

1

Data Analytics and Visualization Application for Asset Health
Monitoring

Richard Carley1, Sara Fuller2, Glenn Bond3, Parker Jones4, David Allen5, Adam Jordan6, and T.C. Falls7

1,4,5,6,7Mississippi State University: Institute for Systems Engineering Research, Vicksburg, Mississippi, 39180, USA
rcarley@iser.msstate.edu
parkerj@iser.msstate.edu
allend@iser.msstate.edu
tcfalls@iser.msstate.edu
adamg@iser.msstate.edu

2Mississippi State University: Center for Advanced Vehicular Research, Mississippi State, MS, 39759, USA
sfuller@cavs.msstate.edu

3US Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
William.G.Bond@erdc.dren.mil

ABSTRACT

Much of the research on predictive maintenance has focused
on statistical and machine learning techniques, while there
has been significantly less focus on the human computer
interaction or visualization aspects of PHM. Human
computer interaction and visualization techniques can
quickly help identify interesting data sub-domains from
assets, time periods, and sensors provided the data can be
queried, retrieved, and displayed in a timely manner.
Augmenting visualization and interaction with a visual,
aggregative fleet-based query system adds a further
dimension, highlighting the ability of the fleet to carry out its
mission. Visualizing data from an asset with a multitude of
sensors in a way that fosters human understanding and
decision making is challenging from the standpoint of
dimensionality. That difficulty is significantly compounded
as overwhelming numbers of assets of varying type are added
to comprise a hyperdimensional dataset.

In this paper, we propose a scalable framework that is capable
of visualizing past, current, and prognosticated health from
the individual sensor up to the fleet or group level. In
addition to viewing near real time sensor data, maintenance
logs, fault information, and data aggregations will be merged
with the sensor data to make the analysis and visualizations

more valuable. This framework is scalable regarding how
much data can be collected, stored, and processed, and the
different organizational levels within a fleet of assets. The
framework is built as a web-application primarily using the
following visualizations: a collapsible tree structure for asset
information; 2D charts for temporal sensor data, fault data,
and maintenance data; and 3D digital twins of critical
components. These components combine to optimize human-
computer interaction for decision making across several
phases of operations and support for Army ground vehicles.

The dataset used to build and demonstrate the capability of
the web-application contains sensor readings from over 3000
vehicles and comprises approximately 9TB of data. Vehicle
information such as model, make, sub-component, and fleet
organization are presented in a configurable, collapsible tree
structure. This allows the user to visualize the fleet and to
select the asset and sensor combinations needed to display
temporal sensor data to answer a nearly infinite number of
questions using individual or combined statistics.
Information regarding each vehicle’s health status is
displayed then aggregated and displayed for each of the
higher tree nodes. A 3D digital twin also highlights sensor
locations and current health status of assets and components.
These component models can be viewed and manipulated
with or without a virtual reality headset to provide diagnostic
and repair support. As health status monitoring for asset
subcomponents are developed, they can be added to the
system, allowing for complete health status reporting.

Richard Carley et. al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

2

1. INTRODUCTION

While there has been a lot of research into various statistical
and machine learning techniques for predicting Remaining
Useful Life (RUL), very little has focused on optimizing
decision support from a visualization or human-computer
interaction aspect. In this paper we propose a visualization
framework capable of displaying past, present, and
prognosticated asset health information at different
organizational levels.

The primary focus of the framework is to support fault
diagnosis for individual assets and higher-level overviews
that provide aggregated health information for groups of
assets. The goal is to be able to provide managers,
technicians, and mechanics with the information they need to
make informed decisions about how best to deploy assets,
manage maintenance schedules, order replacement parts,
visualize repairs, and more. Users should be able to instantly
view high level fleet health statistics and dive down to
individual sensor data, timestamped at the sub-second level.

Along with sensor and health data, the tool is also able to
integrate output from predictive models, diagnostic trouble
codes, and maintenance records into visualizations, aiding in
fault diagnosis. Fault prognosis information is provided in the
form of estimated time to failure based on RUL predictions.
The data used to demonstrate the framework represents
different assets, each with approximately 100 sensors. While
the data and use cases here represent the management of a
fleet of vehicles, this framework could easily be applied to
any setting where managing groupings of assets is required,
such as an industrial setting.

Three visualization types are used within this tool:

• Tree Structure	
• 2D Time-Series Graphs 	
• 3D/Virtual Reality digital twins 	
Three webpages, Unit Status, Asset Details, and Status
Reports provide a hierarchical overview, including
visualizations for the selected data. The Unit Status page
provides visualizations displaying vehicle status and
aggregated unit information in support of unit level
operations. The Asset Details page provides an overview with
a user defined structure which supports more rigorous data
analysis. Both pages contain a tree visualization with
interactive nodes capable of opening interactable 2D time-
series graphs or a new tab with 3D/VR visualizations. The
Status Reports page displays automated reports for individual
assets and aggregated data for the unit. This paper focuses
mainly on the visualization aspects and the tools used to build
these visualizations.

2. WEB-BASED APPLICATION ARCHITECTURE

Based on the fleet management use cases, the framework is
required to process and display large amounts of data and to

communicate technical information at multiple
organizational levels to users in different roles. Large datasets
present challenges in processing data and displaying
information in a timely manner. Given the volume and
complexity of both the data and questions asked of it,
displaying that information in a way that does not obscure
trends or overwhelm the user is also a challenge. Providing
solutions to these challenges is essential to address the needs
of fleet managers on a daily basis.

Our most significant obstacle was displaying data with
enough informational value without overwhelming users
cognitively. Our attempt to improve the understandability of
such a large dataset involves using summaries and
interactivity. A good summary informs users where they
should focus their interest, while interactive elements allow
them to refine their questions and look at more detailed
information. Our summary takes the form of a user-
configurable tree since we are displaying organizational data
which already has a pre-defined hierarchy.

The web-based application architecture was chosen so that
the large dataset resides on a server, eliminating the need to
disseminate large datasets and updates that occur regularly
for the selected use cases. It also has the advantage of being
able to run on most operating system using web browsers,
eliminating the need to install specialized software and any
software updates only need to be applied to the server. The
web-based application was developed using Blazor for the
webpages and a combination of Unity, WebXR, and
Vega/Vega-lite

Our framework is unique in that it provides a unified way of
looking at high level fleet information along with detailed
technical information about singular assets. Another unique
addition is the VR/3D views. These views provide
opportunities for training or pre-maintenance discussions
where technicians can better visualize and point out areas of
interest. No current software that we are aware of has this
level of interactivity along with the combination of
previously mentioned features.

2.1.1. Blazor Web Assembly

Selection of a web-application development framework was
crucial to the development of our tool. A web-application
development framework handles the complex operations of
serving web pages and responding to user input, allowing
programmers to focus on developing the application.
Microsoft’s Blazor Web Assembly (BWA) (Roth, 2019), an
open-source web application framework, was chosen since it
offers a seamless connection between web languages
(HTML, JavaScript, CSS) and C#, and allows for modular
production of pages and components. BWA also allows for
computation on the client instead of a server. This increases
startup time but importantly increases responsiveness once
the page is loaded, distributing computational load across
networks for scalability.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

3

2.1.2. Vega/Vega-Lite

The 2D graph visualizations and tree structures are powered
using an open-source, high-level grammar library called
Vega-Lite. (Satyanarayan et al., 2017) This library uses a
declarative JSON syntax to create specifications to describe
how visualizations should be rendered. It’s built on top of the
Vega visualization grammar but is a much more concise
language. Vega-Lite allows for graphs to be directly
embedded into web pages using Vega’s JavaScript runtime
and can display graphs in any modern browser. The library
was chosen since it provides many features for creating
interactive graphs, data loading, transformations, scales, map
projects, and can respond to input streams. It also has several
different application programming interfaces for many
popular, general-purpose programming languages like
Python (Satyanarayan et al., 2017) (Wongsuphasawat et al.,
2022). Interactivity was an especially important factor in
choosing a visualization library due to the large amount of
data the system addresses and its hierarchical nature. This
feature allows the user to control how much and what data to
view, and to focus on more detail about a specific data point
without adding unnecessary information.

2.1.3. Unity/WebXR

The Unity 3D game engine is a software application that
allows for the creation of three-dimensional environments
combined with scripting logic which can then be exported as
executable applications for end users (Goldstone, 2009).
Unity was chosen as the main development tool for the
eXtended Reality (XR) portion of the project due to its
integration with WebXR and a WebXR exporter software
library.

WebXR is an Application Programming Interface (API) used
to communicate with VR and AR devices (MacIntyre, Smith,
2018) and the WebXR exporter allows a Unity created
application to be exported as JavaScript files that can then be
used as a web application. Unity and WebXR are used
together to display 3D models of critical components to users
either in a browser or using VR devices.

WebXR Device API support to Unity is provided by
Mozilla’s WebXR exporter library, which is compatible with
Unity version 2021.2.5f1 (Weizman, 2022). To enable player
movement, two C# classes were created to handle 3D
movement and these two classes monitor the keyboard,
mouse, and the Meta Quest Touch controllers for user inputs
and adjust the user’s in-scene position accordingly. Since
WebXR is hardware agnostic, HTC Vive and other VR
systems can also be used instead of a keyboard and mouse
and the Meta Quest 2 (“WebXR”, 2022). We have tested the
VR capabilities with the HTC VIVE and Meta Quest 2. As of
now, Chrome does not support VR, while Firefox and Edge
require VR to be enabled in the browser’s settings. The
browsers must be configured to use the computer’s discrete
GPU within Windows Graphics Settings.

2.2. Data Analytics and Visualization System

Dataset operations for the application are provided by the
Data Analytics and Visualization System (DAVS), the result
of a joint research program, sponsored by the US Army
Engineering Research and Develop Center (ERDC), between
Mississippi State University, and Hottinger, Brüel and Kjaer
Solutions, LLC (HBK).

DAVS is a collection of software designed to provide an end-
to-end solution (loading, cleaning, analyzing, and visualizing
data) for scalable analytics and visualization. It is focused
primarily on the efficient processing of massive amounts of
temporal data collected from various types of assets. While
DAVS currently utilizes MongoDB for data management, it
has an API for interacting with data and provides database
agnostic capabilities to DAVS applications. Apache Kafka
(Apache Software Foundation, 2022), a high throughput,
distributed, event streaming platform is used as the basis for
the distributed processing capability provided by DAVS.
While other open-source software tools are used in DAVS,
MongoDB and Kafka provide the primary capabilities
required by the framework presented in this paper.

The use of MongoDB and Kafka by DAVS provides several
distinct advantages during the operations to import, clean,
process, analyze and visualize temporal sensor data. Kafka
provides a distributed, asynchronous, fast, and fault tolerant
messaging system. This capability is used by DAVS
essentially as a task queue to provide distributed processing.
This functionality is heavily used during data loading,
analytic, and querying operations. Scalability is achieved by
adding hardware and increasing the “worker” processes
allowing DAVS to be executed on platforms ranging from
laptops to super computers. For this research, DAVS was
configured using three hardware nodes for MongoDB and
one node for Kafka where each node in the system had dual
CPUs, each with 20 cores and 40 threads. MongoDB was
configured with one node as the controller node and two
nodes for data distribution. Even though the dataset size was
over 9TB and contained over 40 million records, the
configuration allowed queries retrieving specific sensor data
for an asset during a given time period to be executed in less
than a second. When the data throughput of DAVS is
combined with asynchronous operations and software multi-
threading the result is the ability to display multiple graphs
within a few seconds of user selection. This provides very
responsive web-page interaction to the user. Scalability for
significantly greater volumes of data can be achieved by
adding computational resources.

2.2.1. MongoDB

MongoDB is a NoSQL, distributed database management
system designed for scalability, flexibility, and agility
(MongoDB Inc, 2022). It uses JSON-like documents with
optional schemas to perform queries that are optimized to
retrieve data efficiently. DAVS utilizes many MongoDB

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

4

features such as load balancing, replication, aggregation, ad
hoc queries, and many more. It can also be used as a grid file
system over multiple machines along with the load balancing
and replication features as data volumes exceed the abilities
of one machine. There are many MongoDB drivers available
for the most popular programming platforms, including a
.NET driver for C#. The .NET driver is used to query data on
demand whenever the web app makes a request to the web
server (MongoDB Inc, 2022). MongoDB is an essential
element of DAVs, so it was necessary to include MongoDB
as part of our framework

2.3. Dataset

The dataset used for this paper contains a record of over 3,000
vehicles, each with over 100 sensors. The dataset is over 9
TB in size, and is broken up into channels, including startup,
operational, and fault data. Each channel represents a sensor,
and multiple sensors can be combined, as inputs to functions
whose outputs represent the health of various components.
We define these components as parts, or groups of parts, that
serve a specific purpose in the vehicle, such as an engine,
battery, or transmission.

Assets, or individual vehicles, are identified by a unique
Vehicle Identification Number (VIN), and can be grouped by
vehicle group and subgroup, as well as location, unit
identification code, and squad. Maintenance data for these
assets is included to help determine what maintenance has
been performed and how often it occurs.

2.4. Reasoning/Comparison to Other Tools

Alves et. al. (2020) created a system that used a web
application to connect sensors and a database to a webpage
dashboard and a Microsoft Hololens for Augmented Reality
(AR) visualization. Their aim was to be able to visualize
current data and aid in earlier detection of failures for a
specific machine. Our system aims to address some of the
same issues but differs in three main ways: it uses Virtual
Reality(VR) instead of AR, it handles thousands of assets
with over 100 sensors each and focuses on RUL as well as
finding existing failures. The number of assets and volume of
data we are dealing with creates substantial hurdles from a
data processing, networking, and human cognition
perspective, all of which are addressed in this paper.
Furthermore, VR-based systems can reduce the time to learn
tasks, and aid in training, and are already being utilized to aid
in maintenance for manufacturing environments (Buettner et.
al. 2022).

Based on the use cases defined for our framework, we knew
it had to be able to process and display large amounts of data
and be able to communicate technical information at multiple
organizational levels to users in different roles. Large datasets
present challenges in processing data in a timely manner, as
well as in being able to display that information in a way that
does not obscure trends or overwhelm the user. With a proper

mongo database set up, DAVS is able to handle data
processing quickly despite the large dataset size, therefore
our biggest hurdle was in displaying data to the user. Our
attempt to improve the readability of such a large dataset
involves using summaries and interactivity. A good summary
can tell users where they should focus their interest, while
interactive elements can allow them to look at more detailed
information. Our summary takes the form of a tree since we
are displaying organizational data which already has a pre-
defined hierarchy.

A web-based platform was chosen since the data would have
to reside on a server due to its size. It also has the advantage
of being able to run on most browsers, eliminating the need
for a user to install specialized software. Modularity is simple
with a web page, and any updates only need to be applied to
the server. However, this does mean that users will need a
stable connection, either directly on the server’s network, or
through a VPN.

Our framework is unique in that it provides a unified way of
looking at high level fleet information along with detailed
technical information about singular assets. Another unique
addition is the VR/3D views. These views provide
opportunities for training or pre-maintenance discussions
where technicians can better visualize and point out areas of
interest. No current software that we are aware of has this
level of interactivity along with the combination of
previously mentioned features.

3. FEATURES AND VISUALIZATIONS

This section will discuss and describe the various
visualization methods employed by our tool. This includes
the motivation and implementation of each visualization, as
well as how to interpret and interact with them.

3.1. Tree Structures

The primary interactive visualization for our framework is a
tree where each level represents an organizational level of a
specific unit or the entire fleet of vehicles. The root node
represents the highest organizational level of the selected
data, and the bottommost leaf nodes represent sensor or asset
data. Some of the specific implementations of trees will be
discussed in greater detail in the Demo/Webpage Overview
section, but an example can be seen in Figure 1. Our system
is currently set up to use RUL values as a measure for vehicle
health, but future versions will incorporate other health
indicators or indices to be used in place of or alongside RUL.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

5

Figure 1. Example of tree visualization with mouse hover

over the engine’s oil pressure sensor

The nodes of each of the trees are coded by both color and
symbol to aid human cognition with easier to recognize
indicators of health status. Green indicates healthy status with
a relatively long estimated RUL. Yellow indicates that
potential problems will need to be addressed, reflecting a
lower estimated RUL value. With this indicator, users should
be wary and observant when tasking or operating the asset
and components, but the asset is usable if the mission
requires. Red indicates that problems are imminent based on
estimated RUL, and action should be taken, or maintenance
performed before the asset can be returned to mission-
capable status. Lower-level nodes such as those representing
sensors are also coded by symbol to indicate health. Star
patterns mean healthy sensor readings, and up and down
arrows are used to indicate that a sensor is detecting higher
or lower than normal output.

Tree visualizations are used in the webpages to provide
relevant information and links to child nodes and other
information. When the user hovers the mouse over a node,
the system will provide relevant health information. At higher
levels in the tree, this will include aggregated health
information such as the number of healthy units or assets
within an organization, while information from lower-level
nodes will be more specific to assets or components. Only
specific components critical to the operation of the vehicle
are displayed as nodes to limit the amount data displayed at
this level.

Since the tree visualizations can get large, all nodes except
the lowest levels of the tree are collapsible. Clicking on the
bottom most nodes will always open graphs in the right side
of the page. Clicking component nodes in the Unit Status
page will also allow the user to open a 3D/VR visualization
of the component in another browser tab. These interactive
elements allow the user to better customize their visualization
by either minimizing unnecessary information or linking to
more specific charts and data. The following sections provide
more information concerning the 2D time-series graphs as
well as the 3D/VR visualization capability.

3.2. 2D Time-Series Graphs

2D time-series graphs are created using the Vega-Lite library.
They contain sensor, fault, and maintenance data. Sensor data
is represented by a blue line, while the fault and maintenance
data are represented by red circles and diamonds,
respectively. Multiple graphs can be opened at one time, in
one frame.

There are two aspects to each graph. The top graph shows the
entire timeline of the sensor, which can be months or years,
while the bottom graph shows a selection of the timeline as
defined by the user. The red vertical bars in the upper graph
represent the time period displayed in bottom graph. Time
periods can be selected in the upper graph by either using
shift and the mouse scroll wheel, or by left clicking and
dragging the mouse. Similarly, the buttons on the right side
of the graphs can be used for zooming and panning as well.
Graphs of sensor data from the same vehicle can be
synchronized as seen in Figure 2, allowing the user to view
simultaneous drops in “Voltage” and “Oil pressure”, for
example.

Figure 2. Example of multiple 2D time-series graphs synced

3.3. Status Reports

The status report page is a PDF display page containing a
PDF generated during the loading of the page based on data
in the database. Currently it displays the total of one unit

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

6

grouped by a tabbed list of Squad, Asset, Component, and
then Sensor. Each Squad has an assessment of how many
assets are at or above a predetermined RUL estimate. The
asset, component, and sensors display their associated RUL
value next to their icon to represent their current condition.
The condition of the child objects, in aggregate, determine
the readiness of the parent that they are attached to. For
example, a component or components attached to an asset
may affect the RUL estimate of the asset. These reports
provide a standardized method for communicating a unit’s
vehicle readiness that can be used for reporting and briefings.

3.4. 3D/VR Digital Twins

This section discusses the implementation and use of 3D
models to display health information. This includes the
reasoning for the use of the 3D models, their implementation
into the web framework, and basic instructions for user
interactions.

3.4.1. Overview of Features

A Digital Twin is a virtual representation of a physical object
along with associated information that could be considered
meta-data or generated operational data. With two
dimensional, visual digital twins, multiple profile views must
be created to display sensors within the component. This
would increase the cognitive load on the user by requiring
interpretation and mapping profile view layers together to
understand and gain knowledge from the holistic view. To
avoid this situation, our system uses interactable three-
dimensional objects to be significantly more intuitive than
two dimensional representations. 3D rendering represents a
departure in terms of knowledge discovery, rapid
identification of conditions, and annotation of digital twins of
specific components with annotated health information
aggregated from different sensors. This improvement in
information synthesis allows users to monitor the status of the
physical object in a concise user-friendly digital format (Liu,
2022). These visualizations can be viewed with or without
AR/VR hardware.

3.4.2. 3D/VR Model Preparation

The four example models used to show the 3D/VR capability
of the software: an Abrams Tank, a Honeywell AGT1500
Gas Turbine Engine, a generic vehicle transmission, and a
vehicle battery, were downloaded from grabcad.com and
sketchfab.com. These models were in the FilmBox (.fbx),
Digital Asset Exchange (.dae), and object (.obj) file formats.
These three file formats are compatible with the Unity 3D
game engine. The four models were imported into Unity
2021.2.5f1, and material (.mat) file types were extracted from
the imported version of the models. The texture component
of these material files was then remapped to separately
downloaded Portable Network Graphics (.png) files so the
models and their textures appear correctly within the scene.

From the imported models, prefabricated objects, or prefabs,
were created for use within the scene. Box colliders were
attached to each prefab and oriented so that the collider center
point matched the model center point and boundaries
expanded to allow the user to grab any region of the prefab.
Rigid bodies were also attached to the prefab and set to
simply follow the user’s hand or mouse cursor when selected.
When released they are locked in place until picked up again
or the reset button is pressed, allowing the user to concentrate
on the model and its condition according to its specific data.

3.4.3. 3D/VR Integration with Web Dashboard

Sensor data is represented in a hierarchy such that the vehicle
is the root object, components are child branches from the
vehicle, and sensors are child branches of the components.
When a user clicks on a vehicle component, the component
is shown in the VR/AR environment. The URL to display the
component also contains the information regarding current
sensor information.

As an example, looking at Figure 3, the information sent to
unity contains the 3D model name of the critical component,
the Unit Identity, Vehicle Identification Number, Remaining
Useful Life, Transmission Oil Temperature value, and the
Crankcase Pressure value. The information containing the
string “transmission” is the first parsed value and is used to
toggle on the 3D transmission object and update text boxes
within the scene based on the other values in the provided
query string. In this example, the query string sent two values,
0 and 2, for the Crankcase Pressure and the Transmission Oil
Temperature sensors respectively, which corresponds to the
“Low” and “OK” messages shown in Figure 3.

Figure 3. Viewing a digital twin in 3D space

3.4.4. Instructions for Navigation Within 3D/VR

For a non-VR user, pressing “W” on the keyboard moves the
user in the positive Z direction (forward) within the scene. In
VR, when the user moves their left controller’s thumb stick
more than 10 percent in the real-world positive Y direction,
they move in positive Z direction of the head mounted display
within the VR scene. Selected components can also be moved
within the scene by using a mouse and keyboard. When the
user clicks the left mouse button, a ray is cast in the positive
z-axis direction using the mouse cursor’s x and y positions

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

7

within the scene’s viewport. If the ray hits a valid object, the
object’s x and y positions are continually updated to match
the user’s movement with the mouse cursor until they release
the left mouse button, allowing the user to intuitively
manipulate components on a flat display.

If the user is in VR mode, like Figure 4 below, the scene
monitors the user’s controller to determine if the controller
and loaded model are colliding. If a valid collision is
occurring, and the user presses the “grip” button on the
controller, then the model’s position will be continually
updated to match the position of the controller until the user
releases the grip button.

Figure 4. Viewing and manipulating a digital twin in VR

4. DEMO/WEBPAGE OVERVIEW

This section provides a basic walkthrough of each of the
webpages. Specifically, we show how we use the
visualizations described in earlier sections in a couple of
different ways.

4.1. Unit Status

Figure 5 shows the unit status page with a tree visualization
and sensor data graphs. This page combines data for each
sensor with the tree structure, providing a complete view of
current health status along with the historical data, which
includes faults as well as maintenance information.

Figure 5. Unit Status View

The unit status page is built to handle all the assets for a unit.
The tree follows a fixed structure with the Unit Identification
Code (UIC) being the top or root node, followed by assets,
components, and finally sensors as the bottom leaf nodes.
Specific units are chosen by entering the unit’s ID number in
the text box labeled “UIC” at the top of the page. Clicking on
the components will open a separate tab with a 3D/VR
visualization and clicking on the sensors will open graphs on
the right-side of the existing page.

Multiple graphs can be opened in the right half of the page by
clicking on the sensor nodes. An example of these graphs can
be seen in Figure 2. The graphs can be synchronized and
interacted with as discussed in section 3.2, while the 3D
objects can be viewed and manipulated as in section 3.4.4.

4.2. Asset Details

The asset details page, Figure 6, much like the Unit Status
page combines graphs with an interactive tree. However,
there are a few differences.

The first is that the user can specify the order that the tree is
organized by, using the drag and drop menu at the top of the
page. This menu allows the user to choose which groupings
the tree will be built on. The choices are group, subgroup,
site, UIC, and squad. The bottom nodes of this tree will
always be the asset itself. The choice of a dynamic hierarchy
allows users to more easily create a tree that works for the
visualization or querying needs, as opposed to the fixed
hierarchy of the Unit Status page.

Figure 6. Asset Details page

A second difference from the Unit Status page is that by
clicking on the asset, graphs will open in the right side of the
page, however with these graphs, users can select from all the
individual sensors related to the asset, as shown in Figure 7.
The Unit Status page only shows the sensors for whatever the
user has deemed a critical component. The asset details page

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

8

allows a deeper dive into all of the data available for that
asset.

Figure 7. Selecting from an asset's sensors This figure

shows on the right side of the Asset Details page

The default view for the left side of the page is the tree view,
but users can select a list view from the drop-down menu on
the top left of the page. The list view shown in Figure 8, lists
the individual components along with the same groupings
from the tree view.

Figure 8. Table View

The magnifying glass icon opens a pop-up window, Figure 9,
which allows users to filter the data by column values.

Figure 9. Query selection for table view

This filter can have multiple criteria and uses AND
operations to combine the criteria. For example, if a user
selects “FAMILY0003” for the Group and “Squad 4” for the
Squad, the query will find all the vehicles in the vehicle group
“FAMILY0003” that are attached to “Squad 4”. This filtering
will persist if the user switches back to the tree view.

5. CONCLUSION

The framework proposed in this paper provides an intuitive
means for visualizing assets at different organizational levels
for industrial, commercial, or military applications, by
querying significantly large, complex data. At higher levels,
the tool displays aggregated health information for the asset
or unit. The system’s interactivity allows for the tree to be
more readable and situationally manipulable, as well as
providing links to other visualizations. The use of DAVS and
MongoDB provides responsive user interactions as querying
and visualizing data in response to a user’s request typically
takes no more than a few seconds.

The next revisions of the framework will include
improvements such as adding the ability to view more
information about maintenance and fault events We will also
further improve the usability of status reports by making them
more customizable and giving the user the ability to add
graphs and figures. Additional future work aims to better
integrate output from machine learning techniques used for
anomaly/fault detection as well as RUL prediction. We are
especially interested in finding ways to better communicate
fault probability instead of a single RUL value as this is one
path to a health assessment suite. Specifically, we are looking
at integrating confidence and prediction intervals along with
cumulative probability of failure into the prognosis module.
These methods will better reflect the uncertainty and
imprecision inherent in RUL predictions.

ACKNOWLEDGEMENT

This research was conducted by Mississippi State University
under contract to the U.S. Department of Defense (DoD)
High Performance Computing Modernization Program,
through the US Army Engineering Research and Develop
Center (ERDC) Contract #W912HZ21C0014. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the U.S. Army ERDC or the U.S. DoD.

REFERENCES

Alves, F., Badikyan, H., Moreira, H. A., Azevedo, J.,
Moreira, P. M., Romero, L., & Leitao, P. (2020).
Deployment of a smart and predictive maintenance
system in an industrial case study. 2020 IEEE 29th
International Symposium on Industrial Electronics
(ISIE), 493–498. doi: 10.1109/ISIE45063.2020.9152441

Apache Software Foundation (n.d.) Apache Kafka
https://kafka.apache.org/

Buettner, R., Breitenbach, J., Wannenwetsch, K., Ostermann,
I., & Preil, R. (2022) A systematic literature review of
virtual and augmented reality applications for
maintenance in manufacturing. 2022 IEEE 46th Annual
Computers, Software, and Applications

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

9

Conference(COMPSAC), 545-552. doi:
10.1109/COMPSAC54236.2022.000

Goldstone, W. (2009). Unity Game Development Essentials.
Packt Publishing Ltd. 2009.

Maclntyre, B. and Smith, T.F. Thoughts on the Future of
WebXR and the Immersive Web. 2018 IEEE
International Symposium on Mixed and Augmented
Reality Adjunct (ISMAR-Adjunct). 2018. pp. 338-342.
doi: 10.1109/ISMAR-Adjunct.2018.00099.

MongoDB Inc. (n.d.). What is MongoDB
https://www.mongodb.com/what-is-mongodb

Liu, Y. K., Ong, S. K., & Nee, A. Y. C. (2022). State-of-the-
art survey on digital twin implementations. Advances in
Manufacturing, 10(1), 1-23.

Roth, D. (2019). Blazor server in .NET Core 3.0 scenarios
and performance. ASP.NET Blog. Microsoft.
https://devblogs.microsoft.com/dotnet/blazor-server-in-
net-core-3-0-scenarios-and-performance/

Satyanarayan, A. Moritz, D. Wongsuphasawat, K. Heer, J.
(2017). Vega-Lite: A Grammar of Interactive Graphics
IEEE Transactions on Visualization and Computer
Graphics doi: 10.1109/TVCG.2016.2599030

WebXR Device API Explainer. (n.d.). GitHub
repository.https://immersive-
web.github.io/webxr/explainer.html#xr-hardware.

Weizman, O. (2022). Unity WebXR Export. GitHub
repository https://github.com/De-Panther/unity-webxr-
export.

Wongsuphasawat, K. Moritz, D. Satyanarayan, A. Heer, J.
(n.d.). Vega-Lite A grammar of interactive graphics
https://vega.github.io/vega-lite/

BIOGRAPHIES

Richard Carley is a Research Engineer with the Institute for
Systems Engineering Research (ISER) and a PHD candidate
in the Department of Computer Science and Engineering at
Mississippi State University. His primary research interests
deal with big data analytics and visualization.

Sara Fuller is the Strategic Programs Manager at the Center
for Advanced Vehicular Systems (CAVS) at Mississippi
State University. Her research interests include PHM and
advanced maintenance applications.

Parker Jones is a Research Engineer with the Institute for
Systems Engineering Research (ISER) at Mississippi State
University.

David Allen is a Research Engineer with the Institute for
Systems Engineering Research (ISER) at Mississippi State
University.

Adam Jordan is a Research Engineer with the Institute for
Systems Engineering Research (ISER) at Mississippi State
University.

T. C. Falls is the Associate Director, Software Design and
Development for the Institute for Systems Engineering
Research (ISER) at Mississippi State University. He
provides technical leadership to the ISER for software design,
development, architecture, implementation, and integration.
His research interest includes data fusion, management,
analysis, and visualization primarily in support of advanced
maintenance.

Dr. Glenn Bond is a computer scientist at the US Army
Engineer Research and Development Center’s Information
Technology Laboratory. His research interests have centered
on High Performance Data Analytics, particularly for US
Army wheeled ground vehicles, for the past few years. Glenn
collaborates with the MSU team in this capacity.

