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ABSTRACT

Prognostic and Health Management (PHM) solutions are be-
coming increasingly popular in industries that rely on large
systems such as aircraft, spacecraft, and power plants. PHM
analytic solutions are designed to monitor the health of each
subsystem and component and apply predictive analytic to
improve system reliability and safety, reduce the cost and de-
crease time spent on unscheduled maintenance. However,
identifying correlations between different components and
associated monitors in these large systems can be challeng-
ing. To address this issue and achieve maximum utilization of
available monitoring signals, a methodology is required that
can identify correlations between degraded or failed compo-
nents and the features engineered from the monitors and sen-
sors. This paper introduces a framework that enables rapid
prototyping of analytics, allowing users to seamlessly move
from designing and discovering features to developing mod-
els for a specific event or component of interest. The frame-
work has three main components: feature exploration, data
preparation, and model development. Feature exploration fo-
cuses on feature engineering using raw monitor data from all
available monitors. Data preparation purges the data, and
down-selects relevant features based on correlation defined
in the feature exploration part. The data preparation step
also creates a training dataset. Model development enables
quick testing and comparison of multiple supervised Machine
Learning (ML) models. To demonstrate the framework, this
paper presents an example of a remaining useful life model
for an aircraft component. While the examples and simu-
lations are aircraft-focused, the principles behind the frame-
work can be applied to other large systems.

Katarina Vuckovic et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Prognostic and Health Management (PHM) has become an
essential function for safe system operation and scheduling
economic maintenance (Kim, Choi, & Kim, 2021). Thus
far, many prognostic algorithms have been proposed for
component level prognostics. Examples include bearings
(Hamadache, Jung, Park, & Youn, 2019), gears (Hsu, Chang,
Hsu, Chen, & Hwang, 2022), batteries (Meng & Li, 2019),
and filters (Vuckovic & Prakash, 2022). Single components
are easier to model and test by themselves because the com-
ponent degradation data can be captured during accelerated
life testing in a controlled environment. This data, in combi-
nation with the domain or physical knowledge, enables model
based solutions. However, as we move towards more com-
plex systems with many integrated components, the corre-
lations and interdependencies become intricate and models
rarely exist to support them. In recent years, Digital Twins
(DTs) that create virtual representation of the complex sys-
tems have gained interest (Tao, Zhang, Liu, & Nee, 2018).
Over time, the DT may be used to gather data and develop
models for PHM applications. Either way, the behavior of
the complex system and its components is best modeled us-
ing data-driven approaches.

PHM solutions have gained much interest in industries that
require high levels of reliability and safety. Examples of these
systems such as aircraft (Fei, Bin, Jun, & Shunhua, 2020),
nuclear power plants (Zhao et al., 2021), and military defense
systems (Lang et al., 2021). Currently, PHM development
often occurs much after the system is designed. Adding new
sensors to such systems typically requires substantial amount
of work to implement and certify. Therefore, adding new sen-
sors may not be feasible nor desirable solution in many cases.
As aresult, PHM engineers do not always have the luxury to
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instrument sensors in all the desired locations. Instead, they
have to rely on what is already available on the system.

Creating a comprehensive PHM solution for a complex sys-
tem is a significant endeavor. Typically, developers are given
access to historical data from all available sensors or mon-
itors within the system, as well as a list of failures (system
or component failures), which are referred to as “events” in
this context. An event can represent a degradation in per-
formance or complete failure. However, the relationship be-
tween the events and sensor data (signals) is not always clear,
and symptoms of a degraded component may be reflected in
the performance of a different component. Therefore, it is
necessary to systematically identify the correlation between
events and sensor data using data-driven methods.

This paper introduces a framework to first, isolate the relevant
data, second, to engineer features into training data sets, and
third, identify the correlation between these features and the
events of interest (EOI). Once this processing framework is
established, a further Machine Learning (ML) framework will
allow developers to rapidly train and test multiple supervised
ML models using the dataset generated in the previous step.

1.1. Contributions

The contributions of this paper are summarized as follows:

* The work proposes a novel data-driven framework that
enables PHM development for complex systems consist-
ing of many components and signals. The framework
guides the developer from concept generation all the way
to performance validation.

* The framework provides a methodology for identifying
relevant features in the “data preparation” component.
Identifying relevant features is key to developing suc-
cessful analytic.

* The ”Model Training” component enables rapid pro-
typing of a wide range of supervised ML models which
significantly reduced the time that the developer needs to
allocate to a given EOL.

* A numerical example for developing component Re-
maining Useful Life (RUL) estimation using a regres-
sion model is presented. The example goes through the
framework and demonstrates the analytic development
process and the performance of the resulting analytic.

The rest of the paper is organized a follows. Section 2 pro-
vide a high level overview of the architecture and defines all
the components within it. The next four section discuss each
component of the framework in detail starting with the ap-
proach for identifying opportunities in Section 3. This is fol-
lowed by the data preparation and feature engineering com-
ponent in Section 4 which leads to the automated-ML (auto-
ML) model training component in Section 5. In this com-

ponent several models are evaluated to identify the best ML
model for this given use case. The last part of the architecture
is the performance validation component described in Section
6. Section 7 provides a simulation example for a regression
model to demonstrate the framework process. Finally, Sec-
tion 8 summarizes the work and highlights the main points.

2. ARCHITECTURE OVERVIEW

This section presents a high level overview of the different
components within the framework shown in Figure 1. The
process flows from left to right, separated into four phases,
starting with ”Opportunity Identification” as the first phase.
Here, the types of events targeted in the events of interest’ set
must be clearly identified, especially in presence of multiple
components and failure modes. The steps and approaches
involved will be discussed in the next section.

The next phase is "Data Preparation”, where features are en-
gineered from raw sensor data and correlated to events. Since
there are many features available, this part also aims to down-
select the features to only the essential ones. These features
are then used to train the ML models. There are four differ-
ent model types and each of them requires a different training
dataset format (classification, regression, time-series classifi-
cation, and time-series regression).

The third phase, "Model Training”, consists of auto-ML li-
braries designed specifically for PHM applications. The li-
braries enable the developer to quickly asses different models
and to optimize them with different hyper-parameters.

The final phase is "Performance Validation”. The frame-
work considers two approaches to evaluating the performance
based on whether the model type is classification or regres-
sion.

3. OPPORTUNITY IDENTIFICATION

In a plethora of signal-EOI combinations, it may be challeng-
ing to identify the order in which the analytics should to be
tackled in an incremental development process. Therefore,
a systematic approach to prioritize the work is needed to es-
tablish a successful framework. This section outlines some
methods that can be used to identify opportunity and assign
priority. It is focused on addressing the question of how to
determine the priority of developing analytics for different
systems or components.

3.1. Customer Request

Customer requests and requirements are certainly the most
direct way of obtaining priority and narrowing the focus to
specific events. However, the requirements are not always
available. Furthermore, even if the customer desires an ana-
lytic for a specific component, it is not always obvious if there
are parameters that can support the PHM model. Therefore,
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Figure 1. Block diagram illustrating the major component of the framework and the flow of the process.

developers frequently have to perform their own analysis to
assess the feasibility and benefits of analytics in order to set
priority.

3.2. Cost-Benefit Analysis

As cost is a key driver for the PHM business model, the Cost-
Benefit Analysis (CBA) is the best way to determine if im-
plementing the analytic is profitable. Identifying components
and failure modes for PHM solutions would involve weighing
factors like the cost of operational disruption against potential
reduction in serviceable life. For example, components with
high removal rates and high cost of unscheduled maintenance
are typically good candidates. In the case of commercial air-
lines, unscheduled maintenance is expensive due to the down
time that can result in flight delays, cancellations, loss of po-
tential revenue, or loss of customer goodwill. In addition,
labor and equipment costs may be compounded when diag-
nosis is incomplete or leads, at times repeatedly, to the wrong
component. Airlines in particular tend to observe a failure
symptom and replace several components until the issue is
resolved.

3.3. Safety and High Risk Components

Safety is paramount and will always supersede cost, a reality
that is most apparent in military and civilian aviation applica-
tions. Although safety would be factored into the initial de-
sign and type certification, PHM strategies can enhance ex-
isting safety margins. Furthermore, efforts are underway to
consider prognostic strategies as an eventual replacement for
some airworthiness inspection intervals (International Main-
tenance Review Board Policy Board, Aircraft Health Moni-
toring (AHM) Integration in MSG 3, 2018). For example,
PHM models that predict engine degradation or failure can
effectively reduce the need for scheduled inspections (Khan
etal., 2021).

3.4. High Correlation

There may be, on occasion, specific event and signal com-
binations which occur frequently together. If the correlation
is pronounced and the analytic development effort low, then
pursuing such an analytic may be beneficial even if it does not
necessarily lead to a prognostic recommendation or carry any
other sort of priority. The benefit instead could be in alerting
to a need for further modeling, monitoring, or engineering
analysis.

4. DATASET PREPARATION
4.1. Feature Engineering

The engineering task starts by applying a set of transforma-
tions to each raw signal collected during a flight in an effort
to generate features. The transformations applied are vari-
ous statistical functions that convert raw signals into a single
value per flight. Each feature is tracked over time and saved
into a feature-specific dataset.

Correlations are then performed against each unique feature
and each unique EOI, automatically. If the feature is statisti-
cally different before and after the the event (i.e. significant
drop or increase of feature within a set window), then the in-
stance is triggered as a correlated event between the feature
and event, and saved for future reference and investigation in
another dataset.

4.2. Feature Down-selection and Explainability

The correlated events dataset is then filtered to a specific EOI
based on the above opportunity criteria. This event could be a
specific component, set of components, type of maintenance,
or a derivation thereof. This single event will become the
dependent variable for the ML model.

The correlated events dataset saved earlier, is used to discover
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the desirable independent variables for the EOI chosen. Be-
cause each feature is correlated to a specific event within the
EOI, total percentage of explain-ability for an entire EOI can
be derived for the feature.

For example, if a maintenance action was performed 100 dif-
ferent times on the entire fleet for a specific EOI (i.e. com-
ponent removal), and a feature was found to be correlated to
5 of them, then level of feature explain-ability for that EOI is
5%.

This percentage-of-feature-explain-ability is used as the cri-
teria to down-select the features based on a defined thresh-
old (quartile, specific-threshold, relative value). In practice, a
threshold limit may be set such that if the percentage is below
the limit, then the correlation is not statistically significant
even if it is the most correlated feature. If this occurs the an-
alytic cannot move forward with model development given
these features.

4.3. Dataset Formatting Based on Model Type

Once the features are identified, the the data is pre-processed
to create a training dataset. The framework differentiates be-
tween four different training dataset formats: 1) classifica-
tion, 2) regression, 3) time-series classification, and 4) time-
series regression.

The raw dataset generally has more healthy (normal opera-
tion) data than the unhealthy data, therefore the dataset needs
to be correctly balanced. Additionally, for the train/test split,
the framework separates the dataset by aircraft, thus ensur-
ing that the whole sequence prior to an event remains in tack
during testing/training.

4.3.1. Classification

One popular type of classification model is a binary classifier
that differentiates between the healthy and unhealthy data.
Occasionally, it may be challenging to identity the transition
from healthy to unhealthy and labeling the data may becomes
a burdensome task.

However, the framework relies on the correlated EOI trig-
ger to classify the training dataset. For example, everything
within a certain window before the correlated EOI, could be
considered unhealthy while all other events could be consid-
ered healthy. Care must be taken with the approach however
as the dataset will become strongly imbalanced and will re-
quire the proper tuning prior to modeling.

4.3.2. Regression

The RUL estimation problem can be tackled using a regres-
sion model. The input of the model is the feature at some time
instance ¢ prior to the correlated EOI and the corresponding
output is the RUL. The RUL of a component can be defined in

terms of number of days or cycles remaining until failure. In
aircraft PHM modeling, the RUL may be expressed in terms
of flights or flight hours, depending upon the dominant failure
mechanism.

4.3.3. Time-Series

Time-series models can be either classification or regression
models in the same manner as defined in the previous two
subsections. The main difference is that time-series analysis
involves analyzing a set of data points collected over a pe-
riod of time to identify patterns, trends, and relationships be-
tween variables, while the previously mentioned models treat
each instance in time as a single data point. By using time-
series analysis, it becomes possible to monitor variations in
data over an extended period, and leverage the historical data
to enhance predictions by recognizing how the feature deteri-
orates over time.

4.3.4. Data Challenges

To develop a high quality model, there are certain require-
ments that we impose on the quality and quantity of the
dataset. When considering the dataset, we have to ensure
that i) the number of component removals is large enough
to develop a training dataset, and ii) that the same compo-
nent is removed on multiple aircraft to avoid aircraft bias.
These requirements are best illustrated in the graph in Fig-
ure 2. Each data point on the graph represents a different
component. The x-axis represents the total number of re-
movals of a given component, while the y-axis represents the
total number of different aircraft on which this same compo-
nent was removed. For example, if we consider component
Cyn = (26,25), this means that the dataset contains 26 re-
movals of component C,,, across 25 different aircraft. Since
the number of removals can never exceed the number of air-
craft, all the data points will be at or below the y = z line.
The best case scenario is when the data points are in the upper
right corner, where there are a lot of removals across different
aircraft. The data points in the lower right corner indicate that
there are a lot of component removals but they are all located
on a few aircraft, this can often point to a systemic aircraft
issues rather than the component. The data points that are in
the lower left region indicate very few removals and probably
not enough data to develop a model.

Next, the data needs to be labeled for supervised training. We
have already mentioned that this can be a challenge especially
for classification where we have to determine when the com-
ponent transitions from healthy to unhealthy. In an RUL case,
labeling the data is trivial as we can count backward from the
time that the component was removed. We only consider a
window of 50 flight prior to removal and assume that dur-
ing this time the component transitions from healthy to un-
healthy. The maximum RUL is subjective to the component
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Figure 2. Component removal analysis graph showing re-
moval information of different aircraft components.

and could vary between components depending on how fre-
quently the component is replaced. However, since there is
generally more healthy that unhealthy data, we run into data
imbalance issues. By limiting the dataset to only a certain
window prior to the removal, we attempt to address this issue
at least to some extent.

5. MODEL TRAINING

The rapid prototyping framework heavily relies on the model
training component, which is a crucial factor. This com-
ponent comprises three sub-components, namely regression,
classification, and time-series. In Section 4.3, the developer
determines the model type and formats the training dataset
accordingly. Each of the three model types has its auto-ML
library, which is specifically designed for PHM applications.
The auto-ML libraries provide baseline implementation a col-
lection of common supervised ML models, enabling the de-
veloper to swiftly train and evaluate multiple models. Table 1
summarizes the common models present in the libraries. Fur-
thermore, the user also has the ability to develop new models
and add them to the existing libraries. The auto-ML environ-
ment also offers the flexibility to modify and retrain models.
This transparency and flexibility sets the auto-ML environ-
ment apart from many other existing auto-ML tools such as
auto-sklearn, AutoKeras, and Databricks AutoML. Moreover,
the model training component utilizes Machine Learning Op-
erations (MLOps) to streamline and automate the entire ML
lifecycle (Aronchick & Boykis, 2020).

6. PERFORMANCE VALIDATION

In order to fully assess model performance, various factors
must be taken into account, including accuracy or error met-
rics, uncertainty analysis and lead time. It is important to
note the evaluation of model performance differs across clas-

sification and regression model types. While a comprehen-
sive study on prognostic model evaluation metrics has already
been conducted (Prakash, Vuckovic, & Amin, 2023), this sec-
tion aims to summarize the most essential metrics.

Agnostic to the actual performance metrics of choice is the
device used to track them over multiple experiments and
modeling scenarios. Utilizing a tool, such as the open sourced
MLFlow, can allow for quick and even automated experimen-
tation and model selection. As development of the framework
continues, our tracking tool will serve as not just a repository
but also a meta-data-driver to facilitate in tracking, retrain-
ing, model selection, model serving, model & feature drift
and more; all in a automated and dynamic manner. A true
MLOps implementation.

6.1. Performance Metrics for Classification Models

The performance of classification models is commonly re-
ported in terms of precision and recall defined in (1) and (2).
Precision is the probability of the event occurring given an
alert has been enunciated, while recall is the probability of
alerting given the event will occur. Figure 3 shows the con-
fusion matrix where one axis is the predicted class and the
other is the true value class. If both true and predicted val-
ues agree, the model scores a True Positive (TP). If the model
alerts without the event it is a False Positive (FP), while a
False Negative (FN) means the model failed to adequately
detect the event.

Precision = P(ImpendingFailureEvent| PrognosticAlert)
_ TruePositive (1
" TruePositive + FalsePositive

Recall = P(PrognosticAlert| ImpendingFailureEvent)
. TruePositive 2)
"~ TruePositive 4+ FalseNegative

True
Event No Event

E True Positive False Positive TP
= = =
g « (FP) (TP) P=Tprep
T . .
5 % True Negative False Negative

5 (TN) (FN)

=4

- TP
“ TP+FN

Figure 3. The binary classifier confusion matrix, showing
the precision and recall conditions.

Occasionally, precision and recall are combined into the F-
score metric as in (3). The F-score provides a balance be-
tween precision and recall. Combining two parameters into
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Table 1. Auto-ML models available in the Model Training Component.

Classification Regression H Time-Series Classification/Regression
Logistic Regression Polynomial Regression CNN
Decision Trees Decision Trees Gate Recurent Unit (GRU)
Random Forest Random Forest Recurrent Neural Network (RNN)
XGBoost XGBoost Long-Term Short-Term Memory (LSTM)
Support Vector Machine (SVM) Support Vector Regression (SVR) Transformers
k- Nearest Neighbor (KNN) KNN GP for time-series

Bayes Models Gaussian Process Regression (GPR)

Multi-Layer Perceptron (MLP) MLP

Convolutional Neural Network (CNN) CNN

one makes comparing the performance among the different
models simpler.

Precision * Recall
Fscore =2 Precision 4+ Recall )

6.2. Standard Error Metrics for Regression Models

The accuracy of regression models is typically evaluated by
calculating the error. There are a few error metrics commonly
used in RUL regression estimation: 1) the Mean Absolute
Error (MAE), 2) the Mean Absolute Percent Error (MAPE),
and 3) the Root Mean Square Error (RMSE) (Liu & Chen,
2019). The equations are defined in (4) - (6), respectively,
where z; is the true and z; is the predicted RUL, and n is the
total number of test samples.

1 n

MAE = = PRy 4
n;w i )

1 < T — &
MAPE = = Ay | 5
n;| | 100% 5)

n L AN2

RMSE = M 6)

n

Assessing the performance of a model using multiple error
metrics is valuable. Each metric has its strengths and limita-
tions, and choosing the right one depends on the data charac-
teristics and the goal. MAE is less sensitive to outliers, while
RMSE is useful for identifying the impact of outliers. How-
ever, both are specific to the data scale. MAPE can compare
results across different scales but has drawbacks, such as the
need to exclude true value data points that are equal to zero
and the fact that it penalizes negative errors more than posi-
tive errors. Choosing the right metric leads to accurate ana-
Iytics, and using multiple metrics provides a comprehensive
understanding of the results.

6.3. Additional Validation Considerations

Beyond the numerical validation results, there are also other
model validation aspects that may have to be considered.
Ethics may play a role when the models have a community
impact or when safety is at risk. Models may also have to
pass certification depending on how and where the analytic
is being deployed. ML based products are still in the early
stages of Federal Aviation Administration (FAA) certification
development and ML-based certification is still a challenge in
the aviation industry. No matter if the requirements are com-
ing from an external certification authorities or from internal
internal requirements, the models generally need to be ex-
plainable to be approved for deployment. This explainability
tends to come from subject matter experts that can provide
some justification based on physics models or knowledge do-
main of the systems, especially when it comes to signal selec-
tion and feature engineering. The developers should consider
these verification step as well as any additional requirements
mandated by the internal or external governing bodies, and
the should consult with their verification and validation rep-
resentatives during the development. However, these consid-
eration are outside the scope of this framework, which mainly
focuses on the data-driven model development.

7. SIMULATION NUMERICAL EXAMPLE

i

Table 2. Error metric for evaluated regression models.

Model MAE | RMSE | MAPE
Linear Regression | 12.5 14.5 170.9%
Random Forest 4.6 5.61 55.3%
XGboost 12.1 14.1 154.8%
SVR 11.8 14.1 150.1%
ElasticNet 12.5 14.5 171.0%
MLP 12.5 14.4 171.8%
KNN 10.1 12.2 119.4%

GPR 0.1 0.2 0.5%
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The objective of this example is not to discuss the specific
components and features but rather show that this data-driven
approach works on a real dataset and can be repeated for mul-
tiple components. For any new component, the combination
of features will vary and the best model type will likely be
different but the framework and approach will still be appli-
cable. The objective of the framework is to reduce the time
and effort that a developer needs to invest in designing a high
quality analytic. Therefore, we do not focus on the explain-
ability of the model in this section.

8. CONCLUSION

This paper presented a framework for development of PHM
analytics using a data-driven approach. The framework is
intended for complex systems where many components and
signal monitors/sensors co-exist. The latent correlation be-
tween the components and signals are sometime difficult to
deduce using domain knowledge and physics based models.
The framework performs both feature engineering, feature se-
lection, and model training. Using this framework, the devel-
oper can quickly identify the relevant features given a com-
ponent of interest and then apply a set of different ML models
to find an optimal solution. The ML models are predefined in
the framework to default hyper-parameters, however the de-
veloper has full control of the models and can optimize and
modify them as needed. The performance of the models is
evaluated using standard performance metrics. Finally, the
paper presented a numerical example to RUL estimation for
a given aircraft component using four features.

9. FUTURE WORK

Future work will focus on developing analytics and present-
ing numerical results for the classification and time-series
models. Furthermore, the current architecture is designed to
only train supervised models. As part of the future work, we
intend to investigate unsupervised methods and expand our
framework to include these models. We believe that the unsu-
pervised methods will be particularly helpful in cases where
it is difficult to label the data. For example determining when
the component transitions from healthy to unhealthy and la-
beling the data accordingly is a challenge that may be over-
come by supervised methods. Another research direction for
future work is on improving feature engineering. Thus far, we
presented a method for combining features at the ML phase,
however, signals from multiple sources can also be combined
during the feature engineering phase. We intend to explore
all these improvements in order to generate a more robust and
more comprehensive framework. (Hrnjica & Softic, 2021)

REFERENCES

Aronchick, D., & Boykis, V. (2020). Milops: Continuous
delivery and automation pipelines in machine learning.

O’Reilly Media.

Fei, X., Bin, C., Jun, C., & Shunhua, H. (2020). Literature re-
view: Framework of prognostic health management for
airline predictive maintenance. In 2020 chinese control
and decision conference (ccdc) (p. 5112-5117). doi:
10.1109/CCDC49329.2020.9164546

Hamadache, M., Jung, J. H., Park, J., & Youn, B. D. (2019).
A comprehensive review of artificial intelligence-based
approaches for rolling element bearing phm: shallow
and deep learning. JMST Advances, 1, 125-151.

Hrnjica, B., & Softic, S. (2021). The survival analysis for
a predictive maintenance in manufacturing. In Ad-
vances in production management systems. artificial
intelligence for sustainable and resilient production
systems: lIfip wg 5.7 international conference, apms
2021, nantes, france, september 5-9, 2021, proceed-
ings, part iii (pp. 78-85).

Hsu, T.-H., Chang, Y.-J., Hsu, H.-K., Chen, T.-T., & Hwang,
P.-W. (2022). Predicting the remaining useful life of
landing gear with prognostics and health management
(phm). Aerospace, 9(8), 462.

International Maintenance Review Board Policy Board, Air-
craft Health Monitoring (AHM) Integration in MSG 3
(Tech. Rep.). (2018). Issue Paper 180,Air Transport
Association of America.

Khan, K., Sohaib, M., Rashid, A., Ali, S., Akbar, H., Basit,
A., & Ahmad, T. (2021). Recent trends and challenges
in predictive maintenance of aircraft’s engine and hy-
draulic system. Journal of the Brazilian Society of Me-
chanical Sciences and Engineering, 43, 1-17.

Kim, S., Choi, J.-H., & Kim, N. H. (2021). Challenges
and opportunities of system-level prognostics. Sensors,
21(22), 7655.

Lang, B., Zhao, H., Mi, C., Huang, Q., Song, L., & Ma, G.
(2021). Application and analysis of prognostics and
health management technology in weapon equipment.
In 2021 3rd international conference on system reli-
ability and safety engineering (srse) (p. 56-59). doi:
10.1109/SRSE54209.2021.00016

Liu, J., & Chen, Z. (2019). Remaining useful life prediction
of lithium-ion batteries based on health indicator and
gaussian process regression model. IEEE Access, 7,
39474-39484. doi: 10.1109/ACCESS.2019.2905740

Meng, H., & Li, Y.-FE. (2019). A review on prognostics
and health management (phm) methods of lithium-ion
batteries. Renewable and Sustainable Energy Reviews,

116, 109405.

Prakash, S., Vuckovic, K., & Amin, S. (2023).
Prognostic model evaluation metrics. In 2023
ieee aerospace conference (p. 1-11). doi:

10.1109/AER055745.2023.10115952

Tao, F., Zhang, M., Liu, Y., & Nee, A. Y. (2018). Digital twin
driven prognostics and health management for complex
equipment. Cirp Annals, 67(1), 169-172.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2023

Vuckovic, K., & Prakash, S. (2022). Remaining useful life
prediction using gaussian process regression model. In
Annual conference of the phm society (Vol. 14).

Zhao, X., Kim, J., Warns, K., Wang, X., Ramubhalli, P,
Cetiner, S., ... Golay, M. (2021). Prognostics and
health management in nuclear power plants: An up-
dated method-centric review with special focus on
data-driven methods. Frontiers in Energy Research, 9,
696785.

BIOGRAPHIES

Katarina Vuckovic received her B.S. in
Aerospace Engineering (2017), B.S. in Elec-
trical Engineering (2017), M.S. in Electrical
Engineering (2019) from Florida Institute of
Technology. She is currently pursuing her
Ph.D. in Electrical Engineering at the Univer-
sity of Central Florida. She has been with
Collins Aerospace for six years working as a
systems engineer on wireless communication systems, air-
craft automation applications, and prognostics and health
management of aircraft components.

Shashvat Prakash received a B.S. in Me-
chanical Engineering from University of Illi-
nois, Urbana, an M.S. in Mechanical En-
gineering from Carnegie Mellon University,
. and a Ph.D. in Mechanical Engineering from
the Georgia Institute of Technology. He has
worked on satellite attitude and orbit con-
trol at NASA Goddard, combustion and con-
trol of aviation turbines at General Electric, and prognos-
tics and health management (PHM) of aircraft components at
Raytheon Technologies-Collins Aerospace. Currently a Se-
nior Principal Engineer, he has over 13 years of experience in
the commercial aviation industry.

Ben Burke received a B.S. in Communica-
tions from Brigham Young University - Idaho
and a M.S. in Data Science and Business An-
alytics from the University of North Carolina
at Charlotte. He has worked in the cloud, data
and data science space as a consultant for al-
most a decade, helping clients create unique,
native, and distinct solutions harnessing cloud
architecture, data engineering and data science skills. Cur-
rently he is a Sr. Data Scientist with Insight, who provides
consulting services for Collins Aerospace.




