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ABSTRACT 

Early fault detection is the primary goal of condition-based 
maintenance (CBM); to identify an impending fault before 
failure occurs and provide the necessary maintenance in a 
timely manner. Machining tools, such as drill bits, require a 
significant amount of maintenance during industrial 
machining operations to ensure that workpiece tolerances are 
met. Faulty tools tend to machine outside expected tolerances 
and run the risk of causing permanent damage to the 
workpiece, resulting in added production costs and unwanted 
delays. Similarly, ball bearing maintenance is crucial for 
keeping a machine in acceptable working condition, and has 
been the primary focus of many CBM studies due to 
nonlinear bearing degradation. 

The orthogonal Hilbert-Huang transform (OHHT) is an 
improvement to the Hilbert-Huang transform (HHT) that is 
significantly more computationally efficient compared to 
other improved HHT algorithms. The adaptive nature of the 
HHT makes it suitable for analyzing nonlinear and non-
stationary phenomena and it returns instantaneous energy and 
frequency results—an advantage over traditional Fourier 
analysis. This paper showcases the OHHT’s potential as a 
useful diagnostics tool for analyzing machine induced 
vibration and motor current signals from ball bearing and 
drilling datasets. Features from the OHHT were fed into a 
neural network classifier giving health results consistent with 
another literature study using the same data. Through transfer 
leaning, a trained neural network from the ball bearing 
dataset was used to classify drill bit health from the drilling 
dataset and gave expected health results. 

1. INTRODUCTION 

Machine maintenance is a necessary part of manufacturing 
and operations. Equipment eventually wears down and in 

order for production to run smoothly and efficiently, 
equipment needs to be maintained in working and acceptable 
condition. Therefore, maintenance is a necessity and 
financial plans must account for it—though not all 
maintenance is useful, or even needed. For example, a U.S. 
survey found that 33% of all maintenance costs were 
unnecessary or were the result of poor maintenance plans; the 
U.S. industry spent more than $200 billion each year on 
maintenance, resulting in more than $60 billion wasted on 
unnecessary maintenance as stated by Mobley (2002). It is 
likely that overall industrial spending—including 
maintenance costs—has increased since 2002, which calls for 
a greater need for appropriate and timely maintenance to 
reduce the amount on unnecessary expenditure. 

Predictive maintenance uses direct (e.g., optical) and/or 
indirect (e.g., vibration, temperature) measurement 
techniques to quantifiably determine the condition of a 
machine component [see Ambhore, Kamble, Chinchanikar, 
& Wayal (2015), Jantunen (2002), and Jardine, Lin, & 
Banjevic (2006) for a summary of different techniques]. 
Ideally, predictive maintenance plans allow a given 
component to be operational until the end of its remaining 
useful life (RUL); giving notice near the end of the RUL to 
provide sufficient time to schedule the required maintenance. 
Different algorithms have been used across the literature to 
best optimize the ability for a predictive maintenance plan to 
be effective and has been an on-going area of research. 

The Hilbert-Huang transform (HHT) is a signal processing 
technique whose adaptive nature makes it ideal for analyzing 
nonlinear and non-stationary phenomena according to 
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, and Liu 
(1998) and Huang and Shen (2014). It decomposes an input 
signal, !(#), through a process called the empirical mode 
decomposition (EMD), into multiple intrinsic mode functions 
(IMFs) and a residual signal. Then, it takes the Hilbert 
transform of each IMF to get its corresponding instantaneous 
energy density, %!(#) , and instantaneous frequency, &!(#) , 
where the subscript ' corresponds to the 'th IMF. Putting all 
%!(#)  and &!(#)  into a 3-D energy-frequency-time 

_____________________ 
Furlong et al. This is an open-access article distributed under the terms of the 
Creative Commons Attribution 3.0 United States License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

2 

representation is known as the Hilbert spectrum. The Hilbert 
spectrum can be further condensed into a 2-D energy-
frequency representation known as the marginal Hilbert 
spectrum (MHS). The Hilbert spectrum and marginal Hilbert 
spectrum are analogous to the spectrogram and power 
spectral density (PSD) representations respectively, but with 
the advantage of returning instantaneous frequency and 
energy results. A summary of the HHT algorithm is shown in 
the block diagram shown in Figure 1. 

The HHT has been used in a number of different applications 
such as water wave analysis by Huang, Shen, and Long 
(1999), structural health monitoring by Chen, Zhao, and Li 
(2014), roller bearing faults by Zheng (2019) and Peng, Peter, 
and Chu (2005), seismology by Bowman and Lees (2013) 
and Huang, Lou, Chen, and Wang (2018), electrocardiogram 
and electroencephalogram analysis by Anuragi and Sisodia 
(2020) and Yan and Lu (2014), and even flight path 
characteristics by Mokhtari, Sabzehparvar, and Imani (2020).  

Machining often generates nonlinear and non-stationary 
phenomena according to Dimla Sr and Lister (2000) and Al-
Sulaiman, Baseer and Sheikh (2005), so the HHT is expected 
to be an appropriate method for CBM. The earliest 
application of the HHT for tool condition monitoring—to the 
author’s knowledge—was proposed by Leisk, Hsu, and 
Huang (2002), and though the milling results from the 
computer numeric controller (CNC) machine were 
preliminary, they anticipated that the HHT would be a very 
useful tool for future analyses. Since then, the HHT has been 
used in tool condition monitoring applications such as cutter 
tool faults by Kalvoda and Hwang (2010),  drilling conditions 
through metal by Wolszczak, Litak, and Dziuba (2018), and 
using spindle motor current to determine flank wear by Shen, 
Gui, Chen, Lin, Liu, and Liu (2020) to name a few. 

In this paper, the orthogonal Hilbert-Huang transform 
(OHHT) algorithm presented by Huang et al. (2018) is used 
to analyze two datasets corresponding to different drilling 
and ball bearing run-to-failure experiments. The drilling 
dataset consists of spindle vibration and motor current signals 
measured by the author using a CNC machine to peck drill 
holes into a 12”x12”x1” steel plate with the presence of 
coolant. Unlike other accelerated wear tests that forego using 
coolant, the purpose of this experiment was to imitate normal 
cutting conditions while drilling, minimizing the wear 
induced by heat, to get data that may better represent actual 
vibration and motor current data measured in an industrial 
setting. The caveat to this dataset being that it is 
representative of a single set of drilling parameters which is 
certainly not exhaustive from a CBM perspective. However, 
the data was collected every other hole drilled until the drill 
bit broke while drilling the 817th hole. Each single 
measurement consisting of 17 unique, extractable signals 
(one for each peck), so the life of the drill bit is very easy to 
track with this dataset. 

The ball bearing dataset was obtained from the NASA Ames 
prognostics data repository contributed by Lee, Qiu, Yu, Lin, 
& Rexnord Technical Services (2007). The ball bearing 
dataset was analyzed previously by Ali, Fnaiech, Saidi, 
Chebel-Morello, and Fnaiech (2015) using the EMD 
technique previously mentioned along with an artificial 
neural network (ANN) to identify early fault detection. Since 
the OHHT is just a continuation of the EMD technique, 
analyzing this dataset using the OHHT should allow for a 
direct comparison with the results by Ali et al. (2015) to again 
determine if the OHHT can successfully be used for 
diagnostics. 

 

Figure 1. Block diagram of the Hilbert-Huang transform with !(#) having eight intrinsic mode functions (i.e., ( = 8). 
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Section 2 briefly summarizes how the HHT is used to form 
the Hilbert spectrum and marginal Hilbert spectrum to define 
the condition indicator used throughout this work. A brief 
description of the OHHT and how it improves upon the HHT 
is also included. More detailed information about the HHT 
and OHHT can be found in Huang et al. (1998) and Huang et 
al. (2018) respectively. Section 3 provides information about 
the individual datasets used in this work. Section 4 presents 
the OHHT results for each respective dataset, including how 
the calculated OHHT condition indicators were used with an 
ANN for health predictions. Lastly, Section 5 presents the 
conclusions made regarding the use of the OHHT and the 
ANN for each dataset.  

2. THE ORTHOGONAL HILBERT-HUANG TRANSFORM 

2.1. The Hilbert-Huang Transform 

The Hilbert-Huang transform (HHT) uses a process known 
as the empirical mode decomposition (EMD) to decompose 
an input signal, !(#), into multiple intrinsic mode functions 
(IMFs) suited—ideally—for the Hilbert transform. The 'th 
instantaneous energy densities, %!(#)  and instantaneous 
frequencies, &!(#) , are obtained for each individual IMF 
using the Hilbert transform (see Figure 1). The Hilbert 
spectrum for the 'th IMF is then defined as 

+!(,, #) = .
%!(#), , = 20&!(#)

0, , ≠ 20&!(#)
	, (1) 

and the complete Hilbert spectrum is defined as the 
summation of all the Hilbert spectra corresponding to each 
IMF, where ( is the total number of IMFs, namely 

+(,, #) =4+!(,, #)
"

!#$
	. (2) 

The definitions of Eqs. (1) and (2) are a sparse matrix 
representation of the Hilbert spectrum and are formal 
definitions of +(,, #)  [as found in Wikipedia (2020)], 
whereas many papers addressing the HHT simply infer the 
definition of +(,, #)  and use the same, if not identical, 
explanations set forth by Huang et al. (1998). 

The marginal Hilbert spectrum (MHS) is defined as 

ℎ(,) = 7 +(,, #)
%

&
8#	, (3) 

where 9  is the duration of !(#), and thus sums the 
instantaneous energy content over time into single frequency 
bins. The interpretation of the MHS, however, varies slightly 
from that of its Fourier ‘cousin’, the PSD. Frequency peaks 
in ℎ(,) do correspond to energy at a given frequency, but 
more so probabilistically. It is normal to see frequency peaks 
with a Gaussian-like shape in the MHS, where a narrower 
peak indicates a greater likelihood of finding a given 
frequency in the Hilbert spectrum at a given time. 

2.2. Hilbert Spectrum Condition Indicators 

Shen et al. (2020) correlated flank wear to the maximum 
value of the marginal Hilbert spectrum using motor current 
signals. Their indicator is defined in this work as 

:$ = max{ℎ(,)}	, (4) 

2.3. The Orthogonal Hilbert-Huang Transform 

Ideally, EMD produces IMFs that are orthogonal to each 
other, such that the energy between two orthogonal signals 
[e.g., @(#) and A(#)] will be zero, i.e., 

% = 7 @(#)A(#)
%

&
8# = 0	. (5) 

 

Figure 2. Block diagram for the orthogonal Hilbert-Huang transform with eight example IMFs. After the orthogonal 
IMFs are calculated, the sequential steps are the same as that of the traditional HHT algorithm (see Figure 1) 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

4 

However, IMFs produced from measured data tend not to be 
orthogonal, which can result in significant energy loss in the 
IMFs. Huang et al. (2018) developed an improved1 HHT 
algorithm called the orthogonal Hilbert-Huang transform 
(OHHT) which uses a Gram-Schmidt method to generate 
orthogonal IMFs (see Figure 2). These orthogonal IMFs 
significantly reduce the amount of energy leakage compared 
to the traditional HHT algorithm, and Huang et al. (2018) 
determined that these IMFs can significantly reduce the 
energy leaked to less than 1%. Their ‘forward’ method for 
sorting the IMFs prior to using the Gram-Schmidt method 
was used in this work. Refer to Huang et al. (2018) for 
additional information about implementing the Gram-
Schmidt method to orthogonalize the IMFs and the 
differences between their IMF sorting methods. 

One of the OHHT’s primary benefits is its computational 
efficiency compared to other improved HHT algorithms. The 
HHT, generally speaking, is not a very quick signal analysis 
tool—especially when computing long signals with high 
sampling rates—and many of the improved HHT algorithms 
add a significantly longer runtime due to additive white-noise 
ensemble averaging involving hundreds of copies of !(#) 
[see Wu & Huang (2009)]. The Gram-Schmidt method is 
computationally efficient by itself, so the OHHT algorithm 
runs only marginally slower than that of the traditional HHT 
algorithm, with the added benefit of having orthogonal IMFs 
producing minimal energy leakage. 

3. MACHINING AND BALL BEARING DATASETS 

The OHHT was used on different types of machining datasets 
experiencing some form of machine failure. A drilling dataset 
was used to monitor flank wear indirectly on a drill bit during 
machining operations. An additional bearing dataset was also 
analyzed for identifying known bearing faults included with 
the dataset’s documentation. A description of each dataset 
and how they were obtained is described in the following 
sections. The raw data from each dataset was collected 
without using any sort of CBM algorithms in real-time. 

3.1. NASA IMS Bearing Dataset 

The degradation of bearings is considered a nonlinear 
process, which can be seen from the NASA IMS bearing 
dataset [Lee, et al. (2007)]. Early stage detection should be 
indicative that the bearing is beginning to fail and that 
maintenance should be scheduled. However, degradation can 
occur suddenly and rapidly, which can make it difficult to 
perform the necessary maintenance in time to remove the 
faulty bearing and replace it with a new bearing. 

Three run-to-failure experiments were conducted by applying 
an equal radial load of 6000 lbs. to four Rexnord ZA-2115 
double row ball bearings installed along a shaft. The shaft 
was rotated at a constant 2000 rpm using an AC motor with 
rub belts and the bearings were all force lubricated for each 
experiment. Each of the three experiments concluded after a 
sufficient amount of degraded material made its way through 
the lubrication system and became stuck to a magnetic switch 
that powered off the machine. Vibration measurements were 
collected using PCB 353B33 High Sensitivity Quartz ICP 
accelerometers mounted on each bearing [see Figure 16 in 
Qiu, Lee, Lin, & Yu (2006) for installation locations]. A one 
second block of vibration data was collected approximately 
every 10 minutes2 sampled at &' = 20 kHz. 

Though the same radial load was applied to each bearing, 
only certain bearings had significant amounts of degradation. 
The defects identified were roller element faults, outer race 
faults, and inner race faults. The bearings that did end up 
failing did not all experience the same type of degradation; 
even the bearings that did have the same type of degradation 
across different run-to-failure experiments did not all fail 
after the same number of rotations. 

3.2. Drilling Dataset 

A Haas VF-4 CNC machine was used to peck-drill holes into 
a 12”x12”x1” square plate of A36 low carbon steel with the 
presence of lubricant/coolant. A brand new solid carbide 
1/4”diameter drill bit was used to repeatedly peck drill holes 
into the plate until the bit broke. The holes were spot-drilled 
in a 29x29 grid pattern prior to the actual run-to-failure 
experiment, being spaced 3/8” from an adjacent hole, 
resulting in 841 potentially drilled holes, but during the actual 
experiment, the new drill bit broke—shattered into multiple 
pieces—while drilling the 817th hole. The CNC spindle shaft 
speed and feed rate remained constant for each drilled hole, 
which were set to 1600 rpm and 6.5 in/min respectively. 

A PCB Piezotronics 356A03 tri-axial accelerometer was 
magnetically mounted to the CNC stationary spindle housing 
with the x-axis accelerometer is in the direction most 
sensitive to shear and reaction torque, the y-axis normal to 
the spindle housing, and the z-axis in the same direction of 
axial thrust (i.e., downward, see Figure 3). The z-axis is the 
most sensitive to drilling vibration as it picks up on the thrust 
force used to drill into the plate, and the x-axis is the least 
sensitive since the magnetic mount makes the accelerometer 
not ideal for measuring reaction torque. Additionally, LEM 
HAL 50-S electric current sensors were installed on each of 

_____________________ 
1 Note: A literature search on “Improved Hilbert-Huang transform” will 
yield multiple, different HHT algorithms despite many of them being called 
the same name. A summary of some of the different improvements made to 
the HHT over the years can be found in Colominas, Schlotthauer, & Torres 
(2014) and Furlong (2021). 

_____________________ 
2 The dates and times for a given vibration measurement are included in the 
file name of each data measurement. Examination of these times shows 
several days between some consecutive measurements, primarily from the 
first run-to-failure experiment, so the data was not continuously measured 
every 10 minutes as stated previously. The results in this paper are presented 
as if the data was collected every 10 minutes to allow for direct comparison 
with the results by Ali et al. (2015). 
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the three phases of the spindle and feed motors to collect both 
vibration and motor current data from the drilling operation. 
The wires for each phase leading to said motors were 
wrapped around an individual current sensor to increase the 
signal-to-noise ratio of each sensor, with the number of 
wrappings based on the expected output motor current (five 
times for the feed motor and three times for the spindle 
motor). For brevity, only the z-axis vibration and spindle 
motor current results are shown in this paper despite some 
promising behaviors observed in the other three sensors. 

The vibration and motor current data was collected using a 
National Instruments (NI) PXI-1031 DC chassis with an NI 
PXI-8183 embedded controller and NI 4472B data 
acquisition cards sampled at &' = 25  kHz in 25 second 
blocks to measure all the pecks required to drill a single hole. 
The data was collected every other hole drilled resulting in a 
total number of 409 unique records in the dataset. Each hole 
consisted of 17 pecks—including the entry and exit pecks 
which did not remove equal amounts of material as the other 
15 pecks—which were extracted individually from each 
record, resulting in a total of 6953 unique signals for each 
sensor. 

The vibration and motor current data were filtered in post-
processing prior to calculating the OHHT, with filter 
parameters varying by sensor. The z-axis accelerometer used 
a 64th order FIR band pass filter with cutoff frequencies of 2 
to 6 kHz and the spindle motor current LEM sensors used a 
512th order FIR low-pass filter with a cutoff frequency of 200 
Hz. The filter coefficients and filtering were performed in 
MATLAB using the fir1() and filtfilt() commands 

respectively. The window used for the fir1() command was 
the default Hamming window for all sensors. Additionally, 
the spindle motor current was analyzed by combining the 
three phase signals into a single signal using the equation 

E()' = F
1
3
(E*+ + E,+ + E-+ )	, (16) 

where E*, E,, and E- are the current measured from the three 
respective phases. This process is commonly used for 
converting an AC current to an equivalent DC current 
according to Sevilla-Camacho, Herrera-Ruiz, Robles- 
Ocampo, & Jáuregui-Correa (2011). However, unlike a true 
DC signal, E()' in this case preserves its frequency content, 
making frequency analysis using the OHHT possible. 

4. RESULTS AND DISCUSSION 

4.1. NASA IMS Bearing Dataset Results 

Ali et al. (2015) conducted a study using the EMD technique 
with an artificial neural-network (ANN) to analyze this 
dataset to determine how well the ANN could identify early 
stage fault detection. Their ANN results were able to predict 
up to seven different classifications of wear (i.e., healthy, 
degraded roller/inner race/outer race, and failure roller/inner 
race/outer race) from the time series data using the EMD and 
statistical features. Said classification results were used to 
calculate a health index (HI) metric to identify early bearing 
degradation, which was simply calculated by adding a value 
of one to HI whenever a ‘not healthy’ result was predicted. 
The defined “early stage” degradation [see Figures 11–13 in 
Ali et al. (2015)] begins when the HI exceeds a value of 0, 
but “severe degradation” is not explicitly defined and appears 
to vary from bearing to bearing based solely on the value of 
HI. See Table 1 for the degradation results of Ali et al. (2015). 

Figure 3. Picture of the magnetically mounted tri-axial 
accelerometer (circled in red) on the CNC spindle housing 

with the direction of its positive y and z-axes. 

Bearing 
Info. 

Fault  
Type 

Early 
Stage 

[10 min] 

Severe 
Degradation 

[10 min] 

Test 1, 
Bearing 4 

Roller 
Element 

1560 1953 

Test 1, 
Bearing 3 

Inner Race 1561 1854 

Test 2, 
Bearing 1 

Outer Race 553 914 

Test 3 
Bearing 3 

Outer Race 211 N/A 

Table 1. Early stage and severe degradation results by Ali et 
al. (2015) for bearings with known faults. 
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The OHHT results presented in this paper are directly 
compared to the results presented by Ali et al. (2015). The 
OHHT is a continuation of the same EMD technique used by 
Ali et al. (2015), which makes the comparison appropriate 
using the same dataset. As such, an ANN patterned after Ali 
et al. (2015) was used to classify the same classes using input 
features extracted from the OHHT (see Figure 4). A similar 
HI will be calculated and will be compared to the HI results 
by Ali et al. (2015).  

The dataset is inherently unlabeled, and Ali et al. (2015) do 
not specify how they labeled the data for training their ANN. 
Refer to Table 2 for how the data was classified in this work. 

4.1.1. OHHT Feature Extraction 

The MHS was calculated for each vibration measurement 
using a frequency resolution of 10 Hz and was measured in 
dB re: 1 IJ. A moving average filter with a window size of 
20 samples was applied to ℎ(,) to smooth out the frequency 
results, then the first six local maxima peaks—similar to :$—
having a width of 3 samples separated by at least 20 samples, 
were extracted. The frequency locations of each local 
maxima were also extracted resulting in a total of 12 OHHT 
input features. The features are all standardized prior to 
passing them into the ANN. On average, it takes 
approximately 0.33 s to calculate all 12 features from a single 
vibration signal for this dataset. 

4.1.2. ANN Parameters and Training 

Ali et al. (2015) used a fully connected ANN having an input 
layer with 18 nodes, two hidden layers with 20 and 18 nodes 
respectively, and an output layer with only four nodes. Each 
layer had a “hyperbolic tangent sigmoid” activation function. 
The 18 input features include ten statistical features and the 
energy ratio of eight IMFs to the total IMF energy [see 
section 3.2 in Ali et al. (2015) for additional information]. 

The ANN used in this work was built using TensorFlow and 
similarly has four layers (see Figure 4): the input layer has 12 
nodes, the first and second hidden layers have 118 and 122 
nodes respectively, and the output layer has seven nodes 
corresponding to each output class. The number of nodes for 
the hidden layers were hypertuned using GridSearchCV 
starting with a range of 10 to 150 nodes per layer at intervals 
of 20. The search grid was refined at varying intervals using 
previous ‘best parameters’ until arriving at 118 and 122 
nodes. The ReLu activation function was used for all layers 
except the output layer, which used the “softmax” activation 
function. The model was compiled using the Adam 
optimizer, the categorical cross-entropy loss function, and 
accuracy as an additional metric.  

The labeled data (see Table 2) was shuffled, stratified, and 
split into training and test data using a 70-30 split. The model 
was then trained with a batch size of 16 and 150 epochs. The 
model achieved a total accuracy of 99.79% with all individual 
classes achieving at least a 93% accuracy (see Figure 5).  

4.1.3. ANN Results 

The health index used on the ANN results is similar to that of 
Ali et al. (2015) with a few minor adjustments. To mitigate 
potential false alarms, HI will not begin incrementing until 
there are a consecutive number of ‘not healthy’ 
classifications—in this work, that number is three. Upon 
activation, any degradation predictions will increase HI by +1 Figure 4. Diagram of the ANN model used in this work for 

bearing health classification. The number of nodes for the 
input and hidden layers are K., L$, and L+ respectively. 

Bearing 
Info. 

Fault 
Type Healthy Degraded Failure 

Test 1, 
Bearing 4 

Roller 
Element 1:1200 1700:1749 2106:2155 

Test 1, 
Bearing 3 

Inner 
Race 1:1200 2000:2049 2106:2155 

Test 2, 
Bearing 1 

Outer 
Race 1:500 850:899 934:983 

Table 2. Files labeled for training the ANN. Total of 2900 
healthy files and 50 files for all other classes. 

 

Figure 5. Confusion matrix accuracy results for the trained 
bearing health classifier ANN. 
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and any failure predictions will increase HI by +10, thereby 
giving greater weight to failure predictions. Should the ANN 
make any healthy prediction after activation, HI will change 
by −0.5, allowing HI to forget potential misclassifications 
related to possible equipment start-up transients, “break-in” 
periods, etc. that can occur. The larger this weight is, the 
faster HI will forget past classifications; preventing HI being 
biased closer to failure by past potential misclassifications. 

Figure 4 shows the HI results for all the bearing vibration 
data. The bearings with known faults (see Table 1) are clearly 
identified, such that setting an example HI threshold of 300 
identifies all these bearings as needing replacement. It even 
identifies other bearings [e.g., Figure 4b), bearing 4] that 
started exhibiting wear that may not have been previously 
identified or reported, which is consistent with the 
conclusions made by Ali et al. (2015) and their model. While 
the early stage degradation points (i.e., the first time HI ≠ 0) 
in Figure 4 may not all line up with those identified in Table 
1, the modified HI makes for a more generalizable metric 
which clearly identifies early stage degradation and severe 
degradation—assuming pre-defined degradation thresholds 
for HI. 

4.2. Drilling Dataset Results 

4.2.1. Hole Tolerance Measurements 

Using go/no-go probes, the tolerance of each hole was 
measured showing that the first 670 holes drilled consistently 
stayed within a tolerance < 0.2510”. After the 671st hole, 
the hole tolerance quickly (within 8 holes) exceeds 0.2546” 
until around the 700th hole, where the hole tolerances 
become more inconsistent; few holes actually measure <
0.2510”, but most exceed values of 0.2520” or 0.2546”. 

4.2.2. Vibration and Motor Current Results 

Figure 5 shows results performing k-means clustering using 
three clusters on spindle motor current (MC) and z-axis 
accelerometer data. The RMS for each peck signal was 

calculated for both the vibration and motor current data and 
are plotted as black dots on the x and y-axes respectively in 
Figure 5a). The value of :$ was calculated for the vibration 
data and replaced the x-axis in Figure 5b) which appears to 
have a power relationship in the form &(!) = Q!/. The three 
cluster regions calculated could approximate the condition of 
the drill bit and have been labeled as ‘healthy’, ‘worn’, or 
‘failure’ and are colored green, yellow, and red respectively.  

The light green and orange dots correspond to the entry and 
exit pecks respectively and are marked since they appear to 
have their own clusters in Figure 5a). This is not entirely 
surprising since they remove different amounts of material 
than the other pecks. The entry and exit pecks appear to 
follow the behavior of the other pecks in Figure 5b), yet when 
viewed over time, their behaviors invert (i.e., the entry peck 
started with greater energy and ended with less energy than 

Figure 4. Health index results from the trained ANN using MHS input features extracted from the IMS bearing vibration data 
corresponding to a) test #1, b) test #2, and c) test #3. 

Figure 5. Comparison of k-means clustering results using 
the RMS spindle motor current and the a) vibration RMS 

and b) :$ from the vibration. The plots on the right contain 
the same information plotted over time. 

a) 

b) 
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the exit peck) and cross at around the 700th hole: the assumed 
point of initial failure. Additional research could be done to 
evaluate the ratio of the entry and exit peck energy as a 
condition indicator for monitoring wear. 

The data in Figure 5 shows the vibration and motor current 
results staying in the healthy region until around 17.25 m of 
cumulative drilling distance, where it begins to regularly 
transition to the worn region—around the 680th hole. The 
data regularly transitions to the failure region at 17.78 m, 
which corresponds to the 700th hole. The data shortly returns 
primarily to the worn region, then returns to the failure region 
around 20.5 m (around the 810th hole) until the drill bit 
breaks. These health regions are promising in that once the 
data begins to enter the failure region, the data regularly stays 
in either the worn or failure regions. These results also appear 
consistent with the hole tolerance results.  

4.2.3. ANN Transfer Learning Results 

Given the similarity in tasks between the bearing and drilling 
datasets using the OHHT, the trained ANN used for the 
bearing dataset was modified through transfer learning to 
classify the drilling dataset. The following considerations are 
addressed in order to perform transfer learning: 1) The 
number of OHHT features differ between the bearing and 
drilling datasets, thus affecting the number of input features 
needed for the transferred model. 2) The drilling dataset can 
be classified using three health classes (see Figure 7) similar 
to the seven output classes used in the trained ANN. 
Therefore, the weights connecting to/from the hidden layers 

are affected and need retrained. The weights and nodes for 
the hidden layers, however, remain untouched (i.e., frozen).  

The three output classes for the new model—‘healthy’, 
‘degradation’, and ‘failure’—are evaluated using the weights 
connected to the output layer and node values of similar 
classes from the trained ANN [see Figure 8a)]. The three sets 
of weights and nodes for a given class (e.g., ‘failure’) from 
the trained ANN are averaged to form one set of weights and 
node per class. This ensures that the only parameters in the 
transferred model that need training are the weights 
connecting the input layer to the first hidden layer [see Figure 
8b)]. These weights are then trained—after freezing all other 
parameters—for 300 epochs using sensor data from the first 
20 healthy holes and four holes each from the worn and 
failure regions found in Figure 7. 

The number of input features varied based on the sensor data 
analyzed and if the ANN should make a prediction for a 
single peck measurement or for a single-hole measurement 
(i.e., all 17 pecks). The z-axis vibration data has a single 
prominent peak in the MHS, so the input features are the peak 
value, :$, and its frequency location for each peck (i.e., two 
features per peck). The spindle motor current data has four 
prominent peaks in the MHS so it has eight input features per 
peck (see Table 3 for a summary of input features per model). 
Single peck and single hole models were tested for both the 
vibration and motor current data and HI was calculated or 
each model as was done previously with the bearing ANN. 

The results of the modified ANN shown in Figure 9 appear 
to favor the vibration dataset over the spindle motor current 
dataset. The HI results for the vibration data are nearly similar 
for both the single peck and single hole models and the ANN 
predictions are consistent with the k-means clustering and 

Figure 8. Steps for transfer learning using the trained ANN. 
a) Averaging the output weights and nodes by class 

(denoted by color). b) Training only the weights from the 
input layer to the first hidden layer (the orange lines). 

a) 

b) 

 

 
	

Figure 9. Drilling dataset results: a) Values of !1 for the z-
axis vibration data and the ANN predictions using the single 

peck model. b) Health index results for single peck and 
single hole models for the vibration and motor current data. 
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hole tolerance results. The motor current models either 
predict drill bit degradation significantly early in the case of 
the single peck model, or just before the drill bit broke in the 
case of the single hole model. Perhaps this means that some 
of the motor current data’s prominent peaks in the MHS do 
not actually contribute to predicting the drill bit’s health. This 
could explain why adding more potentially extraneous 
features inhibited the single hole model’s performance, while 
using fewer of these features allowed the single peck model 
to perform better than the single hole model. Additional 
research could be done to verify which peak(s) improve 
classification results, and if there is a correlation between said 
frequencies and the physical system parameters. 

5. CONCLUSION 

The HHT is relatively new in its application to the field of 
CBM, but it offers many strengths that make it a valuable 
signal processing method. It is suitable for analyzing 
nonlinear and non-stationary phenomena, such as machining, 
with the added benefit of including time-frequency 
information in the form of either the Hilbert spectrum or the 
MHS. The OHHT is an improvement to the HHT in terms of 
energy leakage and computation speed (compared to other 
improved HHT algorithms) and is relatively simple to 
implement and understand. 

The proposed condition indicator in this paper utilizes the 
OHHT to pull information from the frequency domain in 
order to classify the health of a given machine component. A 
general behavior observed across the datasets is that an 
increasing value in :$ results in greater wear and degradation 
for both vibration and motor current signals. An ANN for 
classifying the health of a given part was initially trained on 
the bearing dataset with success consistent with similar 
analyses in the literature. The same ANN was modified 
through transfer learning for use on the drilling dataset and 
showed similar success in predicting tool wear. These results 
strengthen the claim that the OHHT is applicable for general 
CBM applications, despite the fact these datasets represent a 
small sample of machining conditions, components, or 
workpiece materials. 
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