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ABSTRACT

The use of Lithium-Ion Batteries (LIBs) have increased in
recent years in many applications such as hybrid electrical
vehicles (HEV), consumer electronic equipment, and elec-
tricity grid. The batteries undergo degradation during usage
due to material aging and electrochemical processes, lead-
ing to efficiency reduction of battery-powered systems as well
as catastrophic events. Several stress factors such as battery
temperature, ambient temperature, and C-rate in the loading
profiles influence the degradation. Therefore, predicting the
health of the battery has gained attention. The service life
can be extended or a system failure can be avoided by main-
tenance measures precisely matched to the function loss or by
changing usage strategies. The State-of Health (SoH) condi-
tion of the battery can be determined by the application of
lifetime models. Various health indicators such as remain-
ing useful lifetime (RuL) and capacity fade are determined
by the models based on the stress factors (utilization vari-
ables). For optimal use of the battery, it is helpful to develop
an accurate lifetime model to represent the dynamic proper-
ties. However, models developed are less computationally
efficient and unable to represent the non-linear degradation
behavior well. The development of a precise model with cor-
rect parameterization is also costly. This is particularly true
for models developed based on physical and chemical prop-
erties of the battery. In this contribution, an artificial neural
network (ANN)-based state machine approach is introduced
for capacity fade estimation. The degradation process is rep-
resented using three states modeling three different levels and
the progression from the first state to the last. Capacity asso-
ciated with each state is described using the non-linear auto
regressive neural network with external input (NARX). The
NARX is selected due to its ability to accurately model non
linear behavior and time series data. Unlike known models,
which are developed using analytical mathematical equations

Ruth David et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

related to the battery properties, a combined machine learning
approach is used here instead to learn the capacity behavior
from historical data. Battery data sets from NASA are used
for experimental verification. Based on the results, the esti-
mated capacity fade show close proximity to actual capacity
fade, with a low mean square error for different data sets. In
addition, the estimated state progression follows the actual
state progression.

1. INTRODUCTION

In recent years, the use of lithium-ion batteries (LIBs) in var-
ious systems have increased, such as in hybrid electrical ve-
hicles (HEV), unmanned aerial vehicles, and telecommuni-
cation systems. This is due to its light weight, long cycle
life, and low charge rate loss (Hu, Zou, Zhang, & Li, 2017;
Xiao, 2015). These batteries provide energy through electro-
chemical processes during charging and discharging cycles.
However, increasing the number of cycles causes aging as
well as stability deterioration of the batteries from side reac-
tions. Some of the common aging reactions include solid-
electrolyte interface (SEI) layer growth, corrosion of lithium,
and lithium platting (Daigle & Kulkarni, 2013). The SEI
growth occurs on the negative electrode during cycling and
storage at high temperatures, which causes impedance in-
crease leading to deterioration (Daigle & Kulkarni, 2013).
The corrosion of lithium also occurs in the negative electrode
leading to capacity loss due to lithium-ion loss (Daigle &
Kulkarni, 2013). Lithium layer platting is formed on the neg-
ative electrode due to low temperatures, high charge rates,
and low cell voltages causing the loss of lithium ions as
well (Daigle & Kulkarni, 2013). The degradation of the bat-
teries are prone to catastrophic events such as the breakdown
of a battery operated system and thermal runway. Therefore,
monitoring the battery’s health is important for maintaining
safety, the system’s performance, and avoiding unexpected
maintenance. Several health indicators such as remaining
useful lifetime (RuL), capacity fade, and End-of-Lifetime
(EoL) are used for monitoring the health.
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As part of the battery’s prognosis and health management,
many approaches have been proposed to estimate the health
indicators using lifetime models.  Generally, there are
two types of approaches to develop these models: model-
based (Christensen & Newman, 2003; Downey, Lui, Hu,
Laflamme, & Hu, 2019) and data-driven (Zhang, Wu, Wang,
& Chen, 2021; Catelani, Ciani, Fantacci, Patrizi, & Picano,
2021) approaches. One of the main challenges faced in the
development of lifetime models is different LIBs have dif-
ferent lifetime expectancies affected by stress factors, such
as battery surface temperature, ambient temperature, Depth-
of-Discharge (DOD), and C-rates (Keil & Jossen, 2017;
Waldmann, Wilka, Kasper, Fleischhammer, & Wohlfahrt-
Mehrens, 2014). In addition, the limited aspects of various
approaches makes it challenging to select the appropriate
approach. For an example, certain model-based approaches
are developed based on specific operating conditions, as
shown in (Zheng, Zhang, Zhu, Wang, & Jiang, 2016) and
(Ashwin, Chung, & Wang, 2016). Also, certain model-based
approaches such as (Liu et al., 2017) require complicated
electrochemical information and experiments. Both model-
based and data-driven approaches tend to have difficulties
in modeling complex non-linear degradation behaviors (Xu
& Chen, 2017). Hence, there is a lack of suitable lifetime
models in current literature for the estimation of the health
indicators. Only a few approaches in literature have consid-
ered the damage states associated with the multi-switching
degradation behavior of the battery. A new machine learn-
ing (ML)-based approach is introduced here to model the
switching capacity fade using a state machine approach,
such that different degradation states are modeled within one
framework.

In this research, a non-linear auto regressive neural network
with external input (NARX)-based state machine model is in-
troduced for the capacity fade estimation (output). Different
states of degradation are modeled using three discrete states,
such that capacity fade associated with each state are esti-
mated using the NARX model. Transition from the first state
to the last are defined to show the damage progression. These
transitions are based on specific threshold conditions (param-
eters) associated with the normalized battery’s surface tem-
perature (input) and actual capacity. As parameters of the
model affect the estimation performance, developing optimal
parameters are important. The parameters are optimized us-
ing a Non-dominated sorting genetic algorithm-II (NSGA-II)
here.

The paper is structured as follows: In Section 2, the back-
ground of the battery aging and the different lifetime models
are described. In Section 3, the NARX-based state machine
approach is presented. In addition, optimization of parame-
ters is detailed. The application of the method is discussed in
Section 4, which entails the description of the experimental

data, training, and test procedures. In Section 5, the results
are presented followed by a conclusion in Section 6.

2. BACKGROUND OF BATTERY AGING, LIFETIME MOD-
ELS, AND CURRENT DEVELOPMENTS

The correlation between various stress factors and battery ag-
ing is investigated in several research contributions. In (Keil
& Jossen, 2017), the capacity fade dependence on different
operating temperatures is studied. For instance, low temper-
atures generate an accelerated and increased capacity degra-
dation during cycling aging (when load is applied). On the
other hand, capacity degradation decreases at low tempera-
tures during calendar aging (when no load is applied). Based
on (Wang et al., 2011), high ambient temperatures (above
room temperature) or very low temperatures (lower than zero)
accelerate the aging process. In this research, the normalized
battery’s temperature is used as the model’s input.

As mentioned, the battery’s health can be stipulated by es-
timating the health indicators based on the mentioned stress
factors using lifetime models, which are developed using ei-
ther model-based or data-driven approaches. The model-
based approaches are often based on the physical and chem-
ical properties of the battery, given in (Downey et al., 2019).
It is also based on observer design and parameter estimations
(Plett, 2004). A drawback of this approach is it may not be
appropriate for complex systems, as representing the degrada-
tion behavior based on physical and chemical aspects may not
be suitable (J. Wu, Kong, Cheng, Yang, & Zuo, 2022). In ad-
dition, implementing parameters based on the electrochemi-
cal models is time consuming due to need of elaborate experi-
mental setups, as stated in (Y. Wu, Li, Wang, & Zhang, 2019).
The generalization of the models is also limited according to
(J. Wu et al., 2022). Nevertheless, empirical model-based ap-
proaches (do not consider the battery’s electrochemistry as-
pects) tend to be computationally efficient, as in (Saha &
Goebel, 2009). Data-driven approaches (such as ML models)
are often based on historical measured data. These models
have the benefit of being computationally and time efficient,
making the models suitable for larger systems (Zhao, Zhang,
& Wang, 2022). The ML-based models have gained popular-
ity in recent years as the electrochemistry knowledge is not
needed. Some of the ML models used are ANN (Catelani et
al., 2021; Zhao et al., 2022) and SVM (Patil et al., 2015).
However, poor quality information collected can affect per-
formance of data-driven models negatively. Hence, appropri-
ate techniques needs to be implemented when collecting data.
Overall, there is a lack of appropriate lifetime models to rep-
resent the degradation behavior of LIBs in current research
due the limitations mentioned.

Unlike the aforementioned approaches, a state machine mod-
els the switching behaviors of a system using different states.
Behaviors are modeled using discrete states that transition be-
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tween each other based on the model’s input and transition
conditions (Gill, 1962). The approach has shown promising
results in various areas, such as modeling plant growth based
on water stress (Kogler & Soffker, 2020), tribological experi-
ment damage behaviors (Beganovic & Soffker, 2017) as well
as the estimation of human driving behaviors (David, Rothe,
& Soffker, 2021). However, it has not been widely used in
the degradation behavior of LIBs. This approach has certain
advantages like its flexibility as states are defined abstractly
(Lopes, Silva, & Monteiro, 2012) and easy determination of
states (Micheli, Brayton, & Sangiovanni-Vincentelli, 1985).

Therefore, a new ML-based model is presented here, by com-
bining the state machine approach (to model different degra-
dation levels) and NARX neural network (to estimate the
capacity fade). The NARX is beneficial when traditional
methods are not adequate for applications with complex and
non-linear relationships between the input and output. The
method is also able to handle time series data well. In
addition, it has a better computational efficiency than con-
ventional recurrent networks (Siegelmann, Horne, & Giles,
1997). Furthermore, the gradient descent learning is more ef-
fective than other recurrent networks (Horne & Giles, 1994).

3. NARX-BASED STATE MACHINE LIFETIME MODEL

In this section, the battery lifetime model developed using
a state machine-based NARX approach is introduced for the
estimation of capacity fade and degradation levels. The dis-
charge capacity is considered in this research. In addition,
optimization of model parameters is described to develop an
optimal model. The input of the model is the normalized bat-
tery temperatures and the output is the estimated capacity.

3.1. State machine approach

As mentioned, behaviors of multi-state switching systems
can be modeled using state machine models with discrete
states. The states transition from one state to another or
remain in the same state determined by the model’s inputs
and transition conditions (Gill, 1962), (Wilson & Mantooth,
2013). The transition conditions are defined by designers.
The model consists of three states, whereby each state rep-
resents different degradation levels/behaviors describing the
aging. As input, only the normalized temperature of the bat-
tery is taken into account, due to the fact that the temperature
change contributes to the capacity loss. The normalization
is done with the z-score normalization. The transition con-
ditions are defined using the normalized temperature and the
End-of-Lifetime (EoL) capacity. The estimated loss of ca-
pacity associated with each state is modeled using a neural
network model (NARX).

Based on Figure 1, when the current estimated state is state 1,
it can transition to state 2 (EoL reached) if the transition con-
ditions are met to estimate the next state and capacity fade.

NARX 1 NARX 2 NARX 3

Temperature>tr2
and capacity<
end capacity

Temperature>tr]
and capacity<EoL

Condition not met Condition not met Condition not met

Figure 1. NARX-based state machine model.

Otherwise, the model remains in state 1. Similarly, possi-
ble estimations when the current estimated state is state 2 is
transitioning to state 3 or remaining in state 2. If state 3 is
estimated, the model can only remain in state 3 for the next
estimation.

As for the transition conditions, if the normalized tempera-
ture is higher than threshold ¢r; and the capacity is less than
or equals to the capacity at EoL (here: reaches 80 % of the
nominal capacity), a state transition from state 1 to state 2 oc-
curs (Figure 1). This indicates, the battery has reached EoL
at state 2. On the other hand, a transition from state 2 to state
3 occurs when the temperature is higher than ¢rs and the ca-
pacity is less than or equals to the capacity measured at the
final time point. Once state 3 has been reached, the model
can only only remain in the same state, as the final state has
been reached. If conditions are not met, the model remains
in the same state. The ¢r; and ¢ry (parameters of the model)
are selected automatically using NSGA-II. These are given as
unknown values to the algorithm initially. Based on different
temperature ranges for the specific states and capacities, the
algorithm selects and optimizes the threshold values.

3.2. Non-linear auto regressive neural network with ex-
ternal input (NARX)

The estimated capacity is calculated using different NARX
models for each state, presented in Figure 1 (NARX 1, NARX
2, and NARX 3). Nevertheless, the structure of the model is
the same for all states. Only the input and parameter values
differ depending on the state. The NARX model describes the
input-output mapping using a multi-layer percepton (Chan,
Yuen, Lee, & Arashpour, 2015). A usual NARX model also
incorporates the time delays and feedback (target values or
output, depending on the network type) in the input layer.
The target values are the actual capacity values. In the model
utilized an open loop network is used, which means only the
input data variables (normalized battery’s temperature) and
target values (priori information of capacity) as feedback are
used. The output is not fed back to the network (to the in-
put layer), unlike a closed loop. The time delays of the in-
put and target values are two time steps (1:2), which means
the estimation starts at the third time step. The NARX net-
work is trained to perform estimations of the capacity fade
based on the past battery’s temperature and target capacity
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values. The NARX input-output relationship can be describe
as (Venturini, 2005)

g(t) = fi@),i(t = 1), ... it — ma), y(t — 1), ..., W
whereby §(t) and y(¢) are the estimated and target values,
i(t) is the input, m; and my, are the time delays of the input
and target variables respectively, ¢ is the time step, and e(¢) is
the error between the estimated and target values.

The network consists of inputs, targets, a hidden layer of ten
neurons, and an output layer. In the NARX model, the in-
put layer consists of two inputs: the normalized temperature
and target capacity neurons. The activation function consid-
ered in this model is the tansig function (Hyperbolic tangent
sigmoid transfer function). The value of each hidden layer
neuron is calculated based on the inputs, targets, and weights
associated between the neurons. In addition, the bias values
are also taken into consideration. The capacity estimations
are calculated based on the values of hidden layer neurons
and weights associated between the hidden layer neurons and
output neuron.

3.3. Parameter optimization and performance

The parameters of the network are the weights and biases re-
lated to the neural network as well as the temperature thresh-
olds associated with the transition conditions in the state ma-
chine. These parameters affect the estimation performance,
thus selecting optimal parameter values is important. Many
optimization approaches have been employed to optimize the
parameters, such as Particle Swarm Optimization in (Alvarez
Antén et al., 2016). The algorithm may perform well in find-
ing local optimum solutions, however the global optimum so-
lution search capability is limited as it may get stuck in the
local optima (Thangaraj, Pant, Abraham, & Snasel, 2012).
In contrast, NSGA-II has a good performance in finding the
global optimum (Deb, Pratap, Agarwal, & Meyarivan, 2002).
Thus, the NSGA-II is used to select/optimize the parameter
values here. This method is based on non-dominated sort-
ing solutions and crowding distances. The main advantages
of this method is its ability to solve multi-objective optimiza-
tion problems, its elitism (which increases the convergence
speed), and its ability to solve problems with non-feasible
solutions (Deb et al., 2002). The objective function of the
optimization is given as

obj(t) = (lactual capacity(t) — estimated capacity(t)]).
@)

The objective function is chosen with respect to minimizing
the deviation between the actual and estimated discharge ca-

pacities. To evaluate the overall performance of the model,
the mean square error (MSE) and relative mean square error
(RMSE) are often used, as done in (Catelani et al., 2021).

4. APPLICATION OF THE METHOD

The application of the proposed method is elaborated in this
section. First, three experimental design of charging and dis-
charging procedures are explained (Saha & Goebel, 2007;
Bole, Kulkarni, & Daigle, 2014). Next, the training and test
phases are explained.

4.1. Experimental setup

The battery data sets are obtained from NASA Prognostics
Center of Excellence (PCoE) (Saha & Goebel, 2007; Bole
et al., 2014). Six data sets based on three different experi-
ments are defined as experiment I (Saha & Goebel, 2007),
experiment II (Bole et al., 2014), and experiment III (Bole
et al., 2014). Experiment I simulates a constant current
(CC)-constant voltage (CV) charging and discharging pro-
cess, which is non-dynamic. On the other hand, experiment
II and III simulate a dynamic charging and discharging oper-
ation using a random walk (RW) process.

4.1.1. Experiment I

Experiment I utilizes two battery data sets (BOOO5 and
B0006) (Saha & Goebel, 2007). The batteries are first
charged using the CC mode at 1.5 A. When the battery voltage
reaches 4.2 V, the charging switches to the CV mode until the
current falls to 20 mA. Discharging process begins with the
CC mode at 2 A until the voltage decreases to 2.7 Vand 2.5 V
for BO0O0OS and B0O018, respectively (Saha & Goebel, 2007).
The nominal capacity of the batteries are 2 A. The EoL is
reached when the capacity reaches 70% of the nominal ca-
pacity (1.44 A). The charging and discharging process do not
simulate dynamical load profiles. The ambient temperature is
room temperature.

4.1.2. Experiment I1

Experiment II is based on a RW process. Two LIB data sets
(RW 9 and RW 10) from the experiment are utilized in this
contribution (Bole et al., 2014). The RW process is used to
charge and discharge the batteries between -4.5 A and 4.5 A.
After 1500 RW step cycles, a reference charge and discharge
operation is done to evaluate the capacities. The EoL is de-
fined when the capacity reaches 1.68 A for both batteries (80
% of the nominal capacity, as defined by battery manufactur-
ers). The capacities are calculated based on the current and
relative time.
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Table 1. Training and test data sets for each experiment.

Training data sets | Test data sets
B0005 B0006

RWIO0 RW9

RW7 RWI

4.1.3. Experiment I1I

The batteries in Experiment III also undergo the RW opera-
tion. Two battery data sets (RW1 and RW7) are used (Bole et
al., 2014). The RW is performed by charging the batteries for
arandomly selected period between 0.5 and 3 hours. The bat-
teries are then discharged using a randomly selected current
between 0.5 A and 3 A. Following 50 RW cycles, a reference
operation is done to evaluate the capacities. The EoL capaci-
ties are 1.60 A and 1.59 A (80 % of the nominal capacity) for
RWI1 and RW7, respectively. The capacities are calculated
based on the current and relative time.

For experiments II and III, the batteries’ temperature during
the reference discharge operation is considered as input of the
model. In addition, battery temperatures are in degree Cel-
cius (°C). Capacity fade is observed throughout the discharge
phase for all experiments.

4.2. Training and test

For each experiment, the temperature values of one battery
data set are used to train the model, while temperature val-
ues of the other battery data set are used to test model. In
Table 1, the data sets used for training and test based on dif-
ferent experiments are given. The process is executed using
MATLAB. The training and test processes are detailed here:

4.2.1. Training

* The normalized temperature and capacity values of a bat-
tery data set are given as input and target values respec-
tively, for training using NSGA-II to develop optimal pa-
rameters (weights, bias, and temperature thresholds).

» Using the optimized temperature thresholds and capacity
at each time point, the state machine either switches from
one state to another or remains in the same sate.

* Based on the selected state, the estimated capacity at that
time point is calculated using the NARX model with the
optimized weight and bias values.

* By calculating the deviation between the estimated and
actual capacity, the objective function is evaluated.

4.2.2. Test

Based on the optimized parameters developed from the train-
ing process, the model is tested using the test data set to de-
velop capacity estimations. The actual and estimated capaci-
ties are compared for evaluations using RMSE and MSE.

Capacity of B0006

— Estimated |
= = =Experimental

Capacity (A)

1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Cycles

Figure 2. Actual and estimated discharge capacity of BO00G6.

5. RESULTS

In this section, the estimated capacities based on the differ-
ent experiments are presented. In addition, the RMSE and
MSE values are given. For further insights, the temperature
threshold values obtained for each experiment as well as the
estimated and actual capacity when the battery reaches EoL
(changes to state 2) are given.

5.1. Experiment I results

In Figure 2, the estimated capacity (blue line) and actual ca-
pacity (red dotted line) of test data BOOO6 are shown. The
yellow line indicates the EoL capacity (1.44 A). Despite some
off trends at the end, the estimated capacity fade curve shows
a close proximity to the actual capacity fade. Low RMSE and
MSE values of 0.0424 and 0.0043 are achieved based on the
proposed approach, showing the model performs well. The
state progression is shown in Figure 3. The ¢r; and try de-
fined by the optimizer are -0.4408 and -1.3387, respectively.
Here, it can be observed that the estimation begins with state
1, changes to state 2 (EoL) at cycle 100 (estimated capacity:
1.4335 A) and changes to state 3 at the end. The actual EoL
cycle is also 100 (actual capacity: 1.4312 A). The estimated
state remains in state 1 until cycle 100 as the threshold con-
ditions for a transition are not met (based on the temperature
and capacity at the each specific time point). Once the condi-
tions are met, a change to state 2 can be observed. The esti-
mated state progression is same as the actual state progression
of the battery, proving the accuracy of the model.

5.2. Experiment II results

In Figure 4, the estimated capacity of RW9 is close to the ac-
tual capacity. The model has a good performance with low
RMSE and MSE values (0.0361 and 0,0013). The actual
and estimated state profiles are close to each other (Figure 5).
The tr1 and try defined here are -0.4515 and -1.2338 respec-
tively. The actual EoL is reached at cycle 15 (actual capacity:
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Figure 3. State progression of B0006.
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Figure 4. Actual and estimated discharge capacity of RWO.

1.6491 A). The estimated state also switches to state 2 (EoL
reached) at cycle 15 (estimated capacity: 1.6402 A). Hence,
the model correctly predicts the EoL cycle. The performance
of the model also shows that this method is applicable for data
with dynamic profiles.

5.3. Experiment III results

The RMSE and MSE values based on RW1 is 0.0337 and
0.0011. The low error rates show that the actual capacity val-
ues are close to the estimated values. A deviation is observed
in the estimated capacity towards the end, nevertheless the
estimation is mostly accurate through the capacity fade (Fig-
ure 6). The state progression also shows that the model es-
timates state one in the beginning and switches to state 2 at
cycle 25 (estimated capacity: 1.5732 A), close to the actual
EoL cycle (actual capacity: 1.5964 A), which is cycle 23 (Fig-
ure 7). The model switches to the final state towards the end
of the discharge capacity. The tr; and tre developed here
are 0.4103 and -1.882, respectively. The model also performs
well when applied to this dynamical data.

The results based on the different test data are summarized in

State progression of RW9
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Figure 5. State progression of RW9.
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Figure 6. Actual and estimated discharge capacity of RW1.

Table 2, which shows the RMSE, MSE, actual, and estimated
cycle of EoL state. Based on the generated results, it can be
concluded that the proposed model can track the capacity fade
effectively. In addition, the model is able to estimate the state
progression closely.

Comparisons between the proposed approach and a standard
ANN are performed as well to validate the model’s perfor-
mance (Table 3) using the same input variables. The ANN
consists a hidden layer of ten neurons. While the standard
ANN generates low RMSE and MSE values, the proposed
approach achieves a lower RMSE and MSE than the standard
ANN for all data sets showing the model’s effectiveness. A
possible reason for this is due to the advantage of the NARX
to handle time series data well.

6. CONCLUSION

In this research, a NARX-based state machine model is de-
veloped for the estimation of the capacity fade to evaluate the
battery’s health. The model does not require electrochemical
knowledge, hence eliminating the need for complex formu-
lations. Three damage states and transition conditions be-
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Figure 7. State progression of RW1.

Table 2. Performance of the the model based on different data
sets.

Test data | RMSE | MSE Actual Estimated
EoL cycle | EoL cycles

B0006 0.0424 | 0.0043 | 100 100

RW9 0.0361 | 0.0013 | 15 15

RWT 0.0337 | 0.001T | 25 23

tween the states are defined based on the thresholds of the
normalized temperature and capacity (parameters). The state
machine switches from state 1 to 2 (indicating EoL), if the
threshold conditions are met. Similarly, the model switches
from state 2 to 3 based on specific threshold conditions. The
discharge capacity of each damage state is calculated using
different NARX models with optimized parameters (weight
and bias). Optimization of the parameters are performed us-
ing NSGA-II. Based on the results, the model is able to es-
timate the capacity fade accurately for three different experi-
ments with low RMSE (ranging from 0.00337 to 0.0424) and
MSE (ranging from 0.0011 to 0.0043) values. The state pro-
gression also show close proximity to the actual progression.
Comparisons to a standard ANN, show that the proposed
approach outperforms the ANN in terms of the RMSE and
MSE. In summary, the model is able to perform well for both
dynamical and non-dynamical data. In future, the model can
be modified by including other variables (such as current) and
changing the transition conditions. In addition, more states
can be added by expanding the switching behavior between
states, as the current model’s transitions are limited. For an

Table 3. Performance comparisons between ANN and pro-
posed approach.

Test data RMSE MSE
Proposed | ANN Proposed | ANN
approach approach

B0006 0.0424 0.1021 | 0.0043 0.0104

RWO 0.0361 0.1807 | 0.0013 0.0326

RWIT 0.0337 0.2421 | 0.0011 0.0586

example, including transition from state 1 to 3 and state 2 to
1.
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