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Sequential hybrid method for RUL prediction
Challenges

RUL prediction for bearings

▪ Availability of data – faulty and run-to-failure data

▪ Smart maintenance strategies need RUL prediction during entire lifetime
▪ RUL prediction after anomaly/fault detection not sufficient

▪ Short degradation time wrt full lifetime

▪ Varying operating conditions
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Sequential hybrid method for RUL prediction
Challenges
Data - Flanders Make data-set

▪ +200 bearings run-to-failure (20g)

▪ Accelerated lifetime tests (ALT)
▪ High load + damage initiation

▪ Vibration and/or acoustic measurements

▪ Different speed and loads + varying speed
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Sequential hybrid method for RUL prediction
Challenges
RUL prediction during entire lifetime
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Sequential hybrid method for RUL prediction
Challenges
Varying operating conditions
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Sequential hybrid method for RUL prediction
Model-based RUL prediction
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Historical data

▪ Histogram of lifetime & anomaly detection

▪ Average time of degradation (phase 3)

▪ L10 bearing rating life (1h:15) 

▪ L50 average bearing life (3h:15)

Prior knowledge/estimates

▪ L10 bearing rating life

▪ L50 average bearing life

▪ Weibull or log-normal distribution

▪ Weibull:
▪ Shape = 2.5  (literature: 0.7 – 3.5)
▪ Scale = L50 average bearing life

Sequential hybrid method for RUL prediction
Model-based RUL prediction
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▪ Distribution of End-of-Life

▪ Distribution of 
“Moment of anomaly detection”

Sequential hybrid method for RUL prediction
Model-based RUL prediction
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▪ Distribution of End-of-Life

▪ Distribution of 
“Moment of anomaly detection”

▪ Model-based RUL prediction RUL50

Sequential hybrid method for RUL prediction
Model-based RUL prediction

0

10

20

30

0 1000 2000 3000 4000 5000 6000 7000

Fe
at

u
re

 v
al

u
e

Accelerated testing time [seconds]

Bearing vibration feature



13

Sequential hybrid method for RUL prediction
Content

▪ Challenges

▪ Background

▪ Model-based RUL prediction 

▪ Data-driven RUL prediction

▪ Sequential hybrid method

▪ Conclusions



14

Sequential hybrid method for RUL prediction
Data-driven RUL prediction
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Feature extraction
▪ Statistical time-domain features (e.g. RMS, peak-to-peak, impulse factor …)

▪ Statistical frequency-domain features (e.g. max amplitude, frequency of max amplitude …)

▪ Fault frequency features (e.g. BPFO, BPFI, BDF …)

▪ (can be extended with ML features or any other relevant features)

Sequential hybrid method for RUL prediction
Data-driven RUL prediction
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Auto-encoder to generate health indicator
▪ Smart feature selection – limited AE size

▪ Only limited healthy training data required

▪ Reconstruction error = health indicator

▪ Individual reconstructed features can be used for diagnostics

▪ Capable of coping with varying operating conditions

Sequential hybrid method for RUL prediction
Data-driven RUL prediction
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Remaining Useful Life prediction
▪ Kalman filter with exponential degradation 

model fitted to the health indicator

▪ Extrapolation towards threshold results in RUL

▪ Threshold based on historical end-of-life data 
(if available) or engineering knowledge

Sequential hybrid method for RUL prediction
Data-driven RUL prediction
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▪ Vibration health indicator & RUL50 computed in parallel

▪ Data-driven model after anomaly is detected

Sequential hybrid method for RUL prediction
Sequential hybrid method
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▪ Hard switch between methods once an anomaly is detected

Sequential hybrid method for RUL prediction
Sequential hybrid method

▪ Short living bearing
(less than average lifetime)

▪ Long living bearing
(double of average lifetime)
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Sequential hybrid method for RUL prediction
Sequential hybrid method

▪ Constant operating conditions

▪ Short living bearing
(less than average lifetime)

▪ Long living bearing
(double of average lifetime)

RUL based on statistical model

Anomaly detection
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Sequential hybrid method for RUL prediction
Sequential hybrid method

▪ Constant operating conditions

▪ Short living bearing
(less than average lifetime)

▪ Data-driven RUL prediction
▪ oscillations due to stepwise nature of spalling

Anomaly detection
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Sequential hybrid method for RUL prediction
Sequential hybrid method

▪ Varying operating conditions

▪ Short living bearing
(less than average lifetime)

▪ Long living bearing
(double of average lifetime)
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Sequential hybrid method for RUL prediction
Sequential hybrid method

▪ Varying operating conditions

▪ Short living bearing
(less than average lifetime)

▪ Data-driven RUL prediction
▪ oscillations due to varying RPM and spalling



Sequential hybrid method for RUL prediction

Conclusions

▪ RUL prediction for entire lifetime of bearing

▪ Limited healthy and faulty data required

▪ Method handles varying operating conditions

▪ Applicable for different models and components

Ongoing development

▪ Apply expert/engineering knowledge 
to set up Bayesian network

▪ Fiber optic strain measurements
Koen Geurts

Koen.Geurts@flandersmake.be
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