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ABSTRACT

This paper evaluates the merits of a multi-variable Gaus-
sian process regression (GPR) model for remaining useful
life (RUL) estimation. The paper presents an optimization
method that trains the GPR model to find the best kernel type
and hyper-parameter combination. Furthermore, the paper
evaluates the performance of the GPR model for small train-
ing datasets and with a reduction (missing) of input features.
A comparison is made to the multi-layer perceptron (MLP)
neural network which forms the basis of deep learning mod-
els. To illustrate model performance, an air filter clogging
RUL dataset is used. The performance results show that both
GPR and MLP models have similar sensitivity to training set
size but GPR also computes the uncertainty. Empirically,
MLP is more robust to a test set with a missing input while the
data suggests that the GPR performs better when the training
data also did not include the same input.

1. INTRODUCTION

Remaining useful life (RUL) of a component is a metric that
defines the expected duration over which a component or sys-
tem can function in accordance with its specifications. Typ-
ically, the RUL is estimated in units of time or numbers of
cycles until failure. Estimation of RUL is a vital aspect of
predictive maintenance and prognostic health management
(PHM). Additionally, RUL estimations can also be applied to
the analysis of reliability, efficiency, productivity and safety
(Hu, Miao, Si, Pan, & Zio, 2022). Due to the wide range
of applications, RUL estimation is gaining interest in many
different domains of engineering.

As multiple sensors are becoming a commodity on many
components and systems, the volume of available sensor data
is growing (Aircraft Sensors Market: 2021-28: Industry size
, growth report, 2021). This enables the expansion of data-
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driven techniques in PHM applications. To this end, many
researchers are proposing data-driven PHM solutions in re-
cent years (Huang, Di, Jin, & Lee, 2017). Particularly, deep
learning techniques are attracting significant attention espe-
cially when dealing with highly non-linear and complex fea-
tures (Y. Wang, Zhao, & Addepalli, 2020). Increasingly, if
the failure mode is marginally observable, enough data can
create the relevant reference signal.

Machine learning methods like deep learning offer some ad-
vantages over traditional physics based feature engineering,
especially when future behavior can be expected to follow
previously observed behavior. Yet, these techniques do have
some undesirable properties. There are two main challenges
with the neural networks (NNs) that are inherent to deep
learning. The first challenge is the data availability. Deep
learning models require large datasets to avoid the problem
of under-fitting (Pei, 2021). While operational data is gener-
ally abundant, failures are relatively rare. If the RUL differs
significantly based on the operating conditions (i.e. pressure,
temperature, etc.), then the NN will inevitably underfit the
data due to a small dataset. Furthermore, the only way to un-
derstand the nature of underfit is to require more data.The sec-
ond problem with NN is that they provide a ”black-box” solu-
tion. In other words, the functioning mechanism is not trans-
parent and cannot be interpreted easily (Chen et al., 2021).
The ambiguous model interpretation may raise confidence
issues within the PHM community especially when dealing
with counter-intuitive outcomes. This is especially true for
predictions that cannot be explained by the physical knowl-
edge of the system.

Some of these concerns may be addressed by using Gaus-
sian process regression (GPR) models. The GPR models have
the ability to learn a wide range of complex non-linear func-
tions by tuning a small number of hyper-parameters. Since
the models have only a few parameters to optimized, they
tend to generalize better on small datasets while also deter-
mining the confidence bounds of any estimation. This poses
a significant advantage over NN models that contain many
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parameters and require large datasets to train. Regarding the
traditional physics based engineering models, the GPR poses
an advantage in the ability to model complex functions. Typ-
ically, feature engineering models are parametric and do not
adapt as well to complex non-linear relationships.

To illustrate the benefits of the GPR model, the RUL of dust
filters are examined (Mauthe, Hagmeyer, & Zeiler, 2021).
These types of filters are utilized in a variety of industries
such as automotive, aviation, and facility management. The
dust filters fail once there is sufficient clogging due to the
accumulation of dust particles. Since these filters are typi-
cally expendable components that require frequent replace-
ment (Eker, Camci, & Jennions, 2013), RUL predictions of
can improve maintenance efficiency, reduce delays due to
failures, and improve system reliability.

This paper is organized as follows. Section 2 begins with a lit-
erature review of RUL estimation models. This is followed by
an overview of the GPR and MLP models in Section 3. Sec-
tion 4 covers the dataset used to illustrate the performance of
the models as well as the model training approach. In section
5, the performance metrics for the two models are presented
and discussed. Finally, Section 6 summarizes the work and
highlights the main points.

2. LITERATURE REVIEW

This section provides an overview of the GPR models stud-
ied in the context of RUL prediction. There are several papers
that explore RUL prediction with GPR models. The simplest
approaches use a single input parameter, derived either as a
single feature or as a combination of contributing features
into a single Health Indicator (HI). More complex methods
employ tiered GPR models with multiple inputs.

A case study on the RUL of lithium batteries proposes a fuzzy
evaluation-Gaussian process regression (FE-GPR) that com-
bines fuzzy logic with GPR model. The FE-GPR uses the
battery capacity as the single input feature to estimate the
RUL (Kang et al., 2020). Another study on the RUL predic-
tions of Electric Energy Metering Equipment (EEME) used
a single health index input based on the environmental stress
(N. Li et al., 2021). In (Liu & Chen, 2019), a novel method
that combines HIs with multiple GPR models is presented
for forecasting the RUL. The authors present a rather com-
plex framework where they first use three separate single fea-
ture GPRs to generate HI predictions which are then used as
inputs to a multiple input feature GPR model that predicts
the RUL. A similar approach is presented in few other works
where the short-term state of health (SOH) is first estimated
using GPR model. The SOH is then used as an input to
another GPR model that predicts the long-term RUL (Jia et
al., 2020), (X. Li, Wang, & Yan, 2019) and (X. Li, Yuan, &
Wang, 2020). Another interesting multi step framework is
proposed wherein the first step uses a Gaussian process clas-

sification (GPC) model to determine if component is healthy
or degraded based on HIs. Then, another multiple input GPR
model is used to predict the RUL (Benker, Bliznyuk, & Zaeh,
2021). Finally, in a RUL study on lubricating oil, a multi-
ple output GPR (MO-GPR) model is used that correlates the
historical degradation trends with current degradation trends
(Tanwar & Raghavan, 2020).

The main contribution of this work is the optimization of the
GPR model over multiple kernel types for a range of hyper-
parameter values. The optimizations yields that the best ker-
nel for the analyzed dataset is the Matérn32. The second
contribution is in the comparison of the GPR model with the
MLP NN. The comparison is conducted across various train-
ing dataset sizes and when input features are missing.

3. MODELS

3.1. Gaussian Process Regression

A Gaussian Process (GP) is a generalization of the multivari-
ant Gaussian probability distribution. Whereas the probabil-
ity distribution describes random variables which are scalars
or vectors, the GP as a stochastic process governs the proper-
ties of a function (Rasmussen & Williams, 2005). The GPR
refers to a statistics based methodology where the Gaussian
processes are used as prior models for the Bayesian regres-
sion functions that are fitted to the observed data (Särkkä,
2019). Given a set of observed data points, there is an in-
finite number of possible functions that can fit these points.
In GPR, the GPs conduct regression by defining a distribu-
tion over these infinite number of functions. The GPR then
uses the distribution as prior knowledge to make predictions
and provide the analysis of uncertainties. Given an input and
output training pair dataset D = (xn, yn), the GPR model is
defined as

yn = f(xn) + ϵn, ϵn ∼ N (0, σ2
nI) (1)

where f is drawn from a Gaussian process with mean µ and
covariance K, f(xn) ∼ GP(µ,K), ϵn is assumed to be an
independent, identically distributed Gaussian noise added to
the the system, and n refers to the nth observation (Damianou
& Lawrence, 2013).

Given training input data X = [x1,x2, ...,xn] and its corre-
sponding observations y = [y1, y2, ..., yn], the joint distribu-
tion of the observed values y and the function values at the
new testing point y∗ associated with test set X∗, is defined as
(J. Wang, 2021):(

y
y∗

)
∼ N (0,

[
K+ σ2

nI K∗
K∗

T K∗∗

]
) (2)

where K = K(X,X), K∗ = K(X,X∗), K∗∗ =
K(X∗,X∗), and K+ σ2

nI is the variance of (1). If there are
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n training points and n test points, then K∗ = K(X,X∗)
denotes the n × n matrix of the covariances evaluated at all
pairs of training and test points. Similar analogy applies for
K and K∗∗. In other words, covariance matrix K consist
of covariance function entries Kij = k(xi,xj). Then, the
posterior predictive distribution is defined by the mean and
variance functions of the posterior. The mean y∗ and variance
V[y∗] are evaluated as (J. Wang, 2021):

y∗ = KT
∗ (K+ σ2

nI)
−1y. (3)

V[y∗] = K∗∗ −KT
∗ (K+ σ2

nI)
−1K∗. (4)

As it may be observed, the GPR is entirely defined by the
mean and covariance functions (kernel). Without any prior
knowledge, the mean is generally assumed to be zero and
if necessary, shifted accordingly after the model is trained.
Therefore, the adjustment of the mean is trivial. The main
focus of the GPR design is selecting the appropriate ker-
nel and optimizing its hyper-parameters. The kernel func-
tion describes the correlation of the Gaussian process. The
most common choice of kernel is the square exponential (SE)
(also known as Radial Basis Function (RBF)). Even though,
this kernel generally performs well in many instances, there
are other kernels that may perform better for some datasets.
Therefore, optimization is applied on GPR over five different
kernel types to find the kernel that best fits sample dataset.

Table 1. Covariance Functions

Name Kernel
k(xi,xj)

Squared Exponential σ2exp(− r2

2l2 )
Exponential σ2exp(− r

2l2 )
Rational Quadratic σ2(1 + r

2αl2 )−α

Matérn32 σ2(1 +
√
3r
l )exp(−

√
3r
l )

Matérn52 σ2(1 +
√
5r
l + 5r2

3l2 )exp(−
√
5r
l )

The kernels are listed in Table 1 where σ is the standard de-
viation of the signal, l is the characteristic length scale, α is
the positive-valued scale-mixture parameter, and

r =
√
(xi − xj)T (xi − xj). (5)

3.2. Multilayer Perceptron

The MLP is a type of NN that is created by stacking multi-
ple perceptrons (Géron, 2019). The architecture of the MLP
consists of an input layer, one or more hidden layers, and an
output layer as illustrated in Figure 1. The number of per-
ceptrons in the input layer is equivalent to the number input
parameters. The hidden layers can contain any number of
perceptrons and any number of layers. Finally, the number of
perceptions in the output layer is equivalent to the number of
output parameters.

Figure 1. MLP Training Model

4. SIMULATIONS

4.1. Dataset

To illustrate the performance of the RUL predictions, analy-
sis is performed on the filter clogging dataset1 (Mauthe et al.,
2021). Almost all industries depend on some sort of filtration
process and filter clogging tends to be one of the main rea-
sons for filter degradation and removal (Sutherland & Chase,
2011). Therefore, this dataset is a good example of a real
world scenario.

Figure 2. Dataset Preparation

This dataset was generated in a laboratory environment using
an air filtration test bench. The dataset records 1) the pressure
drop across the filter, 2) the amount of dust introduced, 3) the
size of the dust particles (three different sizes), and 4) the
flow rate across the filter. These four features are recorded at
a regular sampling rate of 10 Hz. The feature measurements
and the RUL at a given time instance represent one input-
output training pair as illustrated in Figure 2. The total dataset
contains M = 50 filters (components) which are split into N
testing and M −N training filters.

Since one of the goals is to test the performance for varying
sizes of training datas, the dataset is split into 3 groups, each
with a training set representing 20%, 50%, and 80% (i.e. 10
filters, 25 filters, and 40 filters) of the overall dataset. Each
group contains 5 randomly selected batches used for cross-
validation. For 20% training, the first 10 components in the
dataset were selected for batch 1 while the remaining 40 were
used for validation. For batch 2, the second 10 components
were selected for testing and so on. For 80% training, the

1Dataset is available at https://www.kaggle.com/prognosticshse/datasets
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testing and training sets were reversed from the 20% training
batches. Finally, the 50% training, were selected as follows:
first 25 components (batch 1), second 25 components (batch
2), components 14-38 (batch 3), components 1-13 and 39-50
(batch 4), and components 6-30 (batch 5).

4.2. GPR Model

The GPR model consists of an offline phase, during which the
kernel functions and their hyper-parameters are optimized,
and an online phase, during which the RUL prediction is com-
puted using (3). The confidence interval is obtained from the
variance in (4) as illustrated in Figure 3. Referring to (1),
the input vector x contains the four features at a given time
instance, while the output y is the RUL of that component.

Figure 3. GPR Model

4.2.1. Offline Hyper-parameter Training

For any given kernel in Table 1, Bayesian optimization is used
to find the optimal hyper-parameters given by the vector Θ =
[α, σ2, l]. The log likelihood function

log(P (y|X)) =
yT (K+ σ2

nI)
−1y

2
+
log |K+ σ2

nI|
2

+
n log(2π)

2
(6)

is maximized to find the optimal hyper-parameters given by
the vector Θ (J. Wang, 2021)

Θ̂ = argmax
Θ

log(P (y|X,Θ)). (7)

The optimization over multiple kernels and multiple hyper-
parameters values are shown in Figure 4. The kernels from
Table 1 are listed on the Kernel Function axis. Furthermore,
the Sigma axis represents standard deviation σn for the noise
in (1). Finally, the vertical axis represents the objective cost
function, which is being minimized as part of the optimiza-
tion. In this case, the log likelihood function defined in (6)
should be maximized, so the objective cost function is the
negative of the log likelihood function (6). The optimization
is complete when either the objective cost function converges
or the model reaches its maximum number of 15 iterations.

The objective function converges on the Matérn32 kernel
as the estimated optimal solution. The squared exponential

which is used as a default kernel in many GPR models, defi-
nitely shows a sub-optimal solution compared to Matérn32.

Figure 4. Optimization over multiple kernel types for training
dataset 20% Batch 5

It is possible to separate the length-scale parameter for each
predictor. This is known as the automatic relevance determi-
nation (ARD). The purpose of ARD is to regularize the solu-
tion space using a parameterized, data-dependent prior distri-
bution that effectively prunes away redundant or superfluous
features (Neal, 2012). The kernels are tested with and without
the automatic relevance determination (ARD) and show that
for this dataset the ARD does not improve the performance.

4.3. MLP Training

Referring to Figure 1, the input layer has 4 neurons (one for
each feature). There are 3 hidden layers of size 150, 100, and
25. Finally, the output layer has 1 neuron which represents
the RUL estimate. The MLP training network is designed
to use a ’relu’ activation function, ’adam’ optimizer, learning
rate of 0.0001, and maximum iteration of 300.

5. RESULTS AND DISCUSSION

5.1. Performance Metrics

The prediction is evaluated using three common performance
metrics for RUL: 1) the mean absolute error (MAE), 2) the
mean absolute percent error (MAPE), and 3) the root mean
square error (RMSE) (Liu & Chen, 2019). The equations are
defined in (8) - (10), respectively, where yi is the true and
y∗i is the predicted RUL, and n is the total number of test
samples.

MAE =
1

n

n∑
i=1

|yi − y∗i | (8)

MAPE =
1

n

n∑
i=1

|yi − y∗i
yi

| ∗ 100% (9)
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RMSE =

√∑n
i=1(yi − y∗i )

2

n
(10)

Each of the three performance metrics provides a different
insight into the results. The MAE gives less weight to the
outliers which means that the metric is less sensitive to them.
This also means that it may not adequately reflect the per-
formance when dealing with large error values. On the other
hand, the RMSE is heavily dependent on large errors. Fur-
thermore, both MAE and RMSE are absolute errors specific
to the scale of the data. These metrics do not provide any in-
sight into the performance of data at different scales. For such
application it is better to use MAPE which is the absolute er-
ror normalized over the data. The MAPE generates a metric
that can be used to compare results across different scales.
However, the MAPE does have drawbacks. True value data
points that are equal to zero have to be excluded from the
dataset to avoid dividing by zero. In addition, errors at small
values of yi will have a large bearing on the result.

5.2. Performance Results

The three performance parameters for each batch as well as
the averages and standard deviations (STDEV) over all five
batches are presented in Tables 2-4. The MAE and MAPE
are expressed in seconds while the MAPE is a relative error
expressed in percentage. The average result in all instances
except for MAPE for 50% of training data shows that the GPR
outperforms the MLP model. Referring to Table 3, the largest
error is coming from batch 1 with GPR MAPE at 121%.
Careful analysis of the data points reveals that the GPR had
higher error at small RUL, which is penalized heavier due to
the normalization. Furthermore, the MAPE for GPR in batch
1 is significantly higher than the MAPE for the other batches
in the same train category (column), thus skewing the average
to be higher.

Table 2. Comparing GPR and MLP RUL estimation MAE.

MAE Train 20% Train 50% Train 80%
Batch GPR MLP GPR MLP GPR MLP

1 88.1 s 106.9 s 22.5 s 27.1 s 16.9 s 14.2 s
2 37.9 s 55.3 s 28.9 s 26.1 s 20.7 s 29.6 s
3 35.2 s 28.9 s 22.9 s 26.6 s 19.2 s 19.5 s
4 16.4 s 35.2 s 22.3 s 26.3 s 18.9 s 42.2 s
5 21.5 s 26.7 s 33.4 s 32.4 s 26.7 s 26.1 s

Average 39.8 s 50.6 s 22.0 s 27.7 s 20.5 s 26.3 s
STDEV 28.4 s 33.4 s 4.9 s 2.6 s 3.7 s 10.7 s

On average both models perform better when the training
dataset is larger as is expected of data-driven models. How-
ever, as the training dataset sizes are reduced, variation
among the different batches increases. Some batches per-
form poorly while other batches have performances compa-
rable to models with larger training datasets. For instance,
referring to the training dataset of 20% in Tables 2 and 4, the

Table 3. Comparing GPR and MLP RUL estimation MAPE.

MAPE Train 20% Train 50% Train 80%
Batch GPR MLP GPR MLP GPR MLP

1 79% 93% 121% 40% 27% 26%
2 92% 143% 44% 29% 23% 27%
3 80% 43% 41% 42% 17% 14%
4 22% 43% 27% 23% 46% 58%
5 29% 31% 67% 56% 45% 47%

Average 61% 71% 61% 38% 31% 35%
STDEV 32.36% 46.9% 37.0% 12.7% 13.2% 17.7%

Table 4. Comparing GPR and MLP RUL estimation RMSE.

RMSE Train 20% Train 50% Train 80%
Batch GPR MLP GPR MLP GPR MLP

1 90.3 s 132.5 s 26.6 s 37.9 s 21.2s 16.9s
2 74.9 s 73.2 s 37.9 s 34.5 s 26.3 s 35.1 s
3 39.6 s 39.9 s 27.9 s 38.0 s 24.9 s 24.9 s
4 20.7 s 42.9 s 31.2 s 34.3 s 26.0 s 52.6 s
5 43.7 s 38.5 s 41.2 s 44.0 s 33.7 s 32.7 s

Average 53.8 s 65. s 32.96 s 37.7 s 26.4 s 32.4 s
STDEV 28.1 s 40.1 s 6.3 s 3.9 s 4.5 s 13.3 s

MAE and RMSE for batch 1 is much higher than for the other
four batches. The training dataset for batch 1 primarily con-
tains samples of filters that are operating in environments with
large dust particles. Therefore, it does not learn the correla-
tion of the dust size to the RUL, and performs poorly when
presented with a dust size other than the one in the training
set. Furthermore, it cannot be expected that the model per-
forms well on filters that are routinely subjected to smaller
dust particles. On the other hand, for batches where the train-
ing dataset contains a variety of conditions, the performance
improves significantly. Furthermore, the advantage of GPR
over MLP is that in conditions where variety exits, the GPR
can train a better model with a smaller dataset. For instance,
batch 4 in the training dataset of 20% contains a variety of op-
erating conditions. The performance of GPR for this batch is
roughly two times better than MLP. The results show that, on
average, both models improve by similar amounts when pre-
sented with more training data (last two columns of Tables 6
and 7). Yet, there are differences between the model improve-
ment numbers when examined on a per-batch basis. This vari-
ation among the batches is best measured by the standard de-
viation which improves for the GPR model as the dataset size
increases. However, the STDEV for MLP does not necessar-
ily improve for larger datasest. In fact, for the MLP model, it
is actually smaller for 50% than for 80% training dataset.

5.3. Predictive Variance

As the focus of this paper is on small datasets, this section an-
alyzes the average predictive variance for the batches trained
with 20% dataset. Using the variance in (4), the 95% confi-
dence interval (CI) can be computed as

CI95% = y∗ ± 1.96 ∗ (V[y∗])2. (11)

An example of an estimated RUL with the 95% CI is illus-
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trated in Figure 5. This example uses the GPR model trained
with 20% of dataset from batch 1. The predicted RUL in
the figure represents a sample component from the testing
dataset. In this example, the true value is indicated with the
solid straight line while the dashed line is the predicted RUL.
The shaded gray region is the 95% CI computed from (11).

Figure 5. Example of a RUL prediction of a samples component.

Table 5 shows the average variance the training dataset of
20% and the percent of testing samples that are within the
95% CI. As it may be observed from the table, the percent of
samples within the 95% CI is less than 95%. If the training
dataset was properly balanced with a variety of filter operat-
ing conditions, the third column in Table 5 would have been
95% or higher. However, none of the five batches contains
the right variety of conditions to properly map the entire so-
lution space. This emphasizes the need to carefully select the
samples in the training dataset.

Table 5. The average predictive variance and number of samples
within the predicted confidence interval for the batches trained with
20% of the dataset.

Batch Variance Percent of samples within 95% CI
1 4.14 42%
2 5.32 76%
3 4.44 66%
4 7.62 82%
5 4.02 59%

The largest variance in batch 4 means that this batch has the
biggest variety of input samples which results in the lowest
prediction error in GPR in Tables 2-4. This shows that batch
4 is the best batch to train on and MLP does not provide this
information.

5.4. Missing Input

Another measure of performance is robustness to missing or
reduced input data. In many practical applications, the inputs
available to train a model may be limited. Accurately detect-
ing particle size over time may not be feasible. Accordingly,
both the GPR and MLP models were evaluated when (1) the
dust particle size is contained in the training but not in the
testing set, and (2) when dust particle size was missing from
both training and testing sets. Relative degradation to a base-
line performance underlies how sensitive each model type is

to missing data. Table 6 and 7 summarize the results. When
the 4-input model expects particle size but instead gets a con-
stant ’0’ value, the MLP model degrades the least across the
5 batches. Accordingly, when the model is trained with three
inputs, omitting the particle size, the GPR model degrades the
least compared to the four input case across the 5 batches.

Table 6. Comparing performance GPR model trained with
4 features (baseline) to 1) Dust size features missing during
testing, 2) Dust size missing during training and testing, 3)
improved performance when training dataset is increased to
50%, and 4) improved performance when training dataset is
increased to 80%.

Train Dataset Size 20% 20% 20% 50% 80%
Train Features 4 4 3 4 4
Test Features 4 3 3 4 4

Batch RMSE Percentage Change from RMSE
1 90.3s 4% -1% -71% -84%
2 74.9s 0% -67% -63% -67%
3 39.9s -19% -7% -4% -34%
4 20.7s 46% 132% 50% 25%
5 43.7s -2% % -6% -23%

Average 53.8s 13% 11% -19% -35%

Table 7. Comparing performance MLP model trained with
4 features (baseline) to 1) Dust size features missing during
testing, 2) Dust size missing during training and testing, 3)
improved performance when training dataset is increased to
50%, and 4) improved performance when training dataset is
increased to 80%.

Train Dataset Size 20% 20% 20% 50% 80%
Train Features 4 4 3 4 4
Test Features 4 3 3 4 4

Batch RMSE Percentage Change from RMSE
1 132.7s 2% -2% -71% -82%
2 73.2s -19% 73% -53% -52%
3 39.9s -28% 65% -5% -38%
4 43.2s 55% -13% -21% 22%
5 38.5s -6% 122% 14% -15%

Average 65.5s 1% 49% -27% -34%

6. CONCLUSION

This work proposed a GPR model to estimate the RUL. The
primary focus was on the design of the GPR model which was
trained to find the optimal kernel type and hyper-parameters.
The performance of the GPR model was compared to the
MLP NN using three different performance metrics. Further-
more, the performance of the models was evaluated for mul-
tiple training dataset sizes and for missing data. The results
showed that training input size affect both GPR and MLP
equally, but each model performs differently in cases of miss-
ing data. Where the data was expected but not provided, MLP
is empirically less affected, and when the model is trained
without the missing data as an input, GPR is less degraded.
In general, the GPR has advantages in that it provides both
the estimate and its confidence distribution and requires less
tuning effort. Lastly, the analysis revealed the importance of
a quality, well-balanced training dataset.
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