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ABSTRACT 

Online SOH prediction of a battery is essential for battery 

management and safety in real-world applications. Despite 

the many approaches proposed to date, most conventional 

approaches to online SOH prediction neither incorporate 

intra-cycle variation of discharge currents nor consider non-

standard charging and discharging practices along cycles. 

However, it is crucial for real-world applicability to have 

online SOH prediction effective under load current variations 

and non-standard practices. In this paper, we present an 

approach to online SOH prediction with our emphasis on 

non-standard charging and discharging practices as well as 

intra-cycle load current variations in prediction. To this end, 

first, we represent a cyclic history of terminal voltages and 

currents by a sequence of four physical indicators of SOH: 

the total charge, the voltage-time entropy and the average and 

standard deviation of varying load current. A sequence of 

SOH indicators is then input to an LSTM stack for online 

SOH prediction. Notably, to deal with non-standard practices, 

we identify the minimum voltage ranges that non-standard 

practices should cover in order to predict SOH with sufficient 

accuracy. Furthermore, we convert the non-standard SOH to 

the equivalent standard indicators by a regression network so 

that the complexity in implementation is radically reduced. 

The results indicate that the proposed approach can provide 

accurate online SOH prediction even under randomly varying 

discharging currents and non-standard practices with RMSE 

errors of about 0.5% as well as 𝑅2 of about 95%.  

 

 

1. INTRODUCTION 

Lithium-ion batteries are promising as energy storage devices 

for electrified vehicles and devices because of their high 

energy density, low self-discharge rate and long lifespan 

compared to other battery types. However, as the batteries 

age along the repeated charging and discharging cycles, their 

maximum usable capacity is gradually degraded. Moreover, 

the batteries degraded below a certain capacity can be 

deteriorated faster till they become inoperable or fallen, 

possibly, into a catastrophic failure. State of Health (SOH) is 

an indicator of battery's aging state, which represents a 

percentile ratio of the current battery capacity with respect to 

the nominal capacity specified by the manufacturer. When 

SOH of a battery drops down to a certain level, say 80%, it 

indicates the time to replace the battery for operability and 

safety. In this sense, online SOH estimation of batteries is 

important not only for effective battery management but also 

for safe use of batteries by avoiding such possible hazards as 

thermal runaway and fire. However, the accurate estimation 

of battery SOH online is difficult due to the complexity 

involved in the electrochemical behavior of batteries. 

Although measuring the battery electrochemical impedance 

with dedicated devices as well as the discharge capacity with 

standard load currents can provide a high precision of SOH 

estimates, they are not applicable to online applications. The 

many approaches to online SOH estimation to data are 

categorized into the model-driven approach and the data-

driven approach. Model-driven approaches are based on clear 

physical groundings in implementation. However, their 

performance depends on the accuracy of the model used 

under the trade-off with the complexity in processing. On the 

other hand, the data-driven approaches can be simpler in 

implementation, while taking advantage of the recent 

advancement in deep learning technologies. However, their 

performance is limited by the amount and quality of the 

ground truth data available. 
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1.1. Related Work 

Currently, the methods proposed for estimating battery SOH 

can generally be grouped into three categories: the direct 

measurement method, the model-based method, the data-

driven method. The direct measurement method is a method 

of estimating SOH based mainly on the terminal voltage, 

current and impedance of the battery. Representatively, there 

are coulomb-counting method, OCV method and Impedance 

method and This method has relatively low computational 

complexity for SOH estimation. However, the coulomb-

counting method, which estimate SOH by integrating 

currents, has a problem that the accuracy is low due to the 

accumulation of sensor noise in the process of integrating 

currents. Moreover, the OCV method and the internal 

impedance method, which estimate SOH through the 

relationship between OCV or internal resistance value and 

SOH, are difficult to estimate online SOH because must be 

kept in an idle state for measuring OCV and internal 

resistance value.  

The model-based method defines a model through the 

equivalent circuit of the battery, and through this, explains 

the state change during battery operation and estimates the 

SOH. In this regard, Andre et al. (2013) introduced a method 

of predicting SOH using the Extended Kalman filter and 

Support Vector Regression together, and it shows that SOH 

prediction can be made by aging even if charging and 

discharging in different ways for each cycle in addition, 

Burgos et al. (2016) approximates the probability density 

function of the maximum available power of a battery using 

a particle filter-based nonlinear dynamic model. The model 

base method can estimate SOH online, unlike direct 

measurement method, by connecting the battery signal 

measured in real time with SOH through electrochemical 

model. However, the model parameter and state equation 

should be redefined depending on the battery used, and the 

values of some parameters can change over time, so these 

factors increase the error. 

The data-driven method is a method of estimating SOH by 

training machine learning models such as neural networks 

and SVMs (Support Vector Machines) with battery data 

obtained through actual measurement. Lin et al. (2012) 

introduced a method of predicting SOH using a Probabilistic 

Neural Network (PNN), but this has the disadvantage of 

ensuring accuracy when there are enough training samples. 

Zhou et al. (2020) proposes a model that predicts SOH 

through the Temporal Convolution Network using data 

provided by Center for Advanced Life Cycle Engineering 

(CALCE) of Maryland University and provides accuracy of 

RMSE 0.011. 

Especially, since the characteristics of the battery for SOH 

estimation have time-series characteristics, recurrent neural 

networks such as Long Short-Term Memory Model (LSTM) 

and Gated Recurrent Units (GRU) are mainly used for SOH 

estimation to reflect these characteristics. Ungurean et al. 

(2020) proposes a method to estimate SOH using GRU model 

with input of State of Charge (SOC) sequence data for each 

battery cycle and argues that the calculation can be reduced 

by using GRU model. However, this method needs to 

additionally design a battery model according to the method 

of predicting SOC in real time, and external factors need to 

be considered. Besides that, Wu et al. (2020) proposes a 

method of estimating SOH using LSTM model using the 

charging time data and the IC curve data as input vectors. 

This data-driven method estimates SOH using data collected 

under limited conditions. However, this method may be 

difficult to estimate accurately in real situations where the 

discharge current changes or the charge/discharge is non-

standard. 

1.2. PROBLEM FORMULATION AND PROPOSED 

APPROACH 

Conventionally, deep learning-based approaches to battery 

SOH estimation using discharging characteristics have to rely 

on a small number of publicly accessible datasets collected 

with a constant discharging current at individual cycles. 

However, for real-world applications of battery SOH 

estimation, in which battery payload varies constantly in time 

and so does discharging current, SOH estimation should take 

into consideration the effect of inter- and intra-cycle 

variations of discharging current on SOH estimation. Note 

that SOH can also be estimated based on battery charging 

characteristics, instead of discharging characteristics, for 

which constant charging currents are in use. Although the 

SOH estimation using charging characteristics alleviates the 

issues involved in current variations, the performance of 

charging-based SOH estimation needs to be compared with 

that of the discharging-based SOH estimation prior to 

positioning the two approaches in real-world applicability. 

This leads to the necessity of investigating the following 

problems: 1) how to achieve accurate SOH estimation based 

on discharging characteristics under inter- and intra-cycle 

current variations and 2) how accurate discharging-based 

SOH estimation could be, in comparison with that of 

charging-based, if taking inter- and intra-cycle current 

variations into consideration.  

Another issue to consider for real-world applicability is 

partial charging and discharging. Note that no full 

discharging and charging is guaranteed at every charging and 

discharging cycle. Unlike conventional approaches to SOH 

estimation that assume full charging and discharging at 

individual cycles, in reality, partial charging and discharging 

may well take place from cycle to cycle. Therefore, we need 

to be able to accurately estimate SOH even under the 

presence of partial charging and discharging cycles. 

To address the problems associated with load current, first, 

we investigate how current variations affect SOH estimation 

by changing the voltage drop profile and the total amount of 

charges charged and discharged in a cycle. As the feature 
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𝑖 

representing voltage drop profile, we propose entropy of the 

time- vs. voltage- interval histogram or time-voltage 

distribution of a cycle. More specifically, we investigate the 

effect of discharging currents, including inter- and intra-cycle 

current variations, on the correlation between SOH and the 

time-voltage distribution entropy of a cycle as well as 

between SOH and the total amount of charges expended in a 

cycle. Then, we supplement the time-voltage distribution 

entropy and the total amount of charges in a cycle by adding 

the current standard deviation of a cycle as a means of 

compensating for the effect of current variations on SOH 

estimation. These features representing both the voltage and 

current profiles of a cycle are then input to an LSTM stack 

designed for SOH estimation to obtain accurate SOH 

estimation under current variations. On the other hand, to deal 

with the issues associated with partial charging and 

discharging, we investigate the effect of partial charging and 

discharging on SOH estimation and derive the critical ranges 

of charging and discharging voltages that should be included 

in SOH estimation to ensure the desired estimation accuracy. 

2. ONLINE PREDICTION OF BATTERY SOH BASED ON 

CHARGING AND DISCHARGING PROFILES 

Online SOH prediction of rechargeable batteries can be done 

based either on charging cycles or on discharging cycles. 

Online prediction based on charging cycles is simpler in 

implementation due to the constant current used in standard 

charging practices. No extra consideration of the effect of 

load current variations on SOH prediction is necessary. 

However, as far as the prediction performance is concerned, 

the discharging cycle-based prediction often provides better 

accuracy than the charging-based. Here, we present battery 

SOH prediction based on both charging and discharging 

cycles. Instead, our emphasis is given to how to handle non-

standard charging and discharging practices as well as load 

current variations in discharging-based SOH prediction. By 

non-standard charging and discharging practices, we mean 

that charging or discharging is done by less than full charging 

or discharging between the lower and upper cut-off voltages: 

for instance, 2.7V and 4.2V for lower and upper cut-off 

voltages for the dataset we used in our experiments. 

2.1. Charging Based Online SOH Prediction under   

Non-Standard Practices 

As physical indicators of SOH degradation associated with 

charging, we consider the total amount of charges, Q, charged 

under the constant current and the voltage rise profile during 

charging at a particular cycle 𝑝 . In particular, here, the 

voltage rise profile is represented as the voltage-time entropy, 

VE. VE is defined based on the probability distribution, 

𝑝(𝑣𝑖), 𝑖 =  1, … , 𝑀, of the time intervals associated with the 

voltage ranges,𝑣𝑖 , representing 𝑀  constant voltage drops. 

The constant voltage drops are obtained by equally dividing 

the total range of voltage rise by 𝑀  (e.g., 𝑀 = 17  in our 

experiment). Then, VE is computed from 𝑝(𝑣𝑖), 𝑖 =
 1, … , 𝑀, by 

 𝑉𝐸 = − ∑ 𝑝(𝑣𝑖

𝑀

𝑖=1
) log10 𝑝(𝑣𝑖) (1) 

As SOH is degraded due to battery aging, the voltage-time 

entropy, VE, increases while the total charge charged, Q, 

decreases with a clear correlation between SOH and VE and 

between SOH and Q. 

Under the non-standard charging practices, batteries may be 

neither fully discharged prior to charging nor fully charged 

prior to discharging. Under this circumstance, the total charge 

charged and the voltage-time entropy vary according to the 

ranges of charging voltage that the non-standard charging 

practice imposes. This makes SOH prediction under non-

standard practices difficult. Here, we investigate existence of 

the minimum voltage ranges in charging that are required for 

SOH prediction under non-standard charging practices. In 

Section 5, we show that such minimum voltage ranges exist 

such that we can predict SOH with sufficient accuracy under 

non-standard practices as long as charging covers the 

minimum ranges.  

2.2. Discharging Based Online SOH Prediction under 

Non-Standard Practices and Payload Variations  

For discharging-based SOH prediction, we consider not only 

the total        charge, Q, discharged and the voltage-time entropy, 

VE, associated with the voltage fall during discharging, 

representing the same indicators used for charging-based 

SOH prediction. But also, we consider the inter- and intra- 

cycle variations of discharging currents under varying 

payloads that may affect the rate of SOH   degradation. To 

this end, we include the average and standard deviation of 

discharging current as physical indicators of SOH in addition 

to Q and VE. This differs from conventional approaches to 

SOH prediction in which discharging currents are assumed 

constant within a cycle, if not the entire cycles. When intra-

cycle discharging currents vary due to payload variations, the 

corresponding voltage drop profiles also vary, affecting the 

associated voltage-time entropies. Since it may be desired to 

have VE invariant to inter-cycle and intra-cycle current 

variations as a physical indicator of SOH, we propose to 

define a canonical form of discharging voltage profiles 

independent of current variations. To this end, we propose 

that, at cycle 𝑝, the terminal voltage, 𝑉𝑇
𝑝(𝑡), be transformed 

into that of the open-circuit voltage (OCV), 𝑉𝑜
𝑝(𝑡) , by 

compensating the voltage drop due to the battery internal 

resistance, 𝑅𝑖
𝑝
, such that 𝑉𝐸 is obtained based on 𝑉𝑜

𝑝(𝑡), : 

 𝑉𝑜
𝑝(𝑡) = 𝑉𝑇

𝑝(𝑡) + 𝑅𝑖
𝑝

𝐼𝑝(𝑡) (2) 

where 𝐼𝑝(𝑡) represents the terminal current at cycle 𝑝 . 

Although OCV has a nonlinear characteristic, in this case, it 

is valid in the limited stoichiometry range because it 

considers a very short time interval. The internal resistance, 
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𝑅𝑖
𝑝

,  which varies along cycle, 𝑝 , is known to satisfy the 

following equation: 

             𝑅𝑖
𝑝

= 𝑎𝑆𝑂𝐻𝑝 + 𝑏 (3) 

where a = -0.5349 and b = 0.7684. Note that these coefficient 

values are obtained based on the CALCE Dataset by 

calculating 𝑅𝑖 at each cycle with the given SOH. Since 𝑆𝑂𝐻𝑝 

is unknown at cycle 𝑝, we may use 𝑅𝑖
𝑝−1

 instead of 𝑅𝑖
𝑝

 as an 

approximation. Now, with the compensated discharge 

voltages, 𝑉𝑜
𝑝(𝑡), VE associated with the voltage drop profile 

of a discharging cycle can be defined exactly same as that of 

the voltage rise profile of a charging cycle. Same as the case 

of charging, a clear correlation exists between VE and SOH 

and between Q and SOH in the case of discharging.  

However, unlike the charging cycles based on the constant 

charging current, the intra-cycle as well as inter-cycle 

variations of load currents in discharging cycles are expected 

to influence battery aging or SOH degradation by themselves. 

Therefore, we consider it necessary to include the variation 

of discharging current as a physical indicator for SOH 

prediction. To this end, here, we introduce the average, I, and 

standard deviation, SD, of the discharging current of a 

particular cycle as additional physical indices for SOH 

prediction. In other words, in the case of discharging cycle- 

based SOH prediction under intra-cycle and inter-cycle 

current variations, we combine VE and Q with the average 

current, I, and the standard deviation, SD, at cycle 𝑝  as 

physical indicators for SOH prediction. As a matter of fact, 

we experimentally verified that cyclic differences in the 

average current and standard deviation of load current result 

in differences in Q and VE profiles along the SOH 

degradation.   

 Same as the case of charging, we emphasize the SOH 

prediction under the non-standard discharging practices. 

That is, batteries may not be neither fully charged prior to 

discharging nor fully discharged prior to charging. In this 

case, the total charge discharged and the voltage-time 

entropy at cycle 𝑝 vary according to the range of discharging 

voltages imposed by the non-standard discharging practice. 

However, as mentioned for the case of non-standard 

charging practices, there exist the minimum ranges of 

discharging voltages that ensure an effective SOH prediction 

as long as the non-standard practices cover the minimum 

voltage ranges. In Section 5, we present such minimum 

voltage ranges in details in terms of a 2D map of center 

voltage-voltage gap.  

3. CONVERSION OF NON-STANDARD Q AND VE TO 

STANDARD Q AND VE 

As shown in Section 5, there exist the minimum ranges of 

charging and discharging voltages that are required for the 

non-standard charging and discharging practices to cover to 

obtain sufficient accuracy in SOH prediction. However, the 

use of varying voltage ranges due to non-standard practices 

result in the variation in Q and VE due simply to the 

difference in voltage ranges on top of the variation due to 

SOH degradation. This makes the SOH prediction based on 

Q and VE highly complicated under non-standard practices, 

such that a huge amount of data is required for training the 

proposed deep prediction network. For instance, under non-

standard practices, the input sequence to the proposed LSTM-

based SOH prediction has to use a mixture of Qs and VEs 

obtained under the standard and non-standard practices.  

Besides, a variety of non-standard charging and discharging 

practices may correspond to a large number of different 

minimum voltage ranges, resulting in many different Qs and 

VEs to be used for SOH prediction. As a solution, we propose 

to convert the non-standard Q and VE from non-standard 

practices into the standard Q and VE from standard practices 

in such a way that they become equivalent in terms of SOH 

prediction. Then, the equivalent standard Qs and VEs 

converted from the non-standard Qs and VEs are used to 

define the input sequence for the SOH prediction network. 

Specifically, we propose a regression network to convert 𝑄𝑛 

and 𝑉𝐸𝑛 values associated with a non-standard voltage range, 

(𝑣𝑛
1, 𝑣𝑛

2), to the equivalent 𝑄𝑠 and 𝑉𝐸𝑠 values associated with 

the standard voltage range. The ground truth data to train the 

network are defined in such a way that (𝑄𝑠, 𝑉𝐸𝑠) and (𝑣𝑛
1, 𝑣𝑛

2,  

𝑄𝑛, 𝑉𝐸𝑛) correspond to the same SOH. Figure 1 illustrates 

the proposed conversion network composed of 5 fully 

connected layers for converting non-standard 𝑄𝑛 and 𝑉𝐸𝑛  to 

the equivalent standard 𝑄𝑠  and 𝑉𝐸𝑠 , where 𝑣𝑛
1  and 𝑣𝑛

2  are, 

respectively, the min and max of the voltage range. In 

addition, root-mean-square-error (RMSE) was used as the 

loss function for learning the proposed regression model, and 

Adam Optimizer was used as an optimizer for learning. 

Adam Optimizer is an optimizer that brings the advantages of 

the Momentum Optimizer and RMSProp Optimizer. It 

prevents the model from falling into the local minimum due 

to the Momentum Optimizer term and allows the parameters 

to be well learned by adjusting the learning rate due to the 

RMSProp term. 

 

Figure 1. The proposed regression network designed to learn 

the conversion from non-standard (𝑉𝑛
1, 𝑉𝑛

2, 𝑄𝑛 , 𝑉𝐸𝑛) to 

standard (𝑄𝑠, 𝑉𝐸𝑠). 
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4. STACKED LSTM FOR SOH PREDICTION 

For SOH prediction, we need to represent and learn the time-

series relationship between SOH degradations and variations 

of battery physical indices, Q, VE, I and SD, along charging 

and discharging cycles. Here, we design a stacked LSTM 

with two LSTM layers and a fully connected layer to output 

predicted SOHs, as illustrated in Figure 2. 

 

Figure 2. The proposed two-layer stacked LSTM with a 

fully connected output layer designed for SOH prediction at 

the 𝑝𝑡ℎ cycle. 

 

The proposed stacked LSTM is intended to better extract 

temporal features embedded in an input sequence while 

taking advantage of LSTM for incorporating a longer-term 

temporal context. To predict the SOH at cycle 𝑝 , the 

proposed stacked LSTM uses a sequence of k input vectors, 

[𝑢𝑝−𝑘 , 𝑢𝑝−𝑘+1, … , 𝑢𝑝−1], composed of battery physical index 

vectors,  𝑢𝑝−𝑗 , j=1, …, k, at the past k cycles. 𝑢𝑝−𝑗 at cycle 

p–j is expressed as [𝑉𝐸𝑝−𝑗 , 𝑄𝑝−𝑗, 𝐼𝑝−𝑗 , 𝑆𝐷𝑝−𝑗] , where 

𝑉𝐸𝑝−𝑗 , 𝑄𝑝−𝑗, 𝐼𝑝−𝑗  and 𝑆𝐷𝑝−𝑗  represent, respectively, the 

voltage-time entropy, the total charge, the average current 

and the standard deviation of the current at cycle 𝑝 − 𝑗. Note 

that, in the case of charging cycle based SOH prediction, we 

assume constant current in charging such that 𝑆𝐷𝑝−𝑗 

becomes null. LSTM units in the first layer are governed by 

the following typical LSTM formula expressed for cycle 𝑝 −
𝑗: 

 𝑓𝑝−𝑗 = 𝜎(𝑊𝑓 ∙ [ℎ𝑝−1−j, 𝑥𝑝−𝑗] + 𝑏𝑓) (4) 

 𝑖𝑝−𝑗 = 𝜎(𝑊𝑖 ∙ [ℎ𝑝−1−j, 𝑥𝑝−𝑗] + 𝑏𝑖) (5) 

 𝑎𝑝−𝑗 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑝−1−j, 𝑥𝑝−𝑗] + 𝑏𝑐) (6) 

 𝐶𝑝−𝑗 = 𝑓𝑝 ∗ 𝐶𝑝−1−j + 𝑖𝑝−𝑗 ∗ 𝑎𝑝−𝑗 (7) 

 𝑜𝑝−𝑗 = 𝜎(𝑊𝑜 ∙ [ℎ𝑝−1−j, 𝑥𝑝−𝑗] + 𝑏𝑜) (8) 

 ℎ𝑝−𝑗 = 𝑜𝑝−𝑗 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑝−𝑗) (9) 

where 𝐶𝑝−𝑗  , ℎ𝑝−𝑗  , fp−j  , 𝑖𝑝−𝑗  and 𝑜𝑝−𝑗  represent, 

respectively, the state, the output, the forget gate, the input 

gate and the output gate for cycle 𝑝 − 𝑗. For the second layer 

LSTMs, we simply replace 𝑢𝑝−𝑗    of Eq. (9) by ℎ𝑝−𝑗 . The 

fully connected layer receives all the outputs from the second 

LSTM Layer and use them as its input to output the predicted 

SOH at cycle 𝑝. 

In the process of learning the model, to prevent the model 

from overfitting, the dropout method was used at the 

connection part of the layer. At this time, the dropout 

probability was set to 0.3. Adam Optimizer was used as an 

optimizer for learning. Moreover, the charge expended while 

the battery is discharged from the upper cut-off voltage of 

4.2V to the lower cut-off voltage of 2.7V is defined as the 

SOH of the cycle and used as the ground truth SOH.   

5. EXPERIMENTAL RESULT 

In order to evaluate the performance associated with the 

proposed SOH prediction, we used the, publicly available, 

CALCE dataset provided by Maryland University as well as 

the dataset we collected based on a battery testing equipment 

using actual batteries. The CALCE dataset is based on a 

1.1Ah lithium-ion battery. In particular, we used the CS2 

family of dataset in the CALCE, which collects data by 

repeating standard full charge and full discharge, and a 

constant charge current of 0.55A was used for charging. On 

the other hand, in the case of discharge, various static 

discharge currents of 0.11A, 0.22A, 0.55A, 1.1A, 1.65A, 

2.2A are used for data collection. For the data set collected, a 

3.25Ah lithium-ion battery INR18650 was used. We 

collected total three datasets by repeating charging and 

discharging cycles with the constant charging current of 1.6A 

and 3.2A but with the randomly varying discharging currents 

in time within a cycle, where their average and standard 

deviation pairs are (1.4, 0.46), (1.6, 0.92) and (2.2, 1.02). 

5.1. SOH Prediction under Inter- and Intra-Cycle 

Variations of Discharging Currents 

First, we evaluated the performance of the proposed SOH 

prediction approach based on the four indices: voltage-time 

entropy, VE, total charge, Q, average current and standard 

deviation, I and SD, respectively. The performance in SOH 

prediction is compared between charging and discharging 

cycles as well as between with and without inter- and intra-

cycle variations of discharging currents. 

We implemented the proposed LSTM stack described in 

Section 4. We set the length of input sequence, k, as 20, while 
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normalizing the four indices forming an input vector in such 

a way that each index has a value between 0 and 1. To prevent 

training from overfitting, we applied a dropout strategy to 

connections between the LSTM stack and the fully connected 

layer with the dropout probability of 0.3. Besides, Adam 

optimizer is adopted in training to avoid falling into local 

minima. 

To evaluate the performance of SOH prediction, we adopted 

the root-mean-square-error (RMSE) and the goodness-of-fit 

measure 𝑅2, as shown in the following equations: 

 𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑦𝑖 − �̂�𝑖)

2

𝑚

𝑖=1

 (10) 

 𝑅2 = 1 − ∑(𝑦𝑖 − �̂�𝑖)
2

𝑚

𝑖=1

/ ∑(𝑦𝑖 − �̅�𝑖)
2

𝑚

𝑖=1

 (11) 

where  𝑦𝑖   and  �̂�𝑖  represent, respectively, the ground truth 

and the predicted SOHs at the 𝑖𝑡ℎ cycle and  �̅� the average of 

the ground truth SOHs under prediction. 𝑅2  is introduced 

here to compensate for RMSE applied to a small scale of data 

in which low RMSE does not always mean good performance.  

Table 1 summarizes performance of the proposed SOH 

prediction based on charging and discharging cycles when 

CALCE datasets are used for evaluation. In the table, 

prediction accuracies are evaluated using three types of 

datasets in CS2 family: Type 1 with two datasets, Type 2 with 

four datasets and Type 3 with one dataset. Note that the 

charging data collected for the chosen three types of datasets 

are based on standard current/voltage protocol with the 

constant charging current of 0.55A each cycle. On the other 

hand, the discharging data collected for Type 1 and Type 2 

datasets are based on the constant discharging current of 

0.55A and 1.1A, respectively, while the discharging data 

collected for Type 3 dataset are based on alternating constant 

currents of 0.11, 0.22, 0.55, 1.1, 1.65 and 2.2A along cycles. 

Among them, the total number of cycles for Type 1 data used 

as a test is 809, and the total number of cycles for Type 2 data 

is 919. Furthermore, the Type 3 dataset consists of 333 cycles 

for each discharge current. 

In this table, test cases are divided into three cases as follow: 

Case 1, “Constant Current”; Case 2, “Varying Inter-Cycle 

Current”; Case3 “Constant Current + Varying Inter-Cycle 

Current”. Case 1 is the result made through Type 1 and Type 

2 dataset, and a pair of data from each type dataset was used 

for testing and the rest of the dataset was used for training. 

On the other hand, under Case 2, we used Type 3 dataset for 

evaluating SOH prediction in the case of constant intra-cycle 

but varying inter-cycle discharging currents. Since Type 3 

dataset is the only dataset available for this testing, we 

randomly selected 60% and 40% of data, respectively, for 

training and testing. Case 3 is the result of integrating and 

verifying the training data and test data used above. 

Table 1 indicates that the proposed SOH prediction can 

provide high prediction accuracy under constant currents and 

varying inter-cycle currents for charging and discharging 

based SOH predictions. Specifically, the proposed stacked 

LSTM with total charge, voltage-time entropy and average 

current as its input could achieve RMSE of less than 0.027 or 

𝑅2  of higher than 0.98 in prediction, at least, when constant 

currents are used within a cycle regardless of inter-cycle 

current variations, which is commensurate to the state-of-the-

art performance in SOH prediction. Notably, the proposed 

SOH prediction is shown working stably, with sufficient 

generalization power, under various training-testing dataset 

configurations in different current modes, including the 

varying inter-cycle current mode.  

 

Table 2 summarizes the SOH prediction performance when 

using only VE, Q, and current average as inputs and when 

using current standard deviation together with the proposed 

model when applied to a dataset collected with randomly 

varying discharging currents within a cycle. Three datasets, 

Random Current A, B and C, are collected for experiment by 

using INR18650 lithium-ion battery by fixing the charging 

current constant at 1.6A for entire cycles, but by randomly 

varying the discharging current within individual cycles with 

their average and standard deviation as (1.4A, 0.46) for 

Random Current A, (2.2A, 1.02) for Random Current B and 

(1.6A, 0.92) for Random Current C. Random Current A, B 

and C datasets consist of 698, 768 and 741 cycles, 

respectively. 

In Table 2, test cases are divided into three cases as follow: 

Case 1, “1 Random Current (60%) and 1 Random Current 

(40%)”; Case 2, “3 Random Current (60%) and 1 Random 

Current (40%)”; Case3 “2 Random Current and 1 Random 

Current”. Case 1 under the respective Training and Testing   

Data imply that 60% of data are randomly selected from 

individual dataset for training, while the rest 40% of data are 

Table 1. Performance of the proposed SOH prediction 

evaluated based on CALCE datasets. 

 

Test 

case 

Training 

Data 

Testing 

Data 

Charging 

Cycles 

Discharging 

Cycles 

RMSE 𝑅2 RMSE 𝑅2 

Constant 

Current 

Type 1 + 

Type 2 

0.55A 0.06063 0.95565 0.02659 0.99213 

1.1A 0.01065 0.99739 0.00779 0.99855 

Varying 

Inter-

Cycle 

Current 

Type 3 

(60%) 

Type 3 

(40%) 
0.00566 0.99285 0.00805 0.99039 

Constant 

Current + 

Varying 

Inter-

Cycle 

Current 

Type 1+ 

Type 2+ 

Type 3 

(60%) 

0.55A 0.05211 0.95767 0.02267 0.98707 

1.1A 0.01394 0.99604 0.00865 0.99819 

Type 3 

(40%) 
0.00596 0.98810 0.00739 0.99147 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

7 

assigned for testing for discharging-cycle based SOH 

prediction. By the same token, case 2 under the respective 

Training and Testing Data imply that 60% of data are 

randomly selected from all three datasets for training, while 

the rest 40% of data from individual datasets are assigned for 

testing. On the other hand, case 3 under the respective 

Training and Testing Data implies that two datasets are used 

for training while the rest for testing for discharging-cycle 

based SOH prediction. Additionally, when the current 

standard deviation is used as an input, a value close to 0 is 

used for the current standard deviation because it is a constant 

current in the case of charging. 

According to Table 2, in the case of charging, both when the 

current standard deviation is used as an input and when not, 

the RMSE is less than 0.008. However, in the case of 

discharge, when the current standard deviation is not used as 

an input, the maximum RMSE is 0.017, whereas when the 

current standard deviation is used together, the RMSE is 

greatly reduced to a maximum of 0.007. The result verifies 

that the proposed SOH prediction method based on the 

concatenation of average current and its standard deviation 

with voltage-time entropy and total charge to define the input 

unit vector for a stacked LSTM can effectively handle the 

complexity in SOH prediction due to varying discharging 

currents. 

 

Figure 3 is a graph expressing the estimation results of the 

proposed model and the ground truth SOH when used as 

testing data discharged for Case 3.  In Figure 3, (a) is a case 

where discharge data is used as an input and (b) is a case 

where charging data is used as an input. Through this result, 

the estimated value of the proposed model reflects the ground 

truth SOH trend well and that SOH estimation is possible 

with high accuracy. 

 

Figure 3. When the discharge current changes within 1 

cycle, the result of estimating SOH using the total discharge 

data (a) and charge data (b). 

 

5.2. Online SOH Prediction under Non-Standard 

Charging and Discharging Practices 

For online SOH prediction, we need to take the non-standard 

practices in charging and discharging into consideration, 

besides the intra-cycle discharging current variations. In 

Section 2, we presented an approach for the proposed LSTM-

based SOH prediction to deal with the indices from a mixture 

of standard and non-standard charging and discharging 

practices. To implement the proposed approach, first, we 

need to identify the minimum upper-lower cut-off ranges in 

charging and discharging voltages that are required for a 

sufficient accuracy in SOH prediction. 

Here, we represent such a minimum upper-lower cut-off 

voltage range by using a 2D map with its two axes 

Table 2. Performance of the proposed SOH prediction 

evaluated based on collected datasets with random 

variations of discharging currents within a cycle. 

 

Input 

Data 

Training 

Data 

Testing 

Data 

Charging 

Cycles 

Discharging 

Cycles 

RMSE 𝑅2 RMSE 𝑅2 

VE, Q, 

Current 

Average 

(3 input) 

1 

Random 

Current 

(60%) 

1 

Random 

Current 

(40%) 

0.00521 0.96053 0.01016 0.91371 

3 

Random 

Current 

(60%) 

1 

Random 

Current 

(40%) 

0.00626 0.94107 0.00859 0.93829 

2 

Random 

Current 

1 

Random 

Current 

0.0068 0.95372 0.01762 0.86101 

VE, Q, 

Current 

Average, 

Current  

Standard 

deviation 

(4 input) 

1 

Random 

Current 

(60%) 

1 

Random 

Current 

(40%) 

0.00689 0.96028 0.00395 0.96029 

3 

Random 

Current 

(60%) 

1 

Random 

Current 

(40%) 

0.00794 0.94716 0.00685 0.96072 

2 

Random 

Current 

1 

Random 

Current 

0.00747 0.95993 0.00449 0.96322 
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representing, respectively, the center and the gap between the 

upper and the lower voltage range. This representation allows 

the voltage ranges effective for SOH prediction to be 

represented as the region in the 2D map, as illustrated in 

Figures 4. We constructed such 2D maps experimentally by 

using CALCE datasets, for which training and testing 

datasets were collected from all CS2 family of CALCE 

dataset. To have a high precision of 2D map, we divide the 

upper-lower cut-off voltage range between 3.0V and 4.1V by 

0.1V with the gap resolutions of 0.3V, 0.5V and 0.7V in 

obtaining the R2 performance of the predicted SOHs for the 

ranges. 

Figure 4 (a) represents the region (green) on the center-gap 

map inside which 𝑅2 is 0.97 or higher for discharging-based 

SOH prediction. On the other hand, Figure 4 (b) represents 

the region (green) on the center-gap map inside which 𝑅2 is 

0.97 or higher for charging-based SOH prediction. The 

results were conducted through the CALCE dataset, and the 

𝑅2  for the test dataset was reflected by composing the 

training data and the test data in the same way as the test case 

1 in Table I. That is, results for both aged and new battery 

cells are included. Figure 4 indicate that, in case of 

discharging-based SOH prediction, the center voltage 

between 3.7V and 3.9V with the gap more than 0.3V 

represent the critical requirement for 𝑅2  to be higher than 

0.98. On the other hand, in case of charging-based SOH 

prediction, the center voltage between 3.9V to 4.0V with the 

gap more than 0.4V are required. Figure 4 also indicate that 

discharging-based SOH prediction has a wider region on the 

center-gap map for effective SOH prediction than charging-

based SOH prediction. 

 

Figure 4. Region with high 𝑅2 of (a) discharging voltage 

and (b) charging voltage. 

 

Table 3 shows the results of equivalence transformation of Q 

and VE in the non-standard voltage range to Q and VE in the 

standard voltage range through the proposed regression 

network. In this case, Types 1 and 2 of the CS-2 family of 

CALCE datasets are used, and one dataset of each type was 

used as a test and the rest of the data was used for training. In 

order to evaluate the efficiency of the proposed equivalent 

conversion, experiments were conducted with and without 

the input data in the minimum voltage range derived above. 

First, the dataset was collected by fixing the gap of the 

voltage range to 0.7, 0.5, and 0.3 and changing the center. In 

this case, the minimum voltage range is not considered as 

shown in Figure 4. The second dataset is collected in such a 

way that the voltage ranges selected include the required 

minimum voltage ranges. In this case, the voltage range for 

charging consists of (4.2 - 3.5), (4.2 - 3.7), (4.1 - 3.6) and (4.1 

- 3.8)V, and the voltage range for discharging consists of (4.2 

- 3.7), (4.2 - 3.5), (4.1 - 3.4), (4.1 - 3.6), (3.9 - 3.2), (3.9 - 3.4) 

and (3.9 - 3.6)V. Note that, In both case, the data for which 

VE becomes null due to insufficient gap in the voltage range 

is removed. 

 

According to Table 3, when the minimum range is not 

considered, the equivalent transformation error increases as 

the voltage gap decreases. In particular, in the case of 

charging, the error increases significantly as the gap changes, 

and when the gap is 0.3, the error of Q becomes up to 26%. 

On the other hand, when the minimum range is observed, 

equivalent transformation can be performed with VE less 

than 2% and Q less than 8% for both charging and 

discharging. That is, it is necessary for the equivalence 

transformation to observe the required minimum voltage 

ranges as shown in the worse performance of the charge with 

a fixed gap that more violates the minimum voltage range. 

Table 3. % RMSE error performance of the proposed 

regression network to transform from non-standard to 

standard VE and Q 

 

Voltage 

Range 

Testing 

Data 

Charging Cycles 

% RMSE Error 

Discharging Cycles  

% RMSE Error 

VE 𝑄 VE Q 

Any 

ranges 

with a 

gap of 

0.7 

0.55A 0.73110 1.99248 1.11848 3.45743 

1.1A 0.74109 1.47223 1.51512 4.76091 

Any 

ranges 

with a 

gap of 

0.5 

0.55A 1.30375 9.46749 1.14100 2.55281 

1.1A 1.12372 6.34241 1.52201 5.50048 

Any 

ranges 

with a 

gap of 

0.3 

0.55A 1.76087 26.31565 1.60255 6.32801 

1.1A 1.39774 20.38615 2.345657 8.68956 

Varying 

gap with 

the 

minimum 

ranges 

included 

0.55A 1.38803 7.26720 2.13823 8.22401 

1.1A 1.13915 7.01399 1.73578 6.85647 
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Finally, we evaluated the performance of SOH prediction in 

non-standard cases by applying a pre-trained equivalent 

transform to the stacked LSTM model for SOH prediction. 

Here, the 20 cycles used as input sequences for the stacked 

LSTM are divided into a case of application of non-standard 

practice and a case of using non-standard practice and 

standard practice together. When a non-standard practice is 

applied as an input sequence, the SOH prediction result is 

shown in Table 4, and the test case is divided into the case of 

using the voltage gap of 0.7, 0.5, 0.3v, the voltage gap 

between 0.3 and 0.7, and the case of using only the gap 

included in the minimum range. At this time, the data of the 

non-standard voltage range used to generate the input 

sequence is randomly selected from the test data set used for 

the evaluation of equivalent transformation. Additionally, as 

a model for SOH prediction, a model trained on constant 

current using the Type 1 and Type 2 datasets of CALCE 

presented above was used, and this result was compared with 

Table 1 showing the results for standard practice, and the 

change in error was additionally indicated.  

 

According to Table 4, if the minimum range is not considered 

when composing a sequence with non-standard data, the SOH 

prediction error increases as the voltage gap decreases, and 

this increase rate is larger in the case of charging. Moreover 

the SOH prediction result to compose the sequence 

considering the Minimum Range provides an RMSE error of 

less than 0.08 in the case of charging and less than 0.06 in the 

case of discharging, and in particular, the performance in case 

of charging is greatly improved. In other words, this indicates 

the need to observe with the minimum range when using non-

standard practice data. 

Table 5 shows the SOH prediction results for the mixed input 

of non-standard practices and standard practices. At this time, 

the experiment was conducted by dividing the ratio of non-

standard practice and standard practice into 50%/50% and 

30%/70%, respectively. For this result, the same model as the 

experiment for the above non-standard practice was used, and 

the results were compared with Table 1. As expected, the 

higher the ratio of non-standard practices for both charging 

and discharging, the greater the SOH prediction error. 

However, when predicting SOH through the proposed 

method, even when the ratio of non-standard practice is 50%, 

RMSE of less than 0.07 for charge and less than 0.05 for 

discharge is provided. This indicates that the SOH can be 

predicted almost similarly to the standard practice even in the 

case of a non-standard battery that does not fully discharge 

and charge the battery through the proposed method. 

 

6. DISCUSSION AND CONCLUSION 

In this paper, we presented an approach to SOH prediction 

based on four physical SOH indicators, Q, VE, I and SD, 

associated with charging and discharging cycles, especially, 

with our emphasis on estimating SOH under non-standard 

charging and discharging practices as well as under intra-

cycle and inter-cycle payload variations. We showed that the 

introduction of I and SD as SOH indicators is effective for 

predicting SOH under the variation of load current in 

Table 4. Performance of SOH prediction under non-

standard charging and discharging practices. 

 

Input 

Sequence 

Testing 

Data 

Charging Cycles Discharging Cycles 

RMSE 𝑅2 RMSE 𝑅2 

Non-

Standard 

data 

(Gap 0.7v) 

0.55A 
0.06494 

(+0.0043) 

0.95266 

(-0.0030) 

0.04742 

(+0.0208) 

0.97464 

(-0.0175) 

1.1A 
0.02907 

(+0.0184) 

0.98007 

(-0.0173) 

0.03417 

(+0.0264) 

0.97221 

(-0.0263) 

Non-

Standard 

data 

(Gap 0.5v) 

0.55A 
0.09059 

(+0.0300) 

0.91986 

(-0.0358) 

0.02822 

(+0.0016) 

0.99137 

(-0.0008) 

1.1A 
0.03475 

(+0.0241) 

0.97162 

(-0.0258) 

0.03210 

(+0.0243) 

0.97543 

(-0.0231) 

Non-

Standard 

data 

(Gap 0.3v) 

0.55A 
0.14555 

(+0.0849) 

0.76302 

(-0.1926) 

0.04336 

(+0.0168) 

0.97938 

(-0.0128) 

1.1A 
0.04083 

(+0.0302) 

0.96092 

(-0.0365) 

0.03874 

(+0.0309) 

0.96443 

(-0.0341) 

Non-

Standard 

data 

(Gap 

0.3~0.7v) 

0.55A 
0.07456 

(+0.0139) 

0.94336 

(-0.0123) 

0.03288 

(+0.0063) 

0.98863 

(-0.0035) 

1.1A 
0.03160 

(+0.0210) 

0.97649 

(-0.0123) 

0.02619 

(+0.0184) 

0.98353 

(-0.0150) 

Non-

Standard 

data 

(Minimum 

ranges 

included) 

0.55A 
0.07468 

(+0.0141) 

0.94322 

(-0.0124) 

0.05170 

(+0.0251) 

0.96894 

(-0.0232) 

1.1A 
0.03489 

(+0.0242) 

0.97137 

(-0.0260) 

0.03042 

(+0.0226) 

0.97790 

(-0.0207) 

 

Table 5. SOH predictive performance under non-

standard and standard charging and discharging 

practices. 

 

Input 

Sequence 

Testing 

Data 

Charging Cycles Discharging Cycles 

RMSE 𝑅2 RMSE 𝑅2 

Non-

standard 

(50%) + 

Standard 

data (50%) 

0.55A 
0.06962 

(+0.0090) 

0.94859 

(-0.0071) 

0.04331 

(+0.0167) 

0.97943 

(-0.0127) 

1.1A 
0.03146 

(+0.0208) 

0.97669 

(-0.0207) 

0.02179 

(+0.0140) 

0.98853 

(-0.0100) 

Non-

standard 

(30%) + 

Standard 

data (70%) 

0.55A 
0.06584 

(+0.0052) 

0.95194 

(-0.0037) 

0.03649 

(+0.0099) 

0.98593 

(-0.0062) 

1.1A 
0.02968 

(+0.0190) 

0.97923 

(-0.0182) 

0.99050 

(+0.9827) 

0.99131 

(-0.0072) 
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discharging cycles. In particular, in terms of dealing with 

non-standard practices, we provided the minimum voltage 

ranges that non-standard practices should cover to achieve 

SOH prediction with sufficient accuracy. Furthermore, we 

devised a method of converting the non-standard Q and VE 

to the equivalent standard Q and VE, thus avoiding excessive 

complexity in SOH prediction under non-standard practices. 

Since the proposed approach resorts to deep learning for 

relating a sequence of four SOH indicators to SOH as well as 

regressing the equivalent standard Q and VE from the non-

standard Q and VE, the availability of a sufficient amount of 

ground truth data is important. We plan to incorporate a more 

variety of loading conditions and non-standard practices in 

SOH prediction for our future research.  
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