
Developing Deep Learning Models for System Remaining Useful
Life Predictions: Application to Aircraft Engines

Timothy Darrah1, Andreas Lövberg2, Jeremy Frank3, Marcos Quinones-Gruiero4, Gautam Biswas5

1,4,5 Vanderbilt University, Institute for Software Integrated Systems, Nashville, TN, USA
timothy.s.darrah@vanderbilt.edu

marcos.quinones.gruiero@vanderbilt.edu
gautam.biswas@vanderbilt.edu

2 RISE Research Institute of Sweden, System Integration Unit, Mölndal, Sweden
andreas.lovberg@ri.se

3 NASA Ames Research Center, Intelligent Systems Division, Mountain View, CA, USA
andreas.lovberg@ri.se

ABSTRACT

Prognostics and health management (PHM) is an important
part of ensuring reliable operations of complex safety-critical
systems. System-level remaining useful life (RUL) estima-
tion is a much more complex problem than making estima-
tions at the component level. Model-based approaches have
traditionally worked in the past for components such as ca-
pacitors, MOSFETs, batteries, or hard-drives (to name a few
examples), but developing high fidelity dynamics models of
cyber physical systems that can be used to study the effects
of multiple degrading components in the system remains a
challenging task. Hybrid and pure data driven approaches
have shown to be much more promising, and in this work, we
propose an end-to-end data-driven framework for developing
deep learning models to predict remaining useful life of tur-
bofan jet engines operating under unknown faulty conditions.
The raw data is organized with a data schema that improves
the model development process and down stream data analy-
sis tasks. The raw sensor data is transformed into signals that
expose the underlying degradation processes, which are then
used for model development. Bayesian Optimization is used
to tune the model parameters prior to training and validation.
We show that this approach results in accurate predictions
within 3 cycles to end of life (EOL). We demonstrate the ef-
fectiveness of our approach by applying it to the N-CMAPSS
turbofan engine dataset recently released by NASA, which
includes high fidelity degradation modeling, real world oper-
ating conditions, and a large set of fault operating modes.

Timothy Darrah et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Condition-Based Maintenance (CBM) is a method of
scheduling and performing maintenance activities based on
the operational history of the system and its current state.
Many organizations have been successful with integrating
this approach to maintenance within their concept of oper-
ations while maintaining time-based inspections and parts re-
placement. This approach does not account for the expected
future usage of the system, and, therefore, accurate Remain-
ing Useful Life (RUL) estimates cannot be derived. RUL is a
measure of how long the system can remain in operation and
meet all of its safety and performance goals until a thresh-
old violation occurs, at which point we say the system has
reached its End of Life (EOL) [Goebel et al., 2017]. Prog-
nostics brings together the study of how systems fail with
life-cycle management to ensure safe and proper operations
of the system [Peng et al., 2010]. Prognostics-Based Mainte-
nance (PBM) uses this information and goes one step beyond
CBM to further improve safety, maintenance, and operation
activities.

The primary barrier to developing and maturing prognostics
technologies, such as PBM is the lack of real world run-
to-failure data or high fidelity run-to-failure simulated data.
The Commercial Modular Aero-Propulsion System Simula-
tion (CMAPSS) dataset has been available for quite some
time but lacked real-world flight characteristics and multi-
source degradation. Recently, an updated version of this
dataset was released that addresses these shortcomings and
includes real-world operating conditions [Chao et al., 2021].
We use this dataset to define an end-to-end framework for
the development of deep learning models that can be used for

1



Annual Conference of the Prognostics and Health Management Society 2013

PBM applications.

1.1. Problem Description

Data-driven methods for prognostics use probability-
based [Si et al., 2011] and machine learning algorithms
[Schwabacher and Goebel, 2007] to map component mea-
surements to the degradation parameters of a component or
the health state of a system, and need run-to-failure datasets
for training. This entails many unique challenges that can re-
sult in poor performance or complete failure to predict with-
out a systematic approach to data management and model de-
velopment. Proper data management is necessary due to the
large volumes of data and the complex relationships among
data features. Such data management principles are lacking
in the PHM community, and result in a higher degree of effort
spent on data processing and validation tasks, redundant use
of code, and difficulty in reproducing results. This means that
often times the same processing pipeline used for one applica-
tion cannot readily be used in another. There are many great
publications on model architectures and developing models
for various prognostics applications, however many of these
are application-specific, and lack the necessary abstraction to
generalize across domains. By utilizing the same software
engineering principles found in enterprise software develop-
ment, we have taken what was once an application-specific
solution and show here how it is generalized with use in a
different domain.

1.2. Approach

We take an end-to-end approach to model development start-
ing with data organization first, then data preprocessing steps,
followed by a two-stage hyperparameter search, and finally
the training and validation steps. Our approach is motivated
by the need for developing more formally defined Automated
Machine Learning (AutoML) methods and data processing
pipelines for prognostics. AutoML is defined as a systematic
and efficient processes of developing machine learning mod-
els with minimal user input [Hutter et al., 2018]. The field
of AutoML is quite large and we specifically focus on data
management and hyperparameter optimization (as opposed to
meta-learning and neural architecture search methods).

The dataset is provided as a series of HDF5 files containing
telemetry data, degradation data, virtual sensor data, flight
conditions, and auxiliary information such as the unit num-
ber and flight class. As discussed in previous work [Dar-
rah et al., 2021], employing best practices when it comes to
data management for prognostics or machine learning tasks
is critical to developing robust models and reproducible re-
sults. This data management framework simplifies the en-
tire data processing and model development pipeline, which
is discussed in Section 2. We generalize the same data
management framework previously used for UAV opera-

tions to accommodate other applications and use it with the
New Commercial Modular Aero-Propulsion System Simua-
tion (N-CMAPSS) [Chao et al., 2021], which contains 90 run-
to-failure simulations. A two-stage hyperparameter search is
employed to search over regularizing parameters separately
from network parameters due to the short search horizon and
the effect of regularization on convergence speed. The net-
work is then trained, validated, and tested with the 90 units in
the dataset.

1.3. Contribution

The data management framework used in this work was
originally developed for UAV simulations [Darrah et al.,
2021, Darrah et al., ], and in those works an in-depth review
of data management practices and the inefficiencies in cur-
rent open-source frameworks for prognostics are discussed.
Key patterns have been abstracted to generalize to other ap-
plications and here we show how such a framework can be
applied to the N-CMAPSS dataset as an example of its gen-
eralization capabilities. This serves as the foundation for a
model development pipeline in effort to streamline automa-
tion, data integrity, and reproducability of results. The pri-
mary steps in this pipeline include transforming raw telemetry
data into features that expose the unobservable degradation,
and then performing a two-stage hyperparameter search. This
separates searching network parameters from regularization
parameters due to the tendency for regularization to have a
higher loss during the early stages of training, and, therefore,
score lower than other parameter configurations. Finally we
compare fixed length input sequences to variable length in-
put sequences and show that using variable length input se-
quences result in more accurate predictions, however there
were not enough validation units to be conclusive. The key
contribution is a demonstration of the overall model develop-
ment pipeline, which encapsulates these steps and is a repeat-
able framework which can be applied to any data-driven task
for prognostics.

1.4. Paper Organization

The paper is organized as follows. Section 2 discusses the
overall model development pipeline, from raw data to final
results. Section 3 discusses the implementation of the data
management framework with the N-CMAPSS dataset. Sec-
tions 4 through 6 discuss the subsequent steps in the pipeline,
namely preprocessing, hyperparameter search, and training
& validation. Section 7 presents the results and discussion,
followed by the conclusion and future work in Section 8.

2. METHODOLOGY

Over the last several years, there has been a rise in the use
of deep learning methods for prognostics due to the com-
plexities inherent in many cyber physical systems and the in-

2



Annual Conference of the Prognostics and Health Management Society 2013

Figure 1. Model Development Framework

ability for model-based methods to achieve high quality re-
sults. However, there is a general lack of data management
and attention to data provenance with these studies, which re-
sult in poor data descriptors, unverifiable origins, and other
issues that make replication or validation tasks difficult or
not possible. We argue that these issues persist due to in-
adequate data management standards and policies. The goal
of data management is to produce “self-describing datasets”
[Strasser et al., 2012] such that scientists and practitioners can
discover, use, and interpret the data across multiple experi-
ments. This fits well within the context of machine learning
and prognostics applications for cyber physical systems. Ma-
chine learning models are highly dependent on the underly-
ing data, and, therefore, consistency, accuracy, and complete-
ness of the data is essential to train models that are capable
of sufficient generalization and performance [Munappy et al.,
2019]. Thus, good data management principles and practices
need to be adopted throughout the entire development pro-
cess. This is the cornerstone of the data-driven model devel-
opment pipeline for prognostics, shown in Figure 1.

The three critical pieces to implementing this framework
are the Database Management System (DBMS), the Data
Schema, and the Application Programming Interface (API).
When these are properly implemented, every subsequent task
is simplified and collaborative efforts are more easily carried
out. These benefits do not come without upfront cost, how-
ever, and the raw data must be thoroughly understood in order
to define an appropriate data schema. Simply inserting data
into a database without making careful decisions about data
types, data constraints, relationships among data features, or
how the dataset should be organized will inevitably lead to
trouble down the road, and not provide any benefit. The point
of all this is to organize the data such that it can indefinitely
persist without structural changes, and be extensible. The
data schema should be defined once, and not have to change
on any substantial level. On the other side of the data schema
is the API, which is used by the engineer to retrieve data from
the database without writing complex queries or blocks of
code to read and parse CSV files. This makes it easier for
them to focus on the data processing and model development
tasks. The details of the data schema, organization, and API

are discussed in Section 3.

The rest of the pipeline should be quite familiar to the
machine learning engineer. Filling missing values, time-
alignment, and normalization are all standard data prepro-
cessing tasks. An additional task specific to prognostics is
carried out as well, namely, transforming the raw signal data
into residuals that expose the underlying degradation with-
out actually knowing the degradation functions. This is fur-
ther detailed in Section 4. The next step is to perform hy-
perparameter optimization. However, unlike the typical ap-
proach of searching over all parameters together, we search
over network parameters and regularization parameters sepa-
rately. This is due to the fact that regularization tends to in-
crease the time to convergence and these configurations tend
to score poorly when evaluating parameter configurations on
short horizons (i.e. evaluate after the third epoch). This is
discussed in more detail in Section 5. The next step con-
sists of training and validation, and we highlight modifica-
tions to the training process such as stochastic weight averag-
ing and learning weight decay in Section 6. The final step of
the pipeline is deployment to a production environment. In
this work we simulate a production environment with 10 test
units.

This entire process starts with a well defined data schema, and
understanding the structure of the dataset is a necessary re-
quirement. The dataset and implementation of the data man-
agement framework are discussed next.

3. DATA MANAGEMENT FRAMEWORK

In this work, the N-CMAPSS [Chao et al., 2021] dataset is
used to demonstrate the implementation of the data manage-
ment framework and model development pipeline for prog-
nostics. Previously, this framework was developed for UAV
simulations [Darrah et al., 2021], but here we show how it
can accommodate other applications and in this section walk
the reader through implementing it with the N-CMAPSS
dataset. The dataset provides simulated run-to-failure trajec-
tories comprising of 90 commercial jet engines (units) with
unknown degradation processes and initial health states. Each
unit is assigned one of three flight classes (Fc) determined by

3



Annual Conference of the Prognostics and Health Management Society 2013

Symbol Variable Description
w flight conditions real flight data
xs telemetry data measured system signals
xv virtual sensors not used
θ degradation parameters unobservable
α asset data auxiliary data for each unit

Table 1. Dataset Variables
For a more complete description of the dataset variables, see [Chao et al., 2021].

the flight length and all flights for that unit are of the same
flight class. Fc1 consists of flights under 3 hours, Fc2 con-
sists of flights between 3 and 5 hours, and Fc3 is for flights
with durations greater than 5 hours. Each unit contains five
types of variables shown in Table 1.

The data is originally provided as a set of files in hierarchical
data format (HDF5), which is an efficient way to store data for
scientific and engineering purposes. However, it is not well
suited to convey relationships among data features or enforce
constraints, nor is it suited to create specific and complex data
queries. There are also no mechanisms to streamline access
to a common store of data for multiple people to use concur-
rently. Because relationships cannot be adequately captured,
each data record contains redundant information that could be
extracted and separately stored, reducing the memory foot-
print of the data. As an example, instead of including multi-
ple columns of data that describe the unit with each record of
sensor data, only one column is needed to reference the unit
data, which is kept separately. Furthermore, data operations
can be significantly improved with the use of a DBMS. As an
example, retrieving sensor and other data for a set of 10 runs
from raw files using the pandas library took 29.2 seconds,
while using a database query took only 5.9 seconds. There
are over 60M records in the dataset, and minimizing the num-
ber of columns will have a significant impact on the amount
of disk space used, and subsequently the speed and efficiency
of loading and manipulating the data. The implementation of
the data management framework with this dataset is discussed
next.

3.1. Framework Implementation

The framework*1 [Darrah et al., 2021] centers around as-
sets, processes, and data. Assets are abstractions of user de-
fined components which act as first class objects and is the
archetype model that all components inherit from. The asset
itself is a container for user defined components that are used
for linkage within the framework. Components are affected
by processes, which themselves can be internal (degradation
via damage accumulation) or external (environmental influ-
ences). Together, components and processes generate data
which is linked to the system and other information pertain-

1A pre-release version of the framework is available at
https://github.com/darrahts/data management framework. We welcome
those interested in contributing to this work.

ing to the usage of that system via the summary table. All
usage-based data tables link to the summary table, which in
turn links to the system, the assets installed on the system,
and the processes affecting the system at that time. With this
dataset, the degradation process coefficients are not known,
and therefore no process models are stored. Also, different
from previous work [Darrah et al., 2021], where the system
was implemented as a container for several components, here
the system and component are one and the same, the engine.
The framework can be implemented in a multitude of ways
due to the flexibility and generalization capabilities inherent
in the asset-process-data paradigm. Figure 2 depicts the im-
plementation of the framework with the N-CMAPSS dataset.
In this work, we are not performing simulation, and therefore
do not need to be concerned with the physics of turbofan jet
engine operation. In a similar manner, we do not need to im-
plement the degradation functions - these steps have already
been completed in the data generation simulation process to
create the dataset. Therefore, we can restrict our efforts to
only defining the table schema for the data in the dataset.

The first table to define is the asset type table
( asset type tb ), which is used in the underlying
table schema as a means of organization and proper data
linkage. There is only one entry in this table, shown below
in Table 2. For every entry in this table, the type and
subtype fields are used to dynamically create a new user-

defined component table for that type. For the N-CMAPSS
dataset, this is is the engine ncmapss tb , and shown in
Table 3.

id type subtype description

1 engine ncmapss N-CMAPSS unit

Table 2. Asset Type Table
All systems and components have an asset type, which is used as a means of organizing the data.

Each field in Table 3 must be defined by the user and can
contain any type of data suited for any purpose. For example,
if physics-based models are known, this table could contain
the model parameters. Each record then would be a specific
model or variation of the same model with different coef-
ficients. However, the use case in this work is different as
mentioned above, and therefore the definition of this table is
specifically related to the existing data fields in the dataset.
The id field is auto generated, and the group id field

maps the unit to the dev or test sets. The unit and Fc
fields were previously in the auxiliary data partition, with re-
dundant information being repeated with every single record
entry. Now, the redundancy has been eliminated. This ta-
ble is separate from the asset table ( asset tb ), which is a
framework table, but the two tables are automatically linked
by the id field, and a record must exist in the asset table

4



Annual Conference of the Prognostics and Health Management Society 2013

Figure 2. Table Schema for N-CMAPSS Dataset

first, shown in Table 4.

id group id Fc unit dataset

1 1 1 1 DS01-005
2 1 3 2 DS01-005
...
89 2 2 9 DS08c-008
90 2 2 10 DS08c-008

Table 3. User Defined Component Table
The component table is automatically created when an asset type is stored. Unlike other tables, which are

predefined, this table is defined by the user after creation.

The primary purpose of asset table is for data organization
and proper linkage of meta data and data records. There is a
record for each of the 90 units in the dev and test set, encoded
as the group id in Table 3 (1 for dev, 2 for test). The
unit numbers in the original dataset repeat across data files,
meaning the unit numbers are not unique in the context of the
entire dataset. With this organization, they now are, and there
is a mapping in the component data table (Table 3) that holds
this relationship.

id type id age rul units

1 1 0.0 100.0 cycles
2 1 0.0 95.0 cycles
...
89 1 0.0 59.0 cycles
90 1 0.0 54.0 cycles

Table 4. Asset Table
The asset table is a predefined table in the framework that contains fields necessary to maintain

relationships among components and data, as well as fields specific for prognostics.

Symbol Description Units
id summary table foreign key –
asset id asset table foreign key –
Wf fuel flow pps
Nf physical fan speed rpm
Nc physical core speed rpm
T24 LPC outlet temperature ◦R
T30 HPC outlet temperature ◦R
T48 HPT outlet temperature ◦R
T50 LPT outlet temperature ◦R
P15 bypass-duct pressure psia
P2 fan inlet pressure psia
P21 fan outlet pressure psia
P24 LPC outlet pressure psia
Ps30 HPC outlet pressure psia
P40 burner outlet pressure psia
P50 LPT outlet pressure psia

Table 5. System Telemetry Parameters
The flight data from these parameters are stored in the telemetry table.

The telemetry table ( telemetry tb ) contains the mea-
surement (xs) data provided in the raw data files as well as
two additional fields, id and asset id , which are for-
eign key references to the summary table and asset table, re-
spectively. The fields for the telemetry table are shown in
Table 5.

The degradation data is stored in a table named
degradation tb . Different combinations of degrada-

tion effects are applied to different units based on the datafile
they originate from. The degradation parameters (θ) are
unobserved and cannot be directly used for RUL prediction,
and therefore not used in this work (this is saved for future
tasks). With this organization, complex data queries can
be easily carried out, the memory footprint of the data
is optimized, and it is easier to load data for further data
processing tasks, discussed next.

5



Annual Conference of the Prognostics and Health Management Society 2013

4. PREPROCESSING

To reduce the size of the dataset to improve data handling
speeds and reduce training time, the dataset features were
reduced in size from their original datatypes of int64 and
float64 to int32, int16, and float32 depending on the value
range of the feature. While the full dataset is stored in the
database, we downsampled the dataset by a factor of 20 for
model development. There are multiple ways to do this that
come with their own tradeoffs, we simply kept every 20th
data point. This method is much quicker than using a moving
average and due to the high frequency of measurements rel-
ative to the number of measurements taken during the life of
the system, did not result in noticeable information loss.

In the first version of the CMAPSS dataset [Saxena et al.,
2008], normalization with respect to the flight settings were
typically done by normalizing the sensor data depending on
which of the six discrete operating conditions it belonged to.
In the N-CMAPSS dataset however, the flight settings are
continuous making such a normalization procedure infeasi-
ble. This is not to be confused with normalization to a [0, 1],
which is done in both cases. Due to this major difference and
other improvements, a comparison of approaches applied to
the old dataset and new dataset is not feasible, and at the time
of this writing only a handful of papers have been published
using the new dataset.

We made use of the health state variable (hs) to train a model
on the healthy subset of the data that learned the relation-
ship between operating conditions and flight sensor data. The
output of this model represents the expected sensor readings,
given a flight setting, in its non-degraded state. The residual
between the expected and the actual sensor is then interpreted
as the degree of deviation from normal, i.e degradation. This
procedure reveals the unobservable degradation trend which
we argue reduces the prognostics model complexity. Figure
4 shows an example output of this transformation with the
original (top) and the transformed (bottom) signal for the T30
sensor.

To achieve this, We used a model with 5 dense layers and
ReLU activations, illustrated in figure 3. The Adam optimizer
with the initial learning rate of 0.001 and a decay factor of .95
per epoch was used for training. An early stopping was used
where the training would stop if the improvement in valida-
tion loss was less than .001 over 20 epochs.

Once the data types of the measurements have been con-
verted, downsampled, normalized, and transformed to expose
the degradation effects, the data is ready for use in the next
step of the model development pipeline. This is hyperparame-
ter optimization, and we implement a modified Bayesian Op-
timization method, discussed next.

Figure 3. Feedforward Network Architecture for Preprocess-
ing Telemetry Data

Figure 4. Transformation of Raw Data into Prognosable Sig-
nals

5. HYPERPARAMETER SEARCH

Proper hyperparameter configuration is essential to develop-
ing high performing models. Performing a hyperparameter
search is a necessary part of an AutoML model development
pipeline as it systematizes what would otherwise be con-

6



Annual Conference of the Prognostics and Health Management Society 2013

ducted in an ad-hoc manual trial-and-error fashion. We do not
want to create big models when smaller models would suffice,
or manually select hyperparameter values that lead to sub-
optimal configurations. Models tuned with hyperparameter
optimization methods have shown to be superior than guess-
and-check methods [Bergstra et al., 2011, Feurer and Hutter,
2019]. In our initial experiments, we found that configu-
rations with non-zero regularizing parameters did not even
make the list of top 5 best configurations. Figure 5 illustrates
why this is the case. Regularization is a method (or set of
methods) to improve a model’s ability to generalize [Kukačka
et al., 2017] and imparts a time-quality tradeoff during train-
ing [Goodfellow et al., 2016]. This means that the resultant
model will have a smaller loss than its non-regularized coun-
terpart, but will take longer to achieve a lower loss.

Figure 5. Comparing the effect of regularization on the loss
function.

In Figure 5, four loss functions are depicted along with the
search horizon (ℏ) for the optimization procedure. It is clear
that at this stage in training, the network with non-zero reg-
ularization parameters is performing the worst. Informed
searches such as Bayesian Optimization [bay, ] or Hyper-
band [Li et al., 2016] would either reduce the probability of
improvement or expected improvement around this candidate
solution or discard the configuration all together. However,
later we see that this is actually the best solution, but only af-
ter the 25th epoch is this known. Therefore, we implemented
a two-step hyperparameter search whereby the layers, units,
and learning rate is searched first. The top Nc candidates
are selected from this step, and the search is then repeated
with dropout and regularization. The results from this step are
shown in Table 6. Initially we chose the top scoring configu-
rations but later realized the results proved to be misleading.
Instead of concluding after the search process is complete (by
means of evaluating Nt number of trials) that the top scoring
networks are the best, a distribution of scores for each config-
uration should be calculated, and the mean of the distribution
should be used to rank configurations. Therefore, a second
modification was implemented to ensure that the top scoring
configurations were evaluated a minimum number of times
before the search procedure halts.

# Layers Units LR Score Nt
*

1 4 24 .001 2.6 1
2 5 16 .001 2.81 3

...
12 3 32 .001 3.03 16
...
17 4 32 .0005 0 3.07 4
...
21 3 32 .0025 0 3.1 9
...

Table 6. Initial Hyperparameter Optimization Results
*number of trials evaluated.

Regularization parameters were searched separately after network architecture parameters.

# Layers Units LR Score Nt

1 3 28 .005 3.0 9
2 3 32 .0025 3.01 8
3 3 32 .001 3.06 29
4 4 32 .001 3.09 25
5 4 32 .0005 3.09 40

Table 7. Top five configurations from step 1
These are the results of the search over network architecture parameters after ensuring a distribution

of scores is captured for each configuration.

The process halts after a minimum number of unique config-
urations have been evaluated and the top Nc configurations
have been evaluated at least mint times each. This produces
a distribution of top candidates and can be implemented with
any search procedure. Once the top Nc candidates from this
step are identified, this process repeats over regularizing pa-
rameters (l2 and dropout were used in this work). The results
of step 2 of the search process is shown in table 8. The small-
est network that could have been chosen based on the range
of allowed values is a 3-layer, 16-unit per layer network. The
largest is a 6-layer 64-unit network. The final network config-
uration found was near the small end of this range, suggesting
that a less complex network is better.

# Layers Units LR Dropout L2 Score Nt

1 3 32 .0025 .5 1e−4 2.8 25
2 3 32 .001 .5 1e−5 2.83 28
3 4 32 .0005 .2 1e−4 2.84 21

Table 8. Top 3 configurations with dropout and L2 regular-
ization

These are the results after the regularization parameters have been searched over with the top
Nc candidates from step 1.

The search parameters for this two-stage process are given
in Table 9. Alpha (α) governs the expected noise in the ob-

7



Annual Conference of the Prognostics and Health Management Society 2013

served performance of the underlying surrogate model and
beta (β) governs how far to draw samples from the current
best solution. The search horizon (ℏ) is the number of epochs
to evaluate each configuration and Nc is the number of top-
scoring configurations to keep for step 2, which is searching
over the regularization parameters with a given set of archi-
tecture configurations.

Parameter Symbol Value

number of trials Nt 128

alpha α .0001

beta β 4.8

search horizon ℏ 3

number of candidates Nc 5

Table 9. Bayesian Optimization Parameters

6. TRAINING & VALIDATION

The Bi-LSTM network (Figure 6) was trained with two dif-
ferent data ingestion methods. First, we used a fixed sequence
length input, the method traditionally used when training
models. To generate the training samples, a sliding window
approach was utilised with a window size of 100 time steps
and a step size of 10. From the 90 trajectories in the data set,
10 units spread across the 8 data files were used for validation.
Total training time was 50 epochs. The model hyperparame-
ters are that of the model #1 in Table 8.

Figure 6. Bi-LSTM Network for RUL Estimation

Since recurrent networks are input size agnostic, we also
trained the same model configuration with a variable length
input data loader. In a variable sequence length data load-

ing procedure, the notion of an epoch is not clear. Therefore,
we specified the training time in terms of gradient updates.
In total, the network was trained for 10000 gradient steps.
For each gradient step, a random sequence length between
4000 and 15000 data points is picked. A minimum sequence
length of 4000 was chosen due to it being the shortest tra-
jectory in the 2021 PHM Society Data Challenge and 15000
being the longest trajectory in the training set. Using the se-
lected sequence length, one sequence from each of the en-
gines in the training set was extracted, where the end point
of the sequence had to be in the non-healthy state. This is
the same training procedure used our previous work and de-
scribed more thoroughly in [Lövberg, 2021].

To evaluate the performance of the model using both fixed
and variable length sequences, we used NASA’s scoring func-
tion [Saxena et al., 2008], shown in Equation 1. This function
penalizes over estimations more than under estimations due to
the nature of the intended use. It is better to be conservative
with RUL estimates as over estimates can lead a system to
operate in an unsafe state.

∆j = ŷj − yj ,

α =

{
−1
13 if ∆j < 0
1
10 if ∆j ≥ 0

s =

m∗∑
j=1

exp(α|∆j |),

RMSE =

√√√√ 1

m∗

m∗∑
j=1

∆2
j

score = (s+RMSE)/2.0

(1)

Eq 1: Scoring Function Calculation

The end result of the model when developed with this
methodology, and evaluated with two different forms of in-
put are discussed in the next section.

7. RESULTS & DISCUSSION

The results of both fixed and variable input sequence meth-
ods for the trained model are shown in table 10 and Figure
7. These results validate the hypothesis previously proposed
in [Lövberg, 2021] that models trained with variable length
input sequences perform better than fixed length sequences.
With such a small validation set, however, the significance of
the result is brought into question. When removing the worst
scoring unit from both sets, the improvement of the variable
length sequence over the fixed length is more noticeable. Fur-
thermore, the hyperparameter search was conducted with a
fixed length input sequence, so it can be proposed that a dif-
ferent set of hyperparameters would have been found if the
search was conducted with a variable length input.

8



Annual Conference of the Prognostics and Health Management Society 2013

Unit Score
Variable Length Fixed Length

1-DS01 3.29 2.89
4-DS03 2.85 4.97
10-DS03 1.51 4.29
8-DS04 6.7 5.27
10-DS05 1.89 2.0
5-DS06 4.81 2.39
6-DS07 1.98 5.88
4-DS08a 3.38 3.86
11-DS08a 1.41 2.24
5-DS08c 2.71 1.80

mean 3.05 3.56
std dev 1.56 1.41

Table 10. Model results for fixed and variable length input
sequences

The implementation of a data management scheme within a
model development pipeline improves the efficiency of data
storage, retrieval, and code reuse. By addressing data man-
agement concerns upfront, the rest of the processes can be
more easily streamlined, and the process of developing data-
driven models becomes a repeatable pattern that can be used
regardless of the application. The overall framework offers
three primary results specific to data-driven prognostics ap-
plications:

• Transforming the raw telemetry data into prognosable
signals as shown in Figure 4 is required for a model
to learn the underlying degradation trends without ob-
serving the actual degradation variables. Oftentimes, the
degradation processes are unobservable or unknown, and
therefore such information is unavailable for training.

• Ranking hyperparameter configurations based on their
score distribution rather than their single-sample score
provides a more reliable means of selecting the best con-
figuration for a given task. The tables in Section 5 show
that initial sample scores are not reflective of the models
actual performance, and only later after several samples
have been collected are the top scoring configurations
known.

• variable sequence length inputs result in models that
perform better than when trained with fixed length se-
quences. Recurrent neural networks are input length ag-
nostic, and allowing for the sequence length to be ran-
domized impoves the models ability to generalize.

8. CONCLUSION & FUTURE WORK

The most important aspect of the model development pipeline
is in data management. The data management framework
used in previous work for UAV simulation data [Darrah et al.,
2021, Darrah et al., ] can generalize across domains and is
flexible to suite a variety of use cases. It facilitates data han-
dling with code reuse with a standard API (under active de-

velopment) and allows data to persist in an organized manner
that retains the relationships among different data features.
Using this to systematically design, develop, and train mod-
els for data-driven prognostics makes these tasks for future
work much easier to accomplish. It also improves collabora-
tion among researchers and provides a higher degree of con-
fidence in the results we obtain through our efforts or results
we seek to validate.

We implement methods for data preprocessing, hyperparam-
eter optimization, and model training that are specifically tai-
lored to data-driven prognostics. However there is plenty of
room for future work. For example, we downsampled the
raw data by collecting every nth signal, but aggregating over
a window of size n is also a valid downsampling method.
The modified hyperparameter search turned Bayesian Opti-
mization into a pseudo-random search by means of random
restart. Comparing the efficiency in terms of time, number
of trials, number of candidate configurations, and results of
this method with a purely Random Search method should be
done. Furthermore, the hyperparameter search was carried
out with a fixed-length input, but the resultant configuration
was used for both fixed-length and variable length. It could be
the case that a different set of parameters would be found that
would produce a model which results in even lower scores
for variable-length inputs. Such tasks will be the focus of re-
search papers to come. Finally, a larger validation set would
allow for higher confidence in the comparison results between
fixed and variable length input sequences, which shows that
variable length input sequences offer better results, but the
variance is too high to be conclusive.

ACKNOWLEDGEMENTS

This work is supported by NASA OSTEM Fellowship 20-
0154 and the Swedish Governmental Agency for Innova-
tion Systems (VINNOVA) within the project ”Applied AI for
Prognostics” (Grant Number 2022-00870)”. The Authors are
grateful for the support received from these agencies.

REFERENCES

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).
Algorithms for hyper-parameter optimization. In
Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F.,
and Weinberger, K., editors, Advances in Neural Infor-
mation Processing Systems, volume 24. Curran Asso-
ciates, Inc.

Chao, M. A., Kulkarni, C., Goebel, K., and Fink, O. (2021).
Aircraft engine run-to-failure dataset under real flight
conditions for prognostics and diagnostics. Data, 6, 5.

Darrah, T., Biswas, G., Frank, J., Quiñones Grueiro, M.,
and Teubert, C. A data-centric approach to the study
ofsystem-level prognostics for cyber physical systems:

9



Annual Conference of the Prognostics and Health Management Society 2013

Figure 7. Remaining Useful Life Estimation Test Results

application to safe uav operations.
Darrah, T., Frank, J., Quiñones Grueiro, M., and Biswas, G.

(2021). A data management framework & uav simu-
lation testbed for the study of system-level prognostics
technologies. In Annual Conference of the Prognostics
and Health Management Society.

Feurer, M. and Hutter, F. (2019). Automated Machine Learn-
ing, Chapter 1. Springer.

Goebel, K., Celaya, J., Sankararaman, S., Roychoudhury, I.,
Daigle, M., and Saxena, A. (2017). Prognostics: The
Science of Making Predictions.

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press, Cambridge, MA, USA.
http://www.deeplearningbook.org.

Hutter, F., Kotthoff, L., and Vanschoren, J., editors (2018).
Automated Machine Learning - Methods, Systems,
Challenges. Springer.

Kukačka, J., Golkov, V., and Cremers, D. (2017). Regular-
ization for deep learning: A taxonomy.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A.,
and Talwalkar, A. (2016). Hyperband: A novel
bandit-based approach to hyperparameter optimization.
CoRR, abs/1603.06560.

Lövberg, A. (2021). Remaining useful life prediction of
aircraft engines with variable length input sequences.
In Annual Conference of the Prognostics and Health

Management Society.
Munappy, A., Bosch, J., Olsson, H. H., Arpteg, A., and

Brinne, B. (2019). Data management challenges for
deep learning. In 2019 45th Euromicro Conference
on Software Engineering and Advanced Applications
(SEAA).

Peng, Y., Dong, M., and Zuo, M. J. (2010). Current status of
machine prognostics in condition-based maintenance:
a review. The International Journal of Advanced Man-
ufacturing Technology, 50(1-4):297–313.

Saxena, A., Goebel, K., Simon, D., and Eklund, N. (2008).
Damage propagation modeling for aircraft engine run-
to-failure simulation. In 2008 International Conference
on Prognostics and Health Management.

Schwabacher, M. and Goebel, K. (2007). A survey of artifi-
cial intelligence for prognostics. Aaai fall symposium
(2007).

Si, X.-S., Wang, W., Hu, C.-H., and Zhou, D.-H. (2011). Re-
maining useful life estimation–a review on the statisti-
cal data driven approaches. European Journal of Oper-
ational Research, 213(1), (2011): 1-14.

Strasser, C., Cook, R., Michener, W., and Budden, A. (2012).
Primer on data management: What you always wanted
to know. UC Office of the President: California Digital
Library.

10


