one annotation, or by
facilitating IFD pre-training of image representations
prior to joint embedding learning in the NLS model.
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5. METHOD

5.1. Case Study Dataset

To illustrate the properties of annotated CM datasets
and showcase one example of language-based fault
classification, we implement a case study model us-
ing data from two large Swedish paper mills with an-
notated condition monitoring signals from assets such
as dryers, rollers and gearboxes etc. An overview of
the structure of the CM dataset is shown in Figure 3.

The dataset consists of multiple assets (machine
parts), where detected faults are annotated at the asset
level. An asset consists of multiple subassets made
up of different signal types or sensors. Each subas-
set in turn consists of multiple recordings – data such
as vibration measurements and associated spectra –
and metadata such as RPM, measured for several sec-
onds and then stored multiple times per day, every
day. Consequently, the annotation, at the asset level,
is associated with multiple subassets, each associated
with scores of recordings.

In our dataset, we have 2385 annotations over a span
of five years, of which 319 are within the last 6
months and thus have associated signals still stored in
the dataset. We choose a time span of ten days before
and after the annotation time stamp, based on exper-
iments to maximise data size while maintaining per-
formance. Thus, a total of 38597 associated record-
ings are present in a span of ten days before and after
the annotation date.

The faults described can be grouped as cable and sen-
sor faults, bearing related faults such as ball-pass fre-
quency outer race (BPFO), ball-pass frequency in-
ner race (BPFI), mechanical looseness or imbalance
(Randall & Antoni, 2011), or other miscellaneous
faults or comments such as gearbox faults or com-
ments on new sensor types. Many annotations detail
that maintenance has been done, though the annota-
tion date is not necessarily the same as the mainte-
nance date. As data size grows, the number of unique
annotations will also increase, necessitating a pre-
trained language model to ensure system scalability.

5.2. Explorative Data Analysis

We use a Swedish SentenceBERT language model
(Rekathati, 2021) with technical language substitu-
tion (Lowenmark et al., 2022) as the TLP method to
encode annotations from a Swedish process industry
dataset, constituting the input step and the encoding
step of the pipeline shown in Figure 2. The annotation
embeddings were clustered using k-Means on the em-
beddings, and visualised using t-SNE projection, with
the most common technical words of the embedding
clusters serving as labels, constituting the projection
step for the language section, shown in Figure 4. Vi-
bration spectra associated with the annotations, de-
fined as being within ten days of the annotation, were
also visualised using t-SNE projection on the log of
the spectra, and labelled based on which cluster their
associated annotation belonged to.

Human knowledge was integrated by automatically
grouping the clusters based on whether key-words in-
dicating sensor and cable faults, or bearing-related
faults, were present, shown in Figure 6, with the un-
grouped figure shown in Figure 5. This illustrates one
possible path through Figure 2, using clustering to
go from features to low-dimensional representations,
and clustered annotations as joint representations.

5.3. Fault Classification

Then, the annotation embedding was concatenated to
each spectrum before projection, projected using t-
SNE, then labelled and regrouped based on the anno-
tation cluster to illustrate the joint properties, shown
in Figure 8, with the ungrouped clusters shown in Fig-
ure 7.

We also implemented an SVM RBF classifier predict-
ing annotation embedding clusters based on spectra
and time-series features. The features were computed
by common signal processing methods, namely av-
erage, max, standard deviation, kurtosis, skew, and
peak-to-peak, of the vibration time series, spectra,
and time-series transformed with a sliding t-scan win-
dow and through Mallat-Zhong wavelet transform
(Mallat et al., 1992). While some methods make
sense mainly in time or frequency space, we regard-
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Replaced bearing
BPFO levels play 

watch low
WO written bearing

replacement DS FS
WO cable replacement

written replaced cable
The sensor next stop 

shall be replaced
Replaced the sensor new

Figure 4. Two dimensional t-SNE transformation of annotation sentence embeddings, classified with k-Means
and labelled with the most common technical words per cluster.

less saw improved performance by using all methods
on all input signals.

We used a data augmentation method described be-
low to create sets of features for each annotation clus-
ter prediction, thus overcoming data imbalance and
label misalignment issues. Finally, we tested this
performance both on the clusters naturally formed
through k-Means, and the joined clusters through the
automated human-centric process, shown in Figures
9 and 10 respectively.

5.4. Overcoming Joint Representation Challenges

The challenges listed in Section 3 are overcome
in three different parts of the TLL method. First,
the technical language challenges 1a and 1b and
overcome by using technical language substitution
(Lowenmark et al., 2022) with a pre-trained language
model, which can represent language with varying
degrees of structure, including technical words cov-
ered by the substitution. Second, signal processing
features from both the time and frequency domains
are included to overcome the challenges posed in 2b.
Challenge 2a can be addressed with sequential mod-
els such as recurrent neural networks or transform-
ers, but to maintain the low complexity of the frame-
work, we instead opt to address this challenge along-
side the joint representation challenges, described be-
low. Third, all three joint representation challenges
are overcome by creating sets of samples for each an-
notation through random sampling of recordings as-
sociated with each annotation cluster.

In this process, one training sample for a particular
cluster class is generated by concatenating features
from Nsamples randomly chosen samples, where
Nsamples determines the size of the new training sam-
ple. Thus, the input to the classifier becomes a set of
features. and data can be balanced by sampling the
same number of unique combinations of sets from all
classes.

This results in three major benefits:

1. The likelihood of associating samples with ap-
propriate features with the correct label in-
creases.

2. Data imbalance challenges can be overcome
without requiring over-, under-, or synthetic sam-
pling.

3. For larger set sizes Nsets an extremely high
number of unique sets can be generated, up to(Nsamples

Nsets

)
, where Nsamples is the number of

samples in the target class.

Another similar approach is to stack the N most re-
cent recordings for each recording type per asset, but
that does not allow for the scaling and balancing of
dataset size that the method above does, and is much
less likely to overcome the label misalignment, espe-
cially when two or more sensors are mapped to the
same asset.
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Figure 5. Two dimensional t-SNE transformation of
CM spectra, classified with annotation clusters as seen
in Figure 4 and labelled based on the most common
technical words in the clusters. This showcases that
without human insight there is limited consistency be-
tween annotation clusters and signal clusters.

Figure 6. The same transformation as in Figure 5, but
automatically relabelled per Table 1. Recordings now
form visually distinct clusters going from cable and
sensor faults to the left and bearing faults to the right,
with clusters in the middle and upper sections consist-
ing mostly of recordings associated with annotations
detailing that MWOs have been completed.

6. RESULTS AND DISCUSSION

6.1. Explorative Data Analysis

Figure 4 illustrates data exploration of the language
space through a t-SNE projection of annotation em-
beddings, clustered with the k-Means algorithm.
Each element in the Figure is one annotation embed-
ding, and the “labels” of the clusters are the most
common non-stopwords. The clusters show a clear
separation between cable and sensor faults both from
each other and from the large group of bearing-related
annotations. Sensor faults are further split into an-
notations detailing the need for sensor replacement
(orange crosses) and annotations describing that sen-
sor replacement has been done (teal dots). However,
cable replacements are not split with only six clusters,
thus containing both ‘WO [work order] written cable
replacement’ and ‘cable replaced’ annotations. The
green, red and blue clusters mainly describe bearing
faults, but there is not a distinct separation as with
cable and sensor faults. The blue dots contain anno-
tations mostly describing maintenance actions taken
on bearings, while the green squares consist mostly
of annotations describing that work orders have been
written. However, the red rhomboids contain both
‘BPFO’ and ‘play’(mechanical looseness)-related
annotations, and both the red and green annotations
also contain other bearing-related faults that were
inseparable from each other. Thus, while the embed-
dings for various bearing faults are different, they are
not sufficiently separable to facilitate ideal separa-

tion. Therefore, improved TLP methods or language
models are required to further augment this step.

6.1.1. Joint Signal–Annotation Data Analysis

Figures 5, 6, 7, and 8 show further data exploration of
properties between signals and annotations, and po-
tential for joint mappings, with the goal to investigate
if the data supports predicting the language clusters
from the corresponding signals.

Figure 5 illustrates a standard data analysis ap-
proach, projecting log of spectra with t-SNE to a two-
dimensional space. The labels are based on annota-
tion clusters, as shown in Figure 4, but computed with
eight embedding clusters to increase the resolution of
the “labels”. The figure shows a few large groupings
of spectra, with multiple smaller groups distributed
over the t-SNE projection space, likely maintaining
only local similarities per t-SNE’s objective.

However, it is difficult to distinguish clear patterns
between annotation and signal representations from
this level alone. Therefore, since some clusters have
similar or even identical cluster labels, human-centric
knowledge can be integrated to group labels based on
whether they describe similar fault properties, in par-
ticular cable/sensor-related faults and bearing-related
faults. This is illustrated in Figure 6 based on the
reclustering shown in Table 1, where some patterns
start to emerge; cable and sensor faults tend to the
west and south-west of the Figure, while bearing-
related faults occupy the east. The clusters in the
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Figure 7. Two dimensional t-SNE transformation of
CM spectra concatenated with annotation embeddings,
classified with annotation clusters as seen in Figure 4
and labelled based on the content of the most common
technical words.

Figure 8. The same transformation as in Figure 7, but
automatically relabelled per Table 1. Sensor and ca-
ble faults now show a clear pattern based in the center
of the projection, with bearing faults, miscellaneous
comments and a few sensor cable faults occupying the
periphery.

Semantic meaning
of annotation

Human-centric
relabelling

Miscellaneous
Comments

‘Miscellaneous
Comments’

Cable
Replacement

‘Sensor’,
‘Cable Replacement’,

or ‘Replaced’
Bearing

Replacement
and Play

‘WO BPFO’,
‘Bearing Replacement’,

or ‘Play’

BPFO
WO

‘WO BPFO’,
‘Bearing Replacement’,

or ‘Play’

BPFO
WO

‘WO BPFO’,
‘Bearing Replacement’,

or ‘Play’

Sensor shall
be Replaced

‘Sensor’,
‘Cable Replacement’,

or ‘Replaced’

Replaced
Sensor ‘

‘Sensor’,
‘Cable Replacement’,

or ‘Replaced’

Replaced Cable
‘Sensor’,

‘Cable Replacement’,
or ‘Replaced’

Table 1. The most common technical words, com-
puted based on a word frequency per cluster threshold
then reformulated to more clearly show the faults de-
scribed in each cluster, and human-centric-based la-
bel.

center, north and north-west are all mainly made up
of annotation indicating that maintenance has been
performed, in particular the large centermost cluster,
which explains why there are signals of both groups
of faults.

The data is still difficult to fully interpret how-
ever, which is why we also explored joining signals
with annotation embeddings before t-SNE projection,
shown in Figure 7. There is now no overlap be-
tween the “labels” with well-separated local clusters,
though the colours are distributed with no clear coher-
ent global patterns. Since the annotation embeddings
used for the “labels” are now also part of the input,
it is expected that local separability would improve,
though the clear local separability certainly points to
a correlation between the annotation and signal prop-
erties.

Finally, the human-centric process is repeated for the
joint visualisation, shown in Figure 8. A surprisingly
clear pattern now emerges, where sensor and cable
faults now occupy the center of the joint represen-
tation representations, with various bearing-related
faults occupying the periphery. In particular, sen-
sor/cable faults occupy the same space in the center
of the figure despite being globally separated in the
embedding visualisation of Figure 4. These results
indicate that human-centric augmentation of data ex-
ploration and automated embedding clusters results
in more distinguishable patterns for data interpreta-
tion, which supports the merits of building a classifier
based on signal-embedding pairs.

The data exploration is meant to illustrate data prop-
erties, but could in itself be used for classification by
distilling a network to mimic the projection step, con-
catenating embeddings from common fault descrip-
tion annotations to unannotated spectra, and using
for instance k-nearest neighbours to evaluate which
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Cluster
nr

Most common
technical words

Relabelling
nr

1 WO cable replacement
written replaced cable 1

2 WO written bearing
replacement DS FS 2

3 BPFO levels play
watch low 2

4 The sensor next
stop shall be replaced 1

5 Replaced
the sensor new 1

6 Replaced
bearing 2

Table 2. Annotations cluster number; the most com-
mon technical words, computed based on a word fre-
quency per cluster threshold; and new label assigned
based on meaning of the most common technical
words.

cluster the new spectra should belong to. However,
this would require extracting and adding a wide array
of unannotated points, and likely also adaptation to
industry-specific needs. Therefore, we do not investi-
gate that possibility further in this study, but we note
that adding unannotated points is a logical next step.

Clustering can be done in either the embedding space,
the visualisation space, or in any intermediate dimen-
sion. Using dimensionality reduction techniques first
reduces the complexity of the clustering and makes
the results easier to interpret visually, but using the
embedding space directly will arguably lead to more
accurate assessment of how the language model rep-
resents the annotations. However, we saw little differ-
ence in performance using either method, and a man-
ual inspection showed slightly more coherent results
by clustering in higher dimensions such as the em-
bedding space.

6.2. Classifier

The confusion matrix shown in Figure 9 shows the
performance of the classifier described in 5.3, trained
on sets with

Nsets = 50, Nsamples = 100000

created from signals extracted from five to one days
before the annotation date, and tested on data from
the day leading up to the annotation. This split had
superior results compared to using data from up to
ten before the annotation date, maintaining a causal1

80/20 train/test split, as well as compared to including
data from after the annotation date. The labels are
based on the clusters from Figure 4.
1Split data so that training data always is older than test data. For
example, if the chosen time span is signals from five days before
the annotation date up to and including the annotation date, then
split the data so that the last day before the annotation is the testing
data. If data from five days prior to five days after is used, split
the data so that signals from four and five days after the annotation
are used for testing.

The challenge of features overlapping between
classes is clearly visible in the confusion matrix,
as “WO cable replacement” (1), “sensor shall be
replaced” (4), and “replaced the sensor” (5), all see
an overlap in predictions, which also is true for the
“WO written bearing replacement” (2), “BPFO” (3),
and “replaced bearing” (6) clusters. These misclas-
sifications do not indicate poor performance, as the
features indicating BFPO might also warrant a bear-
ing replacement, and an annotation describing that
a bearing has just been replaced likely associates
with signals with severe bearing fault features, e.g.
from BPFO, leading up to that replacement. Thus,
when joining cluster labels through human-centric
reclustering, shown in Table 2, the performance is
significantly improved, and in particular the num-
ber of false alarms for cable and sensor fault sets
decreases drastically.

Forming sets of features increases the level of ab-
straction of the supervision task, but is necessary to
overcome the challenge of inconsistent features in
the signal space. Without the sets, the model is un-
able to perform well as far too many data points are
feature-less, and thus many annotation-signal pairs
have different annotation labels associated with the
same feature-less feature-space.

However, some misclassifications remain even in the
joined confusion matrix, which likely arises due to
the errors between cable replacement/replaced and
replaced bearing in Figure 9. These could be due
to some annotations being written days after the re-
placement date, resulting in healthy features being
included in both sets. Thus, some testing samples
will contain mostly healthy data, which is difficult
to separate between classes that should be based
on unhealthy data. To overcome this with a large-
data approach, a transformer- or RNN-based model
which attends to a wide span of signals to predict
class belonging is likely the best solution. Obtain-
ing sufficient amounts of annotated data would re-
quire widespread industry collaboration with anno-
tated datasets from multiple companies. An alternate
small-data approach is to have a dynamic scope for
data extraction based on the fault description, either
learned from language model representations or by a
TLP-based expert system based on human knowledge
of typical dataset properties.

6.3. Future Research

The most important future research area for language-
based supervision on industry data is to integrate
unannotated data. Unannotated, presumably healthy,
data makes up a significant majority of all data in
CM datasets and in day-to-day work in process in-
dustries. Evaluating unannotated data is even more
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Figure 9. Multiclass cluster label prediction based on
sets of recordings, with an F1-score of 50.7%.
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Figure 10. Sorted cluster label prediction based on sets
of recordings with and F1-score of 92.6%.

difficult than noisy annotated data, but is critical to
ensure that models developed can be integrated in in-
dustry pipelines without producing time-consuming
false positive alarms or feedback for analysts. An-
alysts can also be integrated to provide real ground
truth labels for a small dataset, which would allow
for more accurate model evaluations.

In the vision-language pre-training domain, further
research can be done in noisy supervision, which has
been shown to converge despite noise in both text
and image input data (Jia et al., 2021). However, no
methods tailored specifically for industry challenges
have yet been developed, which would greatly bene-
fit any IFD scheme based on language data. For ex-
ample, rule-based expert systems from TLP research
could be further expanded to include the time-horison
of common faults, so that a “BPFO detected low
levels keep watch” annotation indicates that record-
ings from before and after the annotation date can
be used, while “Sensor replaced OK” indicates that
only recordings prior to the annotation date contain
fault features. This can then be further expanded
through active learning by evaluating feature levels
with regard to the expected time horison from a model
trained on a noisy datset, to essentially bootstrap the
dataset similarly to BLIP (J. Li et al., 2022).

Augmentation based on text or image properties
could potentially be introduced in the joint represen-
tation learning step to maximise agreement between
not only image-text pairs, but also between samples
of similar meaning, similar to data augmentation of
labelled images in contrastive learning (Chen et al.,
2020). Contrastive learning works well given large
batch sizes, large datasets, and large models trained
for a long time. However, some researchers argue that
the contrastive learning space has extreme variance
outside of the boundaries of encountered samples,
and that other joint representation learning methods

based on energy functions might be less computation-
ally demanding and also generalise better (Sobal et
al., 2022).

Many objectives in TLP research are related to event
extraction (Tong et al., 2020; Lai et al., 2020; Wang
et al., 2021; Lou et al., 2021), which detects text
anomalies and thus helps with text structuring by au-
tomatically tagging what happened and when it hap-
pened. Event extraction has also been investigated
with datasets from aviation industry (Akhbardeh et
al., 2020; Madeira et al., 2021), thus associated with
the more production-oriented data that has been used
in TLP, wherein solutions for data imbalance have
also been suggested by oversampling worse perform-
ing data distributions (Akhbardeh et al., 2021).

7. CONCLUSION

We introduced a human-centric method to automate
IFD on unlabelled but annotated CM data by unsuper-
vised processing and clustering of annotations. We
illustrated how sensor and annotation representations
correlate in a CM dataset, and show a test case where
signal features were mapped to annotation embedding
clusters. By adding human insight, we achieved an
F1-score of 92.6% when detecting sets of cable and
sensor fault vs bearing fault features.

Surveying the literature on TLP, we show that there is
potential for new research in the merging of CM sig-
nals with associated annotations and MWOs for the
implementation of IFD models on industry datasets.
Thus, we describe the general framework of NLS, the
mapping between images and natural language cap-
tions, and describe methods and challenges to trans-
late findings in this field to the technical domain. In
particular, TLS, based on joint pre-training on large
datasets, and TLL, are identified as viable paths to fa-
cilitate optimisation of machine learning algorithms
on unlabelled but annotated CM datasets.
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