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ABSTRACT 

Much of the research on predictive maintenance has focused 
on statistical and machine learning techniques, while there 
has been significantly less focus on the human computer 
interaction or visualization aspects of PHM.  Human 
computer interaction and visualization techniques can 
quickly help identify interesting data sub-domains from 
assets, time periods, and sensors provided the data can be 
queried, retrieved, and displayed in a timely manner. 
Augmenting visualization and interaction with a visual, 
aggregative fleet-based query system adds a further 
dimension, highlighting the ability of the fleet to carry out its 
mission. Visualizing data from an asset with a multitude of 
sensors in a way that fosters human understanding and 
decision making is challenging from the standpoint of 
dimensionality. That difficulty is significantly compounded 
as overwhelming numbers of assets of varying type are added 
to comprise a hyperdimensional dataset.  

In this paper, we propose a scalable framework that is capable 
of visualizing past, current, and prognosticated health from 
the individual sensor up to the fleet or group level.   In 
addition to viewing near real time sensor data, maintenance 
logs, fault information, and data aggregations will be merged 
with the sensor data to make the analysis and visualizations 

more valuable.  This framework is scalable regarding how 
much data can be collected, stored, and processed, and the 
different organizational levels within a fleet of assets.  The 
framework is built as a web-application primarily using the 
following visualizations: a collapsible tree structure for asset 
information; 2D charts for temporal sensor data, fault data, 
and maintenance data; and 3D digital twins of critical 
components. These components combine to optimize human-
computer interaction for decision making across several 
phases of operations and support for Army ground vehicles. 

The dataset used to build and demonstrate the capability of 
the web-application contains sensor readings from over 3000 
vehicles and comprises approximately 9TB of data. Vehicle 
information such as model, make, sub-component, and fleet 
organization are presented in a configurable, collapsible tree 
structure. This allows the user to visualize the fleet and to 
select the asset and sensor combinations needed to display 
temporal sensor data to answer a nearly infinite number of 
questions using individual or combined statistics. 
Information regarding each vehicle’s health status is 
displayed then aggregated and displayed for each of the 
higher tree nodes.   A 3D digital twin also highlights sensor 
locations and current health status of assets and components.  
These component models can be viewed and manipulated 
with or without a virtual reality headset to provide diagnostic 
and repair support. As health status monitoring for asset 
subcomponents are developed, they can be added to the 
system, allowing for complete health status reporting.  

Richard Carley et. al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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1. INTRODUCTION 

While there has been a lot of research into various statistical 
and machine learning techniques for predicting Remaining 
Useful Life (RUL), very little has focused on optimizing 
decision support from a visualization or human-computer 
interaction aspect. In this paper we propose a visualization 
framework capable of displaying past, present, and 
prognosticated asset health information at different 
organizational levels.  

The primary focus of the framework is to support fault 
diagnosis for individual assets and higher-level overviews 
that provide aggregated health information for groups of 
assets. The goal is to be able to provide managers, 
technicians, and mechanics with the information they need to 
make informed decisions about how best to deploy assets, 
manage maintenance schedules, order replacement parts, 
visualize repairs, and more. Users should be able to instantly 
view high level fleet health statistics and dive down to 
individual sensor data, timestamped at the sub-second level.  

Along with sensor and health data, the tool is also able to 
integrate output from predictive models, diagnostic trouble 
codes, and maintenance records into visualizations, aiding in 
fault diagnosis. Fault prognosis information is provided in the 
form of estimated time to failure based on RUL predictions. 
The data used to demonstrate the framework represents 
different assets, each with approximately 100 sensors. While 
the data and use cases here represent the management of a 
fleet of vehicles, this framework could easily be applied to 
any setting where managing groupings of assets is required, 
such as an industrial setting.  

Three visualization types are used within this tool:  

• Tree Structure	
• 2D Time-Series Graphs 	
• 3D/Virtual Reality digital twins 	
Three webpages, Unit Status, Asset Details, and Status 
Reports provide a hierarchical overview, including 
visualizations for the selected data. The Unit Status page 
provides visualizations displaying vehicle status and 
aggregated unit information in support of unit level 
operations. The Asset Details page provides an overview with 
a user defined structure which supports more rigorous data 
analysis. Both pages contain a tree visualization with 
interactive nodes capable of opening interactable 2D time-
series graphs or a new tab with 3D/VR visualizations. The 
Status Reports page displays automated reports for individual 
assets and aggregated data for the unit.  This paper focuses 
mainly on the visualization aspects and the tools used to build 
these visualizations.  

2. WEB-BASED APPLICATION ARCHITECTURE  

Based on the fleet management use cases, the framework is 
required to process and display large amounts of data and to 

communicate technical information at multiple 
organizational levels to users in different roles. Large datasets 
present challenges in processing data and displaying 
information in a timely manner. Given the volume and 
complexity of both the data and questions asked of it, 
displaying that information in a way that does not obscure 
trends or overwhelm the user is also a challenge.  Providing 
solutions to these challenges is essential to address the needs 
of fleet managers on a daily basis. 

Our most significant obstacle was displaying data with 
enough informational value without overwhelming users 
cognitively. Our attempt to improve the understandability of 
such a large dataset involves using summaries and 
interactivity. A good summary informs users where they 
should focus their interest, while interactive elements allow 
them to refine their questions and look at more detailed 
information. Our summary takes the form of a user-
configurable tree since we are displaying organizational data 
which already has a pre-defined hierarchy.  

The web-based application architecture was chosen so that 
the large dataset resides on a server, eliminating the need to 
disseminate large datasets and updates that occur regularly 
for the selected use cases. It also has the advantage of being 
able to run on most operating system using web browsers, 
eliminating the need to install specialized software and any 
software updates only need to be applied to the server. The 
web-based application was developed using Blazor for the 
webpages and a combination of Unity, WebXR, and 
Vega/Vega-lite 

Our framework is unique in that it provides a unified way of 
looking at high level fleet information along with detailed 
technical information about singular assets. Another unique 
addition is the VR/3D views. These views provide 
opportunities for training or pre-maintenance discussions 
where technicians can better visualize and point out areas of 
interest. No current software that we are aware of has this 
level of interactivity along with the combination of 
previously mentioned features.   

2.1.1. Blazor Web Assembly 

Selection of a web-application development framework was 
crucial to the development of our tool. A web-application 
development framework handles the complex operations of 
serving web pages and responding to user input, allowing 
programmers to focus on developing the application. 
Microsoft’s Blazor Web Assembly (BWA) (Roth, 2019), an 
open-source web application framework, was chosen since it 
offers a seamless connection between web languages 
(HTML, JavaScript, CSS) and C#, and allows for modular 
production of pages and components. BWA also allows for 
computation on the client instead of a server. This increases 
startup time but importantly increases responsiveness once 
the page is loaded, distributing computational load across 
networks for scalability.  
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2.1.2. Vega/Vega-Lite 

The 2D graph visualizations and tree structures are powered 
using an open-source, high-level grammar library called 
Vega-Lite. (Satyanarayan et al., 2017) This library uses a 
declarative JSON syntax to create specifications to describe 
how visualizations should be rendered. It’s built on top of the 
Vega visualization grammar but is a much more concise 
language. Vega-Lite allows for graphs to be directly 
embedded into web pages using Vega’s JavaScript runtime 
and can display graphs in any modern browser. The library 
was chosen since it provides many features for creating 
interactive graphs, data loading, transformations, scales, map 
projects, and can respond to input streams. It also has several 
different application programming interfaces for many 
popular, general-purpose programming languages like 
Python (Satyanarayan et al., 2017) (Wongsuphasawat et al., 
2022). Interactivity was an especially important factor in 
choosing a visualization library due to the large amount of 
data the system addresses and its hierarchical nature. This 
feature allows the user to control how much and what data to 
view, and to focus on more detail about a specific data point 
without adding unnecessary information.  

2.1.3. Unity/WebXR 

The Unity 3D game engine is a software application that 
allows for the creation of three-dimensional environments 
combined with scripting logic which can then be exported as 
executable applications for end users (Goldstone, 2009). 
Unity was chosen as the main development tool for the 
eXtended Reality (XR) portion of the project due to its 
integration with WebXR and a WebXR exporter software 
library.  

WebXR is an Application Programming Interface (API) used 
to communicate with VR and AR devices (MacIntyre, Smith, 
2018) and the WebXR exporter allows a Unity created 
application to be exported as JavaScript files that can then be 
used as a web application. Unity and WebXR are used 
together to display 3D models of critical components to users 
either in a browser or using VR devices. 

WebXR Device API support to Unity is provided by 
Mozilla’s WebXR exporter library, which is compatible with 
Unity version 2021.2.5f1 (Weizman, 2022). To enable player 
movement, two C# classes were created to handle 3D 
movement and these two classes monitor the keyboard, 
mouse, and the Meta Quest Touch controllers for user inputs 
and adjust the user’s in-scene position accordingly. Since 
WebXR is hardware agnostic, HTC Vive and other VR 
systems can also be used instead of a keyboard and mouse 
and the Meta Quest 2 (“WebXR”, 2022). We have tested the 
VR capabilities with the HTC VIVE and Meta Quest 2. As of 
now, Chrome does not support VR, while Firefox and Edge 
require VR to be enabled in the browser’s settings. The 
browsers must be configured to use the computer’s discrete 
GPU within Windows Graphics Settings.  

2.2. Data Analytics and Visualization System   

Dataset operations for the application are provided by the 
Data Analytics and Visualization System (DAVS), the result 
of a joint research program, sponsored by the US Army 
Engineering Research and Develop Center (ERDC), between 
Mississippi State University, and Hottinger, Brüel and Kjaer 
Solutions, LLC (HBK).  

DAVS is a collection of software designed to provide an end-
to-end solution (loading, cleaning, analyzing, and visualizing 
data) for scalable analytics and visualization. It is focused 
primarily on the efficient processing of massive amounts of 
temporal data collected from various types of assets. While 
DAVS currently utilizes MongoDB for data management, it 
has an API for interacting with data and provides database 
agnostic capabilities to DAVS applications. Apache Kafka 
(Apache Software Foundation, 2022), a high throughput, 
distributed, event streaming platform is used as the basis for 
the distributed processing capability provided by DAVS. 
While other open-source software tools are used in DAVS, 
MongoDB and Kafka provide the primary capabilities 
required by the framework presented in this paper.  

The use of MongoDB and Kafka by DAVS provides several 
distinct advantages during the operations to import, clean, 
process, analyze and visualize temporal sensor data.  Kafka 
provides a distributed, asynchronous, fast, and fault tolerant 
messaging system. This capability is used by DAVS 
essentially as a task queue to provide distributed processing.  
This functionality is heavily used during data loading, 
analytic, and querying operations. Scalability is achieved by 
adding hardware and increasing the “worker” processes 
allowing DAVS to be executed on platforms ranging from 
laptops to super computers. For this research, DAVS was 
configured using three hardware nodes for MongoDB and 
one node for Kafka where each node in the system had dual 
CPUs, each with 20 cores and 40 threads.  MongoDB was 
configured with one node as the controller node and two 
nodes for data distribution.  Even though the dataset size was 
over 9TB and contained over 40 million records, the 
configuration allowed queries retrieving specific sensor data 
for an asset during a given time period to be executed in less 
than a second. When the data throughput of DAVS is 
combined with asynchronous operations and software multi-
threading the result is the ability to display multiple graphs 
within a few seconds of user selection. This provides very 
responsive web-page interaction to the user. Scalability for 
significantly greater volumes of data can be achieved by 
adding computational resources. 

2.2.1. MongoDB 

MongoDB is a NoSQL, distributed database management 
system designed for scalability, flexibility, and agility 
(MongoDB Inc, 2022). It uses JSON-like documents with 
optional schemas to perform queries that are optimized to 
retrieve data efficiently. DAVS utilizes many MongoDB 
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features such as load balancing, replication, aggregation, ad 
hoc queries, and many more. It can also be used as a grid file 
system over multiple machines along with the load balancing 
and replication features as data volumes exceed the abilities 
of one machine. There are many MongoDB drivers available 
for the most popular programming platforms, including a 
.NET driver for C#. The .NET driver is used to query data on 
demand whenever the web app makes a request to the web 
server (MongoDB Inc, 2022). MongoDB is an essential 
element of DAVs, so it was necessary to include MongoDB 
as part of our framework 

2.3. Dataset 

The dataset used for this paper contains a record of over 3,000 
vehicles, each with over 100 sensors. The dataset is over 9 
TB in size, and is broken up into channels, including startup, 
operational, and fault data. Each channel represents a sensor, 
and multiple sensors can be combined, as inputs to functions 
whose outputs represent the health of various components. 
We define these components as parts, or groups of parts, that 
serve a specific purpose in the vehicle, such as an engine, 
battery, or transmission.  

Assets, or individual vehicles, are identified by a unique 
Vehicle Identification Number (VIN), and can be grouped by 
vehicle group and subgroup, as well as location, unit 
identification code, and squad. Maintenance data for these 
assets is included to help determine what maintenance has 
been performed and how often it occurs. 

2.4. Reasoning/Comparison to Other Tools 

Alves et. al. (2020) created a system that used a web 
application to connect sensors and  a database to a webpage 
dashboard and a Microsoft Hololens for Augmented Reality 
(AR) visualization. Their aim was to be able to visualize 
current data and aid in earlier detection of failures for a 
specific machine. Our system aims to address some of the 
same issues but differs in three main ways: it uses Virtual 
Reality(VR) instead of AR, it handles thousands of assets 
with over 100 sensors each and focuses on RUL as well as 
finding existing failures. The number of assets and volume of 
data we are dealing with creates substantial hurdles from a 
data processing, networking, and human cognition 
perspective, all of which are addressed in this paper. 
Furthermore, VR-based systems can reduce the time to learn 
tasks, and aid in training, and are already being utilized to aid 
in maintenance for manufacturing environments (Buettner et. 
al. 2022).  

Based on the use cases defined for our framework, we knew 
it had to be able to process and display large amounts of data 
and be able to communicate technical information at multiple 
organizational levels to users in different roles. Large datasets 
present challenges in processing data in a timely manner, as 
well as in being able to display that information in a way that 
does not obscure trends or overwhelm the user. With a proper 

mongo database set up, DAVS is able to handle data 
processing quickly despite the large dataset size, therefore 
our biggest hurdle was in displaying data to the user. Our 
attempt to improve the readability of such a large dataset 
involves using summaries and interactivity. A good summary 
can tell users where they should focus their interest, while 
interactive elements can allow them to look at more detailed 
information. Our summary takes the form of a tree since we 
are displaying organizational data which already has a pre-
defined hierarchy.  

A web-based platform was chosen since the data would have 
to reside on a server due to its size. It also has the advantage 
of being able to run on most browsers, eliminating the need 
for a user to install specialized software. Modularity is simple 
with a web page, and any updates only need to be applied to 
the server. However, this does mean that users will need a 
stable connection, either directly on the server’s network, or 
through a VPN. 

Our framework is unique in that it provides a unified way of 
looking at high level fleet information along with detailed 
technical information about singular assets. Another unique 
addition is the VR/3D views. These views provide 
opportunities for training or pre-maintenance discussions 
where technicians can better visualize and point out areas of 
interest. No current software that we are aware of has this 
level of interactivity along with the combination of 
previously mentioned features.   

3. FEATURES AND VISUALIZATIONS 

This section will discuss and describe the various 
visualization methods employed by our tool. This includes 
the motivation and implementation of each visualization, as 
well as how to interpret and interact with them.  

3.1. Tree Structures 

The primary interactive visualization for our framework is a 
tree where each level represents an organizational level of a 
specific unit or the entire fleet of vehicles. The root node 
represents the highest organizational level of the selected 
data, and the bottommost leaf nodes represent sensor or asset 
data. Some of the specific implementations of trees will be 
discussed in greater detail in the Demo/Webpage Overview 
section, but an example can be seen in Figure 1. Our system 
is currently set up to use RUL values as a measure for vehicle 
health, but future versions will incorporate other health 
indicators or indices to be used in place of or alongside RUL. 
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Figure 1. Example of tree visualization with mouse hover 

over the engine’s oil pressure sensor 
 
The nodes of each of the trees are coded by both color and 
symbol to aid human cognition with easier to recognize 
indicators of health status. Green indicates healthy status with 
a relatively long estimated RUL. Yellow indicates that 
potential problems will need to be addressed, reflecting a 
lower estimated RUL value. With this indicator, users should 
be wary and observant when tasking or operating the asset 
and components, but the asset is usable if the mission 
requires. Red indicates that problems are imminent based on 
estimated RUL, and action should be taken, or maintenance 
performed before the asset can be returned to mission-
capable status. Lower-level nodes such as those representing 
sensors are also coded by symbol to indicate health. Star 
patterns mean healthy sensor readings, and up and down 
arrows are used to indicate that a sensor is detecting higher 
or lower than normal output.   

Tree visualizations are used in the webpages to provide 
relevant information and links to child nodes and other 
information. When the user hovers the mouse over a node, 
the system will provide relevant health information. At higher 
levels in the tree, this will include aggregated health 
information such as the number of healthy units or assets 
within an organization, while information from lower-level 
nodes will be more specific to assets or components. Only 
specific components critical to the operation of the vehicle 
are displayed as nodes to limit the amount data displayed at 
this level.  

Since the tree visualizations can get large, all nodes except 
the lowest levels of the tree are collapsible. Clicking on the 
bottom most nodes will always open graphs in the right side 
of the page. Clicking component nodes in the Unit Status 
page will also allow the user to open a 3D/VR visualization 
of the component in another browser tab. These interactive 
elements allow the user to better customize their visualization 
by either minimizing unnecessary information or linking to 
more specific charts and data. The following sections provide 
more information concerning the 2D time-series graphs as 
well as the 3D/VR visualization capability. 

3.2. 2D Time-Series Graphs 

2D time-series graphs are created using the Vega-Lite library. 
They contain sensor, fault, and maintenance data. Sensor data 
is represented by a blue line, while the fault and maintenance 
data are represented by red circles and diamonds, 
respectively. Multiple graphs can be opened at one time, in 
one frame. 

There are two aspects to each graph. The top graph shows the 
entire timeline of the sensor, which can be months or years, 
while the bottom graph shows a selection of the timeline as 
defined by the user. The red vertical bars in the upper graph 
represent the time period displayed in bottom graph. Time 
periods can be selected in the upper graph by either using 
shift and the mouse scroll wheel, or by left clicking and 
dragging the mouse. Similarly, the buttons on the right side 
of the graphs can be used for zooming and panning as well. 
Graphs of sensor data from the same vehicle can be 
synchronized as seen in Figure 2, allowing the user to view 
simultaneous drops in “Voltage” and “Oil pressure”, for 
example. 

 
Figure 2. Example of multiple 2D time-series graphs synced 

3.3. Status Reports 

The status report page is a PDF display page containing a 
PDF generated during the loading of the page based on data 
in the database. Currently it displays the total of one unit 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

6 

grouped by a tabbed list of Squad, Asset, Component, and 
then Sensor. Each Squad has an assessment of how many 
assets are at or above a predetermined RUL estimate. The 
asset, component, and sensors display their associated RUL 
value next to their icon to represent their current condition. 
The condition of the child objects, in aggregate, determine 
the readiness of the parent that they are attached to. For 
example, a component or components attached to an asset 
may affect the RUL estimate of the asset. These reports 
provide a standardized method for communicating a unit’s 
vehicle readiness that can be used for reporting and briefings. 

3.4. 3D/VR Digital Twins 

This section discusses the implementation and use of 3D 
models to display health information. This includes the 
reasoning for the use of the 3D models, their implementation 
into the web framework, and basic instructions for user 
interactions.  

3.4.1. Overview of Features  

A Digital Twin is a virtual representation of a physical object 
along with associated information that could be considered 
meta-data or generated operational data. With two 
dimensional, visual digital twins, multiple profile views must 
be created to display sensors within the component. This 
would increase the cognitive load on the user by requiring 
interpretation and mapping profile view layers together to 
understand and gain knowledge from the holistic view. To 
avoid this situation, our system uses interactable three-
dimensional objects to be significantly more intuitive than 
two dimensional representations. 3D rendering represents a 
departure in terms of knowledge discovery, rapid 
identification of conditions, and annotation of digital twins of 
specific components with annotated health information 
aggregated from different sensors. This improvement in 
information synthesis allows users to monitor the status of the 
physical object in a concise user-friendly digital format (Liu, 
2022). These visualizations can be viewed with or without 
AR/VR hardware. 

3.4.2.  3D/VR Model Preparation 

The four example models used to show the 3D/VR capability 
of the software: an Abrams Tank, a Honeywell AGT1500 
Gas Turbine Engine, a generic vehicle transmission, and a 
vehicle battery, were downloaded from grabcad.com and 
sketchfab.com. These models were in the FilmBox (.fbx), 
Digital Asset Exchange (.dae), and object (.obj) file formats. 
These three file formats are compatible with the Unity 3D 
game engine. The four models were imported into Unity 
2021.2.5f1, and material (.mat) file types were extracted from 
the imported version of the models. The texture component 
of these material files was then remapped to separately 
downloaded Portable Network Graphics (.png) files so the 
models and their textures appear correctly within the scene. 

From the imported models, prefabricated objects, or prefabs, 
were created for use within the scene. Box colliders were 
attached to each prefab and oriented so that the collider center 
point matched the model center point and boundaries 
expanded to allow the user to grab any region of the prefab. 
Rigid bodies were also attached to the prefab and set to 
simply follow the user’s hand or mouse cursor when selected. 
When released they are locked in place until picked up again 
or the reset button is pressed, allowing the user to concentrate 
on the model and its condition according to its specific data.  

3.4.3. 3D/VR Integration with Web Dashboard  

Sensor data is represented in a hierarchy such that the vehicle 
is the root object, components are child branches from the 
vehicle, and sensors are child branches of the components. 
When a user clicks on a vehicle component, the component 
is shown in the VR/AR environment. The URL to display the 
component also contains the information regarding current 
sensor information.  

As an example, looking at Figure 3, the information sent to 
unity contains the 3D model name of the critical component, 
the Unit Identity, Vehicle Identification Number, Remaining 
Useful Life, Transmission Oil Temperature value, and the 
Crankcase Pressure value. The information containing the 
string “transmission” is the first parsed value and is used to 
toggle on the 3D transmission object and update text boxes 
within the scene based on the other values in the provided 
query string. In this example, the query string sent two values, 
0 and 2, for the Crankcase Pressure and the Transmission Oil 
Temperature sensors respectively, which corresponds to the 
“Low” and “OK” messages shown in Figure 3. 

 
Figure 3. Viewing a digital twin in 3D space 

3.4.4. Instructions for Navigation Within 3D/VR 

For a non-VR user, pressing “W” on the keyboard moves the 
user in the positive Z direction (forward) within the scene. In 
VR, when the user moves their left controller’s thumb stick 
more than 10 percent in the real-world positive Y direction, 
they move in positive Z direction of the head mounted display 
within the VR scene. Selected components can also be moved 
within the scene by using a mouse and keyboard. When the 
user clicks the left mouse button, a ray is cast in the positive 
z-axis direction using the mouse cursor’s x and y positions 
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within the scene’s viewport. If the ray hits a valid object, the 
object’s x and y positions are continually updated to match 
the user’s movement with the mouse cursor until they release 
the left mouse button, allowing the user to intuitively 
manipulate components on a flat display. 

If the user is in VR mode, like Figure 4 below, the scene 
monitors the user’s controller to determine if the controller 
and loaded model are colliding. If a valid collision is 
occurring, and the user presses the “grip” button on the 
controller, then the model’s position will be continually 
updated to match the position of the controller until the user 
releases the grip button. 

 
Figure 4. Viewing and manipulating a digital twin in VR 

4. DEMO/WEBPAGE OVERVIEW 

This section provides a basic walkthrough of each of the 
webpages. Specifically, we show how we use the 
visualizations described in earlier sections in a couple of 
different ways.   

4.1. Unit Status 

Figure 5 shows the unit status page with a tree visualization 
and sensor data graphs. This page combines data for each 
sensor with the tree structure, providing a complete view of 
current health status along with the historical data, which 
includes faults as well as maintenance information.   

 
Figure 5. Unit Status View 

 
The unit status page is built to handle all the assets for a unit. 
The tree follows a fixed structure with the Unit Identification 
Code (UIC) being the top or root node, followed by assets, 
components, and finally sensors as the bottom leaf nodes. 
Specific units are chosen by entering the unit’s ID number in 
the text box labeled “UIC” at the top of the page. Clicking on 
the components will open a separate tab with a 3D/VR 
visualization and clicking on the sensors will open graphs on 
the right-side of the existing page. 

Multiple graphs can be opened in the right half of the page by 
clicking on the sensor nodes. An example of these graphs can 
be seen in Figure 2. The graphs can be synchronized and 
interacted with as discussed in section 3.2, while the 3D 
objects can be viewed and manipulated as in section 3.4.4. 

4.2. Asset Details 

The asset details page, Figure 6, much like the Unit Status 
page combines graphs with an interactive tree. However, 
there are a few differences.  

The first is that the user can specify the order that the tree is 
organized by, using the drag and drop menu at the top of the 
page. This menu allows the user to choose which groupings 
the tree will be built on. The choices are group, subgroup, 
site, UIC, and squad. The bottom nodes of this tree will 
always be the asset itself.  The choice of a dynamic hierarchy 
allows users to more easily create a tree that works for the 
visualization or querying needs, as opposed to the fixed 
hierarchy of the Unit Status page. 

 
Figure 6. Asset Details page 

 
A second difference from the Unit Status page is that by 
clicking on the asset, graphs will open in the right side of the 
page, however with these graphs, users can select from all the 
individual sensors related to the asset, as shown in Figure 7. 
The Unit Status page only shows the sensors for whatever the 
user has deemed a critical component. The asset details page 
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allows a deeper dive into all of the data available for that 
asset. 

 
Figure 7. Selecting from an asset's sensors This figure 

shows on the right side of the Asset Details page 
 

The default view for the left side of the page is the tree view, 
but users can select a list view from the drop-down menu on 
the top left of the page. The list view shown in Figure 8, lists 
the individual components along with the same groupings 
from the tree view.  

 

 
Figure 8. Table View 

The magnifying glass icon opens a pop-up window, Figure 9, 
which allows users to filter the data by column values.  

  
Figure 9. Query selection for table view 

 
This filter can have multiple criteria and uses AND 
operations to combine the criteria. For example, if a user 
selects “FAMILY0003” for the Group and “Squad 4” for the 
Squad, the query will find all the vehicles in the vehicle group 
“FAMILY0003” that are attached to “Squad 4”. This filtering 
will persist if the user switches back to the tree view.  

5. CONCLUSION 

The framework proposed in this paper provides an intuitive 
means for visualizing assets at different organizational levels 
for industrial, commercial, or military applications, by 
querying significantly large, complex data. At higher levels, 
the tool displays aggregated health information for the asset 
or unit. The system’s interactivity allows for the tree to be 
more readable and situationally manipulable, as well as 
providing links to other visualizations. The use of DAVS and 
MongoDB provides responsive user interactions as querying 
and visualizing data in response to a user’s request typically 
takes no more than a few seconds.  

The next revisions of the framework will include 
improvements such as adding the ability to view more 
information about maintenance and fault events We will also 
further improve the usability of status reports by making them 
more customizable and giving the user the ability to add 
graphs and figures. Additional future work aims to better 
integrate output from machine learning techniques used for 
anomaly/fault detection as well as RUL prediction. We are 
especially interested in finding ways to better communicate 
fault probability instead of a single RUL value as this is one 
path to a health assessment suite. Specifically, we are looking 
at integrating confidence and prediction intervals along with 
cumulative probability of failure into the prognosis module. 
These methods will better reflect the uncertainty and 
imprecision inherent in RUL predictions. 
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