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ABSTRACT 

Fault detection for railway door systems based on data-driven 

approaches has been investigated in recent years due to the 

massive amount of available monitoring data. Despite much 

attention to its application, the major challenge is the lack of 

available faulty datasets to build a reliable model since 

railway maintenance is usually conducted regularly to avoid 

significant defects from economic and safety points of view. 

We aim to tackle the issue by employing transfer learning. 

Firstly, a long-short term memory-based deep learning model 

is built using linear actuator experimental datasets. Then, a 

transfer learning technique is employed to adjust the deep 

learning model to be available to real-world railway door 

systems using a small amount of faulty data. As a result, high 

fault detection accuracy can be obtained at 0.979 as F1 score. 

The result reveals that an accurate fault detection model can 

be built even though a large number of labelled datasets is 

unavailable. In addition, the proposed method is applicable to 

other door systems or electro-mechanical actuators since the 

method is unspecific to physical mechanisms and fault 

modes, and the only motor current signal is used in this 

research. The signal is primarily available from the controller 

or motor drive without additional sensors. 

1. INTRODUCTION 

Fault detection serves an important role in maintenance 

activity in the railway industry from economic and safety 

points of view and has been investigated in recent years. The 

train door is one of the most critical subsystems that can cause 

service delay or breakdown, leading to the increased cost of 

operation and maintenance. As reported in (Cauffriez et al., 

2012) and (Qin et al., 2013), door systems are responsible for 

30% to 60% of the total failures in railway vehicles. In order 

to prevent these failures, predictive maintenance based on 

data-driven approaches is attracting more and more attention 

recently due to the massive amount of available monitoring 

data.  

Despite much attention to its application, the major challenge 

is the lack of available faulty datasets to build a reliable 

model since railway maintenance is usually conducted 

regularly to avoid significant defects. As a consequence, 

previously proposed methods by (Yan & Lee, 2005), (Sun et 

al., 2018), and (Ham et al., 2019) for door systems could be 

impractical in the real-world industry because the methods 

are based on supervised learning models using a large amount 

of labelled dataset. 

To tackle the issue, we employ a transfer learning (TF) 

technique, which enables building a fault detection model 

with a small amount of faulty data. The common TF approach 

for machine learning is to copy over the weights learned for 

task A to a network that will be trained for task B (Russell & 

Norvig, 2021). In this research, linear actuator test rig 

datasets are utilised, publicly available to download at (C. 

Ruiz-Carcel and A. Starr, 2018). Firstly, a long-short term 

memory (LSTM) based deep learning (DL) model is built 

using linear actuator experimental data. Then, the transfer 

learning technique is employed to adjust the deep learning 

model to be available to real-world railway door systems 

using a small amount of faulty data. Finally, the model fault 

detection accuracy is validated. The main contributions of the 

paper are summarised as follows: 

1) An accurate fault detection model for railway door 

systems can be built with a small amount of faulty 

operational data by employing a transfer learning 

technique using the experimental linear actuator 

dataset. 

2) The proposed method is applicable to other door 

systems or electro-mechanical actuators since the 
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method is unspecific to physical mechanisms and 

fault modes, and the only motor current signal is 

used in this research. 

The remainder of this article is organised as follows. Section 

2 provides a dataset explanation, followed by the 

methodology, the proposed methodology, and validation 

performance metrics in Sections 3, 4, and 5. The result and 

discussion are given in Section 6. Finally, Section 7 

concludes this article. 

2. DATASETS 

2.1. Linear Actuator Experimental Dataset 

As stated in (Ruiz-Carcel & Starr, 2018) and (López de Calle-

Etxabe et al., 2020), the main element of the test rig consists 

of a ball screw mechanism with a threaded shaft containing a 

helical raceway for the displacement of the bearing balls 

housed inside the nut. Varying loads are generated by 

attaching a secondary actuator. The actuators are connected 

through a load cell so that the cell provides feedback to the 

controller, different operating conditions can be represented 

by changing the load setpoint. The load setpoints are 196.13 

N, 392.3 N, and -392.3 N, respectively. As fault modes, three 

types of faults are seeded with increasing severity: lack of 

lubrication, spalling, and black lash. The experiments have 

been conducted in two motion profiles: trapezoidal (constant 

speed) and sinusoidal (smooth acceleration and deceleration). 

The 3D model of the test rig and lateral view of the rig is 

given in Figure 1 and Figure 2. Further details regarding the 

test rig and the seeded faults can be found in (Ruiz-Carcel & 

Starr, 2018), and the raw data is available to download at (C. 

Ruiz-Carcel and A. Starr, 2018). 

In our research, trapezoidal motion profiles are chosen to 

build a model since railway door systems have relatively 

constant speed profiles, as will be explained in Section 2.2. 

The position measurement and current signal include 

extension and retraction operations, as described in Figure 3 

and Figure 4. The current signals of the extension operation 

are extracted and used to build a model since the extension 

operation corresponds to the closing operation of railway 

door systems, which is used in this research and will be 

explained in detail in Section 2.2. The noises are reduced by 

using a low pass filter on a window of 0.15 seconds. The 

current profiles of lack of lubrication are chosen as faulty 

current signals. Normal and faulty current profiles are 

described in Figure 5 and Figure 6. Some faulty 

characteristics are observable. For example, there is a certain 

amount of overshoot in normal profiles, whereas the 

overshoot becomes less in faulty profiles. The dataset has 

three different loading conditions. The three types of loading 

conditions are assumed as the same class label. For instance, 

normal profiles from three loading conditions, shown in 

Figure 5, are categorised as normal class and vice versa. 

 

Figure 1. 3D model of the test rig (Ruiz-Carcel & Starr, 

2018) 

 
Figure 2. Lateral view of the rig (Ruiz-Carcel & Starr, 2018) 

 

 

Figure 3. Position measurement of the linear actuator test rig 
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Figure 4. Current signal example of the linear actuator test 

rig 

 

 

Figure 5. Normal current signals of the linear actuator test 

rig 

 

 

Figure 6. Faulty current signals of the linear actuator test rig 

2.2. Railway door systems operational dataset 

In this study, large real-world datasets acquired from railway 

door systems are employed. An electric door is considered, 

which is composed of a voltage power source, a DC motor, a 

door control unit (DCU), a transmission and door leaves. In 

short, a DC motor, powered by a voltage source and 

controlled by DCU, can output the specified shaft angular 

velocity and torque, which are transmitted to transmission so 

that the door leaves can move in a pre-designed manner 

(Shimizu et al., 2022a). The door current signal is collected 

through the communication port from the DCU at a frequency 

of 50 Hz. The low pass filter is applied on a window of 0.25 

seconds, representing five consecutive measurement time 

intervals to reduce noise carried by current signals. 

An example of the signal profiles of the opening and closing 

operations is shown in Figure 7. In the opening profile, the 

speed and current increase steadily up to a maximum, 

followed by a slight curve, and then decrease to zero. The 

closing profile follows a similar pattern with two main 

differences in the current. One is that the peak in the closing 

profile is lower than the opening. The second is an abrupt 

change at the end of the closing profile, followed by a slight 

bump of the speed, which promotes pushing the door to its 

maximal reachable position where a locking process can be 

triggered (Bernadin Namoano, 2017).  It should be noted that 

concrete fault types are unidentifiable in the railway 

operational dataset (Shimizu et al., 2022b). The linear 

actuator experimental current signals of the three fault modes, 

which are lack of lubrication, spalling, and black lash have 

been compared to the faulty signals in the railway door 

operation. However, none of the fault modes resembles the 

faulty signals in the railway door operation. It is possible, 

therefore, that the observed faulty behaviour could be 

accompanied by several fault modes because the train door 
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system contains many components. The identification and 

diagnosis of fault modes are out of the scope of this paper. 

In this research, current signals in closing operations are used 

for fault detection purposes. The example of the normal and 

faulty signals of closing operation is shown in Figure 8. The 

normal current signal has flat curves from 3.2 sec to 4.0 sec, 

while there are negative peaks and fluctuations in that of 

faulty data. It is noteworthy that the faulty characteristics of 

door systems differ from those of a linear actuator test rig, as 

explained in Section 2.1. 

 

Figure 7. Current signal of door systems 

 

 

Figure 8. Normal and faulty signals of the closing operation 

2.3. Train and test dataset 

The train and test dataset for the linear actuator test rig is 

given in Table 1. A test rig’s train and test datasets are used 

to build a fault detection model. Then, the model is 

transferred to a fault detection model for door systems with a 

small amount of door system dataset, including only ten 

normal and five faulty data, given in Table 2. 

 

Table 1. Train and test dataset for a test rig model 
 Normal Faulty Total 

Train 120 240 360 

Test 30 60 90 

 

 

Table 2. Train and test dataset for a TF model 
 Normal Faulty Total 

Train 10 5 15 

Test 50 50 100 

 

3. METHODOLOGY 

3.1. Long Short-Term Memory 

The LSTM is one of the most popular types of recurrent 

neural networks (RNNs), enabling information to be 

preserved over many time steps, which was initially proposed 

by (Hochreiter & Schmidhuber, 1997). Several variants of the 

RNN architecture have been proposed since its inception, 

including gated recurrent units (GRUs). However, (Greff et 

al., 2017) presented a large-scale comparative analysis of 

RNN variants and reported that none of the RNN variants can 

improve upon the standard LSTM architecture significantly. 

This result can be attributed to the LSTM architecture, 

including three gating units, which control the flow of 

information in the LSTM (Russell & Norvig, 2021). The 

forward propagation process can be expressed as the 

following equations: 

 

�̃�𝒕 = 𝑡𝑎𝑛ℎ(𝑾𝒄𝒉𝒕−𝟏 + 𝑼𝒄𝒙𝒕 + 𝒃𝒄) (1) 

𝒇𝒕 = 𝜎(𝑾𝒇𝒉𝒕−𝟏 + 𝑼𝒇𝒙𝒕 + 𝒃𝒇) (2) 

𝒊𝒕 = 𝜎(𝑾𝒊𝒉𝒕−𝟏 + 𝑼𝒊𝒙𝒕 + 𝒃𝒊) (3) 

𝒐𝒕 = 𝜎(𝑾𝒐𝒉𝒕−𝟏 + 𝑼𝒐𝒙𝒕 + 𝒃𝒐) (4) 

𝒔𝒕 = 𝒔𝒕−𝟏 ⊙ 𝒇𝒕 + 𝒊𝒕 ⊙ �̃�𝒕 (5) 

𝒉𝒕 = 𝑡𝑎𝑛ℎ(𝒔𝒕) ⊙ 𝒐𝒕 (6) 

 

where xt and ht are input and hidden state, ft, it, and ot are forget 

gate, input gate and output gate, st is state unit at time step t, 

correspondingly. The bc, bf, bi, and bo are bias vectors, σ is an 

activation function, and Wc, Wf, Wi, Wo, Uc, Uf, Ui, and Uo are 

weight matrices, respectively. The ⊙ symbol denotes element-

wise multiplication. The forget gate ft determines if each 

element of st-1 is remembered or forgotten. The input gate it 

determines if each element of the state unit st is updated by the 

latest information at the current time step. The output gate ot 

determines if each element of the state unit is transferred to the 

hidden state (Russell & Norvig, 2021). The calculation flow 

can be described as an LSTM block diagram and an LSTM 

network, as shown in Figure 9 and Figure 10.  
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Figure 9. LSTM block diagram 

 

 
 

Figure 10. LSTM network 

3.2. Transfer Learning 

In general, the TL means that experience with one learning 

task helps an agent learn better on another task (Russell & 

Norvig, 2021). In TL for machine learning, two domains are 

usually considered: source domain and target domain. The 

objective of TL is to improve the model of the target domain 

using information from the source domain, where the source 

and target domain are not the same. 

For neural network-based models, learning consists of 

adjusting weights, so the most plausible TF approaches for 

machine learning is to copy over the weights learned for task 

A to a network that will be trained for task B (Russell & 

Norvig, 2021). In this research, the parameter-based TL is 

chosen, which means transferring knowledge through shared 

parameters between source and target domain models. The 

source domain is the linear actuator test rig, while the target 

domain is railway door systems in this research. 

4. PROPOSED METHODOLOGY 

4.1. Fault detection workflow 

The proposed fault detection workflow is shown in Figure 11. 

The workflow is divided into two procedures, offline and 

online.  

In the offline, current signals of the linear actuator test rig are 

used as training datasets to train a fault detection model. For 

the sake of convenience, the term ‘the test rig DL model’ is 

used to refer to this model. In this procedure, the current 

signals are segmented and pre-processed to reduce noises by 

a low pass filter, followed by training a test rig DL model. 

Then, a fault detection model available to real-world railway 

door systems is built with TL using a small amount of faulty 

data, as will be explained in detail in Section 4.2. The fault 

detection model for door systems is defined as ‘the door 

system DL model’. 

The door system DL model with TL created offline are 

implemented on the online procedure to detect faults. The 

current signals of railway door systems are pre-processed and 

segmented. Then, faults can be detected by using the door 

system DL model with TL generated offline. The fault 

detection workflow can be executed once one door operation 

is terminated so that a fault can be detected as early as 

possible.  

The proposed method offers remarkable advantages in terms 

of practical fault detection applications available in the 

industry. Firstly, an accurate fault detection model for 

railway door systems can be built with a small amount of 

faulty operational data by employing a TL technique using 

the experimental linear actuator dataset. Besides, the 

proposed method is applicable to other door systems or 

electro-mechanical actuators since the method is unspecific 

to physical mechanisms and fault modes, and the only motor 

current signal is used in this research.  

 

Figure 11. The proposed fault detection workflow 

4.2. Transfer Learning workflow 

The test rig DL model built with the linear actuator dataset is 

described in Figure 12 and Table 3. The model consists of a 

batch normalisation, an LSTM, a fully connected (FC) layer, 

a softmax layer, and output layer. The batch normalisation 

layer normalises a mini-batch of data. 
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Once the test rig DL model is built, the transfer learning 

technique is employed to adjust the test rig DL model to be 

available to real-world railway door systems using a small 

amount of faulty data, as described in Figure 13. The 

parameters of the LSTM layer from the test rig DL model are 

copied to the door system DL model, while the parameters of 

the FC and softmax layers from the test rig DL are replaced 

with initialised new layers in the door system DL model. 

Then, the hyperparameters are tuned with a small amount of 

door data, as given in Table 2. It is noteworthy that the 

learning rates for the FC and softmax layers are modified to 

be larger than the LSTM layer so that learning is faster in the 

new layers than in the transferred layer, as given in Table 4. 

The optimiser, max epoch and mini-batch size for the 

hyperparameter tuning are Adam, 15, and 2000, respectively. 

 

 

Figure 12. Fault detection model with experimental data 

 

Table 3. Hyperparameters of a fault detection model for a 

linear actuator test rig. 
Layer Hyperparameter name Hyperparameter 

Whole layers Optimiser Adam 

 Max epoch 3000 

 Mini-batch size 120 
 Learning rate 0.0001 

LSTM Activation function for the 

hidden state 

Tanh 

 Activation function for the 

gates 

sigmoid 

 Number of activation units 40 

FC Number of hidden units 2 

 

 
 

Figure 13. The proposed TL workflow 

 

Table 4. Learning rate for TL 
Layer Hyperparameter name Learning rate 

LSTM Weight parameters 0.0001 

 Bias parameters 0.0001 

FC  Weight parameters 0.0005 
 Bias parameters 0.001 

5. VALIDATION PERFORMANCE METRICS 

A confusion matrix is used to analyse the performance of a 

fault detection system. A confusion matrix is a two-

dimensional table of counts of how often each category is 

classified or misclassified as each other category. In the case 

of binary classification for fault detection, the confusion 

matrix has the following four elements: positive (faulty) sets 

are either detected or not; similarly, negative (normal) sets 

are either detected or not. These elements are true positive 

(TP), false negative (FN), true negative (TN) and false 

positive (FP), respectively, as given in Table 5. Once 

populated, this matrix is then used to derive performance 

metrics commonly used in the industry (Ian K. Jennions, 

2013), as given in the following equations: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃 + 𝑅
(9) 

 

In general, precision measures how many of the samples 

predicted as positive are actual positive. Recall, on the other 

hand, measures how many of the positive samples are 

captured by the positive predictions. There is a trade-off 

between optimising precision and optimising recall (Andreas 

C. Müller, 2016). A perfect recall can be obtained given that 

all samples are predicted as positive class, and therefore the 
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precision can be very low, which means there are too many 

false alarm occurrences. On the contrary, precision can be 

perfect if a model predicts only a single sample which is the 

most likely to be positive as positive and the rest as negative. 

In that case, however, recall can be very low. One way to take 

precision and recall into account and summarise them is the 

calculation of the harmonic mean of P and R, which is the F1 

score given in equation (9). In this research, the F1 score is 

applied to evaluate fault detection accuracy, which is ranging 

from 0 to 1. A high F1 score means high fault detection 

accuracy and vice versa. 

Table 5. Confusion matrix 
  Predicted Class 

  Normal Faulty 

Actual 

Class 

Normal True Negative (TN) False Positive (FP) 

Faulty False Negative (FN) True Positive (TP) 

 

6. RESULTS AND DISCUSSION 

The fault detection accuracy is given in Table 6, Figure 14 

and Figure 15, where negative (normal) and positive (faulty) 

correspond to 0 and 1. As a result, high fault detection 

accuracy can be obtained at 0.979 as F1 score for door 

systems DL with TL. For comparison purposes, the door 

systems DL model is built from scratch, which means the 

model has the same network architecture and hyperparameter 

setting as given in Table 3, and is trained by using the door 

system dataset given in Table 2 without employing the TL 

technique. However, the F1 score for the door systems DL 

built from scratch is considerably lower than the TL-based 

model at 0.734.  

The result reveals that an accurate fault detection model for 

railway door systems can be built by employing the TL 

technique with the linear actuator experimental data even 

though a large amount of labelled door datasets is 

unavailable. In addition, the proposed method is applicable to 

other door systems or electro-mechanical actuators since the 

method is unspecific to physical mechanisms and fault 

modes, and the only motor current signal is used in this 

research. The signal is primarily available from the controller 

or motor drive without additional sensors. 

Table 6. Fault detection accuracy 
Model Precision Recall F1 score 

Test rig DL 0.967 1.00 0.983 

Door systems DL with TL 1 0.960 0.979 

Door systems DL built from 

scratch 

0.750 0.720 0.734 

 

 

Figure 14. A confusion matrix for door systems DL with TL 

 

 
 

Figure 15. A confusion matrix for door systems DL from 

scratch 

7. CONCLUSION 

We aim to tackle the issue relating to the lack of labelled 

faulty data in the industry by employing a transfer learning 

technique. Firstly, an LSTM-based deep learning model is 

built using linear actuator experimental datasets. Then, the 

TL technique is employed to adjust the deep learning model 

to be available to real-world railway door systems using a 

small amount of faulty data. As a result, high fault detection 
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accuracy can be obtained at 0.979 as F1 score. The door 

systems DL model is built from scratch for comparison 

purposes without using the TL technique. However, the F1 

score for the door systems DL built from scratch is 

considerably lower than the TL-based model at 0.734. 

The result reveals that the accurate fault detection model for 

railway door systems can be built by employing the TL 

technique with the linear actuator experimental dataset even 

though a large amount of labelled door system datasets is 

unavailable.  

In addition, the proposed method is applicable to other door 

systems or electro-mechanical actuators since the method is 

unspecific to physical mechanisms and fault modes, and the 

only motor current signal is used in this research. The signal 

is primarily available from the controller or motor drive 

without additional sensors.  

In future research, we insist that the fault diagnosis for 

railway door systems could take advantage of our proposed 

method. In the context of machine learning approaches, fault 

detection and diagnosis correspond to binary and multiclass 

classification tasks, respectively. Since the TL technique is 

generally available for the multiclass classification task, the 

diagnosis could be achieved once operational data of multiple 

fault modes is acquired. Thus, the test rig data would take 

more essential parts of fault detection and diagnosis study 

from a practical application perspective in the real-world 

industry due to TL techniques with DL, which are being 

advanced rapidly. 
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