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ABSTRACT 

Prognostic models, when feasible, are favored for avoiding 

unexpected maintenance. There is a need for a common 

language when discussing prognostic performance and 

behavior. The approach presented here considers model 

behavior in terms of two optimizable sub-problems for better 

performance assessment. The first evaluation construct 

considers how well the model tracks degradation over time 

and a second construct considers how effectively it improves 

operations. The right set of cost functions can determine the 

suitability to both objectives. The combined construct 

enables evaluation of a class of models which augment 

degradation physics with data-driven heuristics, supporting a 

more explainable recommendation.  

1. INTRODUCTION 

Unanticipated component failures are often expensive. 

Considerable costs arise from the loss of operation time, 

emergency repairs, excess labor, and compensation to 

aggrieved customers. Understandably, prognostic health 
management methods are favored when feasible. This 

requires that failure onset is observable, infrastructure exists 

to process the data timely, and the mitigation plan actionable.   

Prognostic analytic models are essentially degradation 

models.  The model may estimate a remaining useful life 

(RUL) or, more generally, generate an alert for failure 

proximity.  Recently, more data have become available and 

cloud computing capabilities continue to grow. There is 

therefore a growing potential for large scale model 

deployment. Currently, regulatory bodies are considering 

prognostic monitoring as a valid substitute for certain routine 

maintenance inspections (International Maintenance Review 

Board Policy Board, 2018).  Under review is a strategy to use 

prognostics to increase inspection intervals and apply 

airworthiness credits for condition based maintenance (Le, 

Ghoshal & Cuevas, 2011). There is therefore a need to 

formalize methods which best evaluate the performance of 

prognostic models. 

A representative prognostic for condition-based maintenance 

is shown in Figure 1. A suite of signals is continually 

providing information about the component health. It falls on 

the system to decipher the data and develop a decision 

architecture that drives a discrete maintenance. 

Advances in sensors, electronics, and data have enabled an 

evolution from more traditional reliability-based inspection 

and maintenance intervals (e.g. Weibull) to some data-

augmented hybrid.  Generally, more information on failure 

modes and usage profiles can drive a more efficient 

maintenance paradigm. However, with the high availability 

of data and computation, these approaches can incorporate 

more data-driven heuristics. Further on the spectrum are the 

purely data-driven approaches, where the outcome is driven 

by statistical inference (Luo J. H., Namburu M., Pattipati K., 

Liu Q., Kawamoto M., and Chigusa S., 2003, Fornlof V., 

Galar D., Syberfeldt A. and Almgren T., 2016). While this 

allows for decisions outside the realm of human expertise, 

they are more difficult productionize since the outcomes are 

less explainable.  

Combing a physics model with a data-driven one was termed 

as a ‘physics – data hybrid’ by Sprong, J. P., Jiang, X., & 

Polinder, H. (2019). Considering the expense involved in 

preventative maintenance, it makes sense to maintain the 
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Figure 1. Prognostic Analytic Diagram 
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failure mode models grounded in physics but in a way that is 

enhanced by additional data. 

Model based and expert systems use, respectively, a model 

and a set of rules to infer when the degradation level requires 

attention (Zhang, Li & Yu, 2006).  Models may be trained on 

a set of failure modes each with its own signature and 

associated probabilities in a Hidden Markov Model (HMM). 

Kwan, Zhang, Xu and Haynes (2003) and Zhang, Xu, Kwan, 

Liang, Xie, and Haynes (2005) developed and implemented 

an approach where principal components of the input signals 

were mapped to HMM degradation states. Capturing 

degradation modes in this manner may not always be scalable 

across multiple components of a complex system. Further, 

identifying and training against perceived discrete 

degradation states might not be needed if a simple signature 

can be processed out from the available data. The anomaly 

detection methods like HMM and multivariate Gaussian 

methods work best when there is some level of cleaned data. 

In other words, we need to first separate, as best as possible, 

the signal from the noise in order to produce the best 

detection outcomes. 

One hybrid approach is shown schematically in Figure 2. The 

system inputs and outputs are rarely known to a complete 

extent. Rather, only the observables inputs are captured at 

some time interval and those signals are accompanied with 

noise. Similarly, real time actual output is not traceable, but 

a sampled version is available. The truncated input and output 

information can inform a physics model, with some data-

based augmentation to compensate for the modeling and 

sensing deficiencies. The goal is to reduce estimation error 

while maintaining the intuition. 

Since the ultimate outcome is a discrete decision, there is 

scope for another level of data-driven heuristics to tune the 

model. This represents a second set of adjustable 

hyperparameters. The resulting approach captures the 

governing physical equations while relying on these 

hyperparameters to compensate for incomplete or corrupted 

inputs not only for the degradation estimate, but also for the 

final decision-making process. 

This paper will deconstruct the development of a prognostic 

model in two steps, as illustrated in Figure 3. First, it will 

consider the problem of maximizing a degradation signal and 

minimizing noise, building upon previous work by the 

authors (Prakash & Brzoska, 2021). This will involve 

defining a sensitivity objective, which can be maximized to 

produce an optimal time-series filter, and used as a proxy for 

evaluating signal correlation to events.  This is the first 

optimization objective. Next, the paper will explore the 

various tradeoffs in implementing a prognostic analytic. 

Reducing unscheduled events must be balanced with 

sacrificing useful life. This is the second optimization 

objective, and also expands previous work by the authors 

(Prakash, Brzoska, and Ensberg, 2022). Finally, the elements 

will come together in an implementation framework. 

The concepts presented here overlap with previous works, but 

then go on to develop a few key assertions not previously 

mentioned. First, the overall evaluation construct is more 

operationally sensible than not just the binary classifier, but 

also the common remaining useful life (RUL) error methods. 

Second, the filter deployed for signal conditioning need not 

be a linear filter, rather any time series operation can be 

 
 

Figure 2. Prognostic model environment and structure with physics and heuristic components 

 
Figure 3. The two sub-problems in developing 

prognostic models: detection and decision 
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evaluated for its ability to create a well correlated signal. 

Third, there are multiple methods to evaluate the manner in 

which a signal correlates to an event; more examples are 

presented in this paper. Fourth, while one of the evaluation 

methods proposed considers correlation to an RUL 

estimation, this is fundamentally different from an RUL 

error. Fifth, the prognostic model approach to avoiding 

unscheduled failure event costs can be combined with a fixed 

removal interval to further reduce this cost. Sixth, the 

potential benefit of a prognostic model can be determined by 

comparing to the run to failure case. Finally, this paper has a 

more exhaustive numerical example of the described 

evaluation construct. 

This paper is organized as follows. First, in section 2, we will 

review the current status quo evaluation, including the binary 

classifier and RUL evaluation metrics like mean absolute 

error (MAE), mean absolute percent error (MAPE), and root 

mean squared error (RMSE). Then, we will propose an 

alternate method starting with signal sensitivity to the event 

in section 3. This will constitute the first part of the evaluation 

construct, examining how well the signal correlates to the 

event. Then, we will discuss operational impacts that affect 

the placement of the threshold. Section 4 will discuss the 

operational value of a fixed threshold while section 5 will 

delve into the operational impact of the full prognostic model. 

Taken together, the correlation of the prediction signal to the 

discrete event and the operational impact of threshold 

placement, constitute a holistic picture on how to evaluate a 

prognostic model. 

2. CURRENT METHODS OF EVALUATION 

Common assessments of prognostic models have considered 

the overall goal of maximizing reliability (Fornlof 2016) or 

the trade-off between part availability versus operational 

efficiency (Pipe 2008). Such considerations are relevant 

when the model is already operational and logistic questions 

remain. This work will consider whether a given model can 

be tuned to optimize its key performance metrics, and what 

those metrics should be. Currently, in the literature and in 

practice, the commonly accepted evaluation constructs are 

either the binary classifier or RUL evaluation schemes like 

MAE and MAEP. 

2.1. Binary Classifiers 

A common assessments of prognostic model performance is 

the binary classifiers (Fawcett 2006). The capability to detect 

is quantified with ‘recall’ and the reliability of prediction is 

similarly quantified with ‘precision’. Recall and precision are 

based on a confusion matrix, where one axis is detection and 

the other reality (Figure 4).  If both reality and detection 

agree, the model has scored a ‘true positive’ and if the model 

alerts without the event it is a ‘false positive’ while a ‘false 

negative’ means the model failed to adequately detect. 

Recall is then the probability of alerting given the event will 

occur, while precision is the probability of the event 

occurring given an alert has been annunciated. 

 

Recall = 

 P (Prognostic Alert | Impending Failure Event) = 

True Positive / (True Positive + False Negative) 

 

(1) 

Precision =  

P (Impeding Failure Event |Prognostic Alert) = 

True Positive / (True Positive + False Positive) 

(2) 

  

The ideal precision or recall values for a given problem can 

be evaluated by using derived values such as F1 score or 

receiver operating characteristic (ROC) (Fawcett, 2006).  

While the former attempts to balance recall and precision, the 

latter evaluates the tradeoff between the two quantities.  

While the above set of parameters present a common metric 

to evaluate binary classifiers, key elements are lacking for 

evaluating a prognostic health model.  First, the model output 

and reality are both discretized to, respectively, 

positive/negative and true/false. Details of the underlying 

correlation are obscured.  This becomes important if we wish 

to know margin to alert. Second, the time horizon is 

neglected. The time widow to take action on an alert is 

limited; alerts without sufficient lead time cannot be acted 

upon and alerts too early will mean loss of useful life.  

2.2. Remaining Useful Life Evaluation Metrics 

When models are developed for predicting remaining useful 

life (RUL) specifically, the error between the predicted and 

actual life remaining are generally evaluated using a suite of 

three commonly used metrics (Liu & Chen, 2019). These are 

1) the mean absolute error (MAE), 2) the mean absolute 

percent error (MAPE), and 3) the root mean square error 

 
 

Figure 4. Confusion matrix of a binary classifier 
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(RMSE) (Liu & Chen, 2019). The equations are defined in 

𝑀𝐴𝐸= 
1

𝑛
∑ |𝑦𝑖 −  𝑦𝑖

∗|𝑛
𝑖=1   (3) – 𝑅𝑀𝑆𝐸 =

 √
∑ (𝑦𝑖− 𝑦𝑖

∗)
2𝑛

𝑖=1

𝑛
   (5), respectively, where 

𝑦𝑖  is the true and 𝑦𝑖
∗ is the predicted RUL, and n is the total 

number of data points. 

 

While the above equations are adequate in evaluating the 

performance of the prediction across all time intervals, this 

unnecessarily over-weights the predictions at large RUL 

values. Indeed, the error tolerance of the prediction is much 

larger when the component is still healthy and the prediction 

is likewise not indicating a critical condition. The MAPE 

algorithm is less affected by this as the evaluation is more 

sensitive at small values of 𝑦𝑖 , but the sensitivity increases 

geometrically whereas in practicality, there is an interval 

around RUL=0 where the prediction is equally critical to 

overall performance. 

The overall problem of a clear evaluation regime can be 

subdivided into two parts.  First, the issue is whether the 

model is properly capturing the intended degradation leading 

up to the event.  The second part is the fundamental trade-off 

between too early or unnecessary maintenance against the 

probability of an unanticipated failure. 

3. FEATURE SENSITIVITY 

A prognostic model is only as effective as its ability to detect 

a set of given failure modes.  This is a correlation problem.  

Evaluating a model only on the discrete outcomes (like true 

positives or false positives) misses the nuance of whether the 

underlying degradation is even well observed. 

As depicted in Figure 2, the first problem in estimation is that 

the available data might not be complete. There are 

observable as well as unobservable system inputs that 

contribute to the degradation state. Second, even when the 

degradation is perfectly observable, the derived features will 

detect not only the degradation, but other confounding noise. 

Usually, there are several noise sources, each of which 

operate with a unique frequency signature.   

In the case of aircraft components, often there is a strong 

seasonality effect, driven by ambient temperature variation.  

Second, the idiosyncrasies of flight schedules, flight patterns, 

and daily weather also result in high variability.  The goal is 

then to find the appropriate filter that can best track the real 

degradation (Figure 5). 

3.1. Filter Design  

A base feature can be derived many ways, usually reflecting 

some amount of physical modeling. While a feature is 

sometimes a directly measured attribute like petal length, in 

PHM applications a feature can itself be an estimated quantity 

like an effective age or crack length. However, given 

limitations on sensing and observation, the computed feature 

will propagate these inaccuracies. Therefore, a signal 

processing step is required to improve the overall estimation. 

A dynamic filter modifies the feature in a manner that 

amplifies certain spectral content and suppresses others. 

Filters are commonly applied for noise rejection, modeling, 

estimation, and data fusion. The generic linear discretized 

filter that produces filtered output Y from input U has the 

form: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖

∗|𝑛
𝑖=1   (3) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖− 𝑦𝑖
∗

𝑦𝑖
| ∗ 100%𝑛

𝑖=1  (4) 

𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑖− 𝑦𝑖
∗)

2𝑛
𝑖=1

𝑛
   (5) 

 

 

 
Figure 5. Example noisy degradation feature leading to 

event 
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The filtered output at time instance k is Yk and the output at 

preceding time samples is Yk-1, Yk-2, … Yk-M. Similarly, the 

input at the current kth instance is Uk and the preceding values 

are Uk-1, Uk-2, … Uk-N. The filter output at the current time 

instance is therefore a weighted summation of current and 

previous inputs, and in some cases, previous outputs The 

filter coefficients ai and bj are chosen to achieve a spectral 

objective: suppression and amplification or a specified 

frequency range.  

The filter described in Eqn. ( Yk= ∑ ai* 𝑈𝑘−𝑖
𝑁
i=1 +

∑ bi*𝑌𝑘−𝑗
𝑀

j=1
   (6) is a specific case of a linear 

filter. However, the filter structure need not follow this form. 

In this paper, a filter is simply any operation that acts along 

the time dimension of the input and prior outputs to produce 

an output at the current time instance.  

In this case, we wish to evaluate the filter and with this 

evaluation, drive it to an optimal result. In the linear case 

above, we can assign coefficients ai and bj if we have the right 

objective function capturing performance. A description of 

such a performance evaluation criterion follows. 

3.2. Lead Time Aggregation  

Designing the appropriate filter requires an evaluation 

construct. Since the main objective is detection, the ideal 

filter will produce a signal that deviates most from its 

standard values during time intervals preceding known 

events and will return to its standard values once events have 

transpired.  

Capturing the filter behavior across all known events requires 

isolating the filter output for a set lead time interval before 

each event (Figure 6).  Each lead interval data point is 

averaged on a time or cycle basis with all other lead time 

traces at the same relative distance from the event. 

 

The lead interval value X at the ith sample before the event is 

the average of all trace feature values F across N events, at 

the ith value before each j event.  The resulting signal 

represents typical behavior for the signal ahead of an event.  

These aggregated averages X are then standardized using z-

score normalization. 

 

The normalized value Z is the aggregated signal value X 

subtracted by the original signal mean E(F) divided by the 

original signal standard deviation STD(F).  The z-score 

normalization has the advantage of allowing comparisons 

across all signals with different base units. Further, 

normalization produces a signal in terms of its standard 

deviation value so that the larger values, either positive or 

negative, are more anomalous. 

In some cases, there may be events which produce no 

detectable precursor, as may happen with a false negative. In 

that case, all filtered outputs X will be penalized equally, and 

the event will not play a role in filter selection. Conversely, 

there may be maxima in a signal that are not associated with 

an event. These false positives will raise the mean value E(F) 

and result in a lower normalized Z value. 

The aggregated and normalized pre-event trace Z of each 

filter can be considered at some fixed interval before the 

event for comparison (Figure 6).  In the figure, the 

normalized and averaged traces of two candidate features are 

plotted, and the time axis has time of event (tE), minimum 

lead time to act before the event (t0), and the initial time of 

the lead interval (ti). Filter 1 in Figure 6 exhibits maxima both 

well ahead of t0 as well as in the t0 to tE interval. The filter 

value between t0 and tE is irrelevant since there isn’t enough 

lead time to mitigate the event. However, too much lead time 

reduces useful life. Filter 1’s behavior is less desirable 

compared to Filter 2, which has a maximum just before t0, 

providing ample lead time ahead of the anticipated event 

without sacrificing much useful life. 

Yk= ∑ ai* 𝑈𝑘−𝑖
𝑁
i=1 + ∑ bi*𝑌𝑘−𝑗

𝑀

j=1
   (6) 

Xi= ∑ Fij/N
N

j=1
    (7) 

𝑍 = (𝑋 − E(𝐹))/𝑆𝑇𝐷(𝐹)   (8) 

 
 

Figure 6. Method of averaging the lead intervals before 

each event  
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3.3. Evaluation Methods  

The Z value at the critical lead interval, Z(t0), can be a useful 

gauge of the relative performance of a given filter compared 

to others.  This does not require any arbitrary rules or limits, 

only the process-defined, requisite minimum lead time.  

Table 1. Evaluation Methods for Lead Intervals 

In certain cases, the lead trace Z values can be better 

evaluated with a weighting function V (Figure 5) which rises 

monotonically from 0 at some ti< t0 up to 1 at t0, then 

returning to 0 for the t0 to tE interval. For a given filter, each 

Z value can be combined with its weight V in a weighted sum:   

 

The above equation ascribes a score S to the lead time 

averaged trace by weighting the i Z values with the weights 

Vi. High Z values near the event but before the critical 

actionable time (t0) will have high V weights and increase the 

score while the other Z values will have less bearing on the 

score. 

The V function can be customized to suit the filter objectives. 

Any monotonically increasing function over ti and t0 will 

isolate signal components which show greatest anomaly 

immediately before the critical actionable time (t0). A linearly 

increasing V value, either over cycles or flight hours, best 

captures the consumption of useful life on a cost basis. A 

sigmoid or step would acknowledge that any signal anomaly 

in the interval has comparable value, and loss of useful life is 

less important. 

Note that correlating with a linear V as a proxy for RUL is 

fundamentally different from measuring RUL prediction 

error. In the former case, we are aiming to converge on a 

degradation estimate that has some increasing trend near the 

event with enough lead time. In the latter case, there is no 

consideration for a critical lead time or the beginning of the 

lead time period, rather the entire history of the RUL estimate 

is compared to the actual RUL. 

3.4. Role of Signal Conditioning  

This approach to filter tuning offers a more meaningful 

alternative to the traditional precision, recall, and receiver 

operating characteristic of binary classifiers as well as a less 

ambiguous version of the RUL evaluation criteria. Those 

methods have niche applications which do not translate as 

well to a continuous signal which can be filtered and 

correlated.  

In this framework, the evaluation methods in Table 1 are both 

a measure of signal correlation to a discrete event and the 

mechanism for obtaining the optimal signal. If V is chosen to 

reflect the value of remaining useful life, the score reflects 

monetary benefit of the detector.  

Conceptually, the filter tuning method is a way to model 

missing physical elements in a catch-all filter, with the 

ultimate objective of producing a feature anomaly near 

failure events but with sufficient lead time. This idea is shown 

in Figure 2. True degradation is driven by both known and 

unknown sources.  Detection of the degradation is not perfect 

because confounding factors and sensing limitations 

respectively introduce noise and limit observability.  The 

resulting signals are arranged into features using the known 

degradation mechanisms so that the features are physically 

explainable.  The heuristics acknowledge the imperfections 

in the feature and attempts to compensate for them in order 

to estimate the degradation level. 

4. EVALUATION OF MAINTENANCE STRATEGIES 

Thus far we have considered the signal estimation problem, 

informed by physics and operational value, as an approach to 

improve the overall detection. Ultimately, however, the 

model must drive a maintenance action. This requires 

transforming an otherwise continuously varying degradation 

signal into a discrete decision point. A simple threshold 

comes with some implementation issues. First, the 

Method Formula Description 

Critical Z 
𝑋(𝑡0) − E(𝐹)

STD(𝐹)
 

Aggregated 

normalized value at 

min lead time t0 

Score S i(ZiVi)/i(Vi
2) 

Correlation to value 

function V 

Recovery R 𝑍(𝑡0) −  𝑍(𝑡𝐸 + ∆𝑡) Ability of feature to 

return to nominal 

Nominal 

Stability 
STD(𝑍(𝑡𝑖 − ∆𝑡 ∶ 𝑡𝑖)) Variance of nominal 

signal 

Monotonicity d/dt Z > 0 Tendency of feature 

to increase 

 

S = i(ZiVi)/i(Vi
2) (9) 

 

Table 2. Parameter Summary 

Parameter Definition 

Cu Cost of unscheduled action 

Cs Cost of scheduled action 

R Component operational value 

f Time-to-failure probability density 

v Proportion of units which fail before 

replacement 

 Expected component operational life 

E[f] Expected time-to-failure of distribution f 

T Life at which component is replaced 

J Per unit cost of maintenance program 

𝐽 Maint. program cost per unit life 
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underlying estimated degradation signal may not increase 

monotonically due to the previously explained estimation 

issues. Second, the placement of the threshold has 

implications for the performance of the overall model; too 

conservative and both lead time and recall suffer while in the 

other extreme precision suffers. Overall, the binary 

classification system (precision/ recall/ lead time/ receiver 

operator characteristic) doesn’t reduce to a single overall 

performance metric in a manner that can be interpretable as 

value to the operator. Rather, operator profitability should be 

the prime consideration when implementing a prognostic 

health model framework, and this consideration should be 

integral to the model implementation. 

Failure distributions such as the Weibull are a common 

approach for reliability modeling (Lei & Sandborn, 2018).  

However, fitting a distribution model to the failure data has 

its own challenges. A poor fit can sometimes be attributed to 

multiple failure modes, each requiring its own model. On 

occasion the different failure modes are imputed from the 

aggregated data.  

4.1. Objective Cost Models 

There have been several cost models developed for specific 

prognostic maintenance applications. Pattabhiraman, Gogu, 

Kim, Haftka, and Bes (2012), examined a cost model for 

structural airframe maintenance, taking into consideration the 

benefits of prolonging the regular maintenance cycles. In that 

application, the prognostic model extended the regular repair 

schedule but provided less advance notice and put certain 

maintenance schedules out of synch. Lei and Sandborn 

(2016) similarly developed a cost model for wind turbine 

maintenance. Key elements of that model were downtime 

costs and the monetary value of remining useful life of a non-

failed component. 

Tian et. al. developed a cost model for cases where the failure 

distribution is known. Their analysis considered the expected 

cost of repair normalized by expected life of the component. 

When the failure probability distribution is available (f(t), 

Figure 7), a service interval T may be set strategically, 

without knowing any information about the failure mode or 

degradation state. This is useful in cases where the part must 

be replaced quickly in order to limit operational disruption. 

Diagnosis is a secondary concern. This maintenance 

approach has been termed ‘soft life’ as a reference to ‘soft 

reliability’ when removals are not prompted by an out-of-

spec condition (Geudens, Sonnemans, Petkova, and 

Brombacher, 2005). 

Estimating the ideal replacement interval T requires 

developing an understanding of the overall value and costs 

associated with the strategy.  First, we define a set of 

parameters. Cu and Cs denote the costs associated with taking 

an unscheduled and scheduled action, respectively.  

Generally, Cu >> Cs, and this underscores the benefit of 

proactive maintenance. Let R denote the component 

operational value.  The value of R governs how much value 

is lost when the functioning component is removed prior to 

failure. Let f(t) denote the probability density of the time-to-

failure of the component (Figure 7). Let E[f] denote the 

expected value of f(t). The focus of this discussion will be on 

the effective maintenance cost per unit J and this cost per unit 

life J’=J/ . All parameters are summarized in Table 2. 

4.2. Run to Failure Cost Model 

In the trivial scenario, there is no prognostic maintenance 

plan, and components are run until failure. The maintenance 

cost J is simply the cost of an unscheduled removal Cu. 

Normalizing maintenance cost over the expected life  yields 

the following set of relationships:  

  

In this case, the expected life until failure E(f) is equivalent 

to the expected component life , which can be expressed in 

𝑱 =  𝑪𝒖                     (10) 

𝐽 =
𝐽

𝜇
=  

𝐶𝑢

E(𝑓)
  (11)                                    

 
 

Figure 7. Distribution of part failures 

 

 
 

Figure 8. Time series of analytic lead times to failure g and 

operational time h 
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terms of cycles or operation time. The life measurement units 

are chosen based on failure mechanism. The maintenance 

cost per life unit, J’=J/ , captures an overall operational cost 

objective, as shown in Eqn. (𝐽 =
𝐽

𝜇
=  

𝐶𝑢

E(𝑓)
  (11). 

4.3. Fixed Replacement Interval Cost Model 

We can apply insights from the above scenario to the soft life 

case where all components are removed after a fixed period 

of time, T, even if they are still functional. Some fraction of 

the component population will fail before T; this proportion 

is represented with v in (12) below.   

𝑣 = ∫  𝑓𝑑𝑡
𝑇

0

= 1 − ∫  𝑓𝑑𝑡
∞

𝑇

 (12) 

It is possible to use the distribution of the time-to-failure 

(Figure 7) to determine the expected costs, which are given 

by Equations (13)-(14) below: 

𝐽 =  𝐶𝑢𝑣 + 𝐶𝑠  (1 − 𝑣) +
𝑅

𝜇
 ∫ (𝑡 − 𝑇) ∗ 𝑓 𝑑𝑡 

∞

𝑇

 (13) 

𝜇 = ∫ 𝑡 𝑓𝑑𝑡
𝑇

0

+ 𝑇 ∗ (1 − 𝑣) 

 
 (14) 

The first and second term in ((13) represent the costs of an 

unscheduled and scheduled actions multiplied by the 

probabilities of those actions occurring, respectively.  The 

third term in ((13) represents the residual value of the 

removed component. Equation ((14) represents the expected 

operational life  for a component with a proactive removal 

program. The first term represents the life of units which fail 

before the scheduled removal time. 

The cost of an unscheduled repair is several times larger than 

a scheduled repair due to the emergency nature of an 

operational failure.  A larger cost difference favors earlier 

intervention.  However, as T shrinks, R/  and the integrals in 

the last two terms grow.  An ideal balance (minimum J) is 

achieved when the reduction in unscheduled repairs is not 

justified by an increase in lost RUL. 

4.4. Prognostic Analytic Cost Model  

A prognostic analytic model aims to remove components 

before failure based on a precursor alert. The objective is to 

avoid the costs associated with unanticipated events, however 

the detection may be imperfect and the removed component 

is still fully functional. If the analytic alerts, then there is a 

lead time g between the alert and the anticipated failure event 

and an operational life h between installation and the first 

alert-driven removal (Figure 8). For this discussion, only the 

first instance of the alert in the inter-event time period is 

considered. Although there may be several threshold 

violations after the first alert, lead and operational times will 

be measured from the first instance since action is triggered 

by that indicator. 

The framework for the prognostic model builds on the 

elements of the soft life. First, the expected life of a 

component must be segregated into two groups. There is a 

subset where the prognostic analytic detects the degradation 

and the component is removed before actual failure. These 

components will have their operational life reduced by the 

prognostic lead time, and their life distribution is shown as h 

in Figure 9.  There is also a second group where the detection 

fails; either the failure mode was not captured, or the 

detection did not provide enough lead time. The life 

distribution of this set is shown as k. 

The cost framework is constructed by considering the model 

configuration and associated costs. Let x denote the vector 

of parameters associated with an analytic.  For example, this 

vector will contain the value of the alerting threshold.  

Table 3. Parameter Definitions 

Parameter Definition 

x Vector of analytic parameters 

t Unit of life (time or cycles) 

t0 Time or cycle minimum for action on alert 

g(t,x) Probability density of lead time from first 

alert to event 

h(t,x) Probability density of operational life from 

installation to first alert 

k(t,x) Probability density of time-to-failure if 

analytic fails to alert 

p(x) 

w(t,x) 

Probability of alert before failure 

Fraction of alerts with lead time less than t0 

J(x) Objective cost of maintenance 

Ja(x) Cost if analytic alerts 

𝐽(x) Component maint. cost per unit life 

 

 

 
 

Figure 9. Probability distribution of component operation 

time for no-analytic case f, the case when an analytic 

prevents unscheduled failures h, and for the case when 

detection fails k. 
 

Figure 10. Distribution of analytic lead times to failure g 
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𝜇(𝒙) = 𝑝(𝒙)E(ℎ(𝑡, 𝒙)) + (1 − 𝑝(𝒙))E(𝑘(𝑡, 𝒙)) (15) 

The probability density of lead times is denoted by g(t, x)  

(Error! Reference source not found.). The value t0 denotes 

the time threshold for acting on an analytic alert.  An alert is 

not actionable if the lead time to failure, g(t, x) is less than t0. 

These alerts can be represented by w(t, x) in the equation 

((16) below. 

𝑤(𝑡, 𝒙) =  ∫ 𝑔(𝑡, 𝒙)𝑑𝑡
𝑡0

0

= 1 − ∫ 𝑔(𝑡, 𝒙) 𝑑𝑡
∞

𝑡0

 
(16) 

 

(16) 

Let p(x) denote the probability of alerting before failure, 

irrespective of lead time. This quantity is analogous to recall 

in discrete classifiers. In the trivial case, where p(x) = 0, k(x,t) 

= f(t) from the no-analytic example.  

The focus of this discussion will be the cost J(x) of 

implementing an analytic with the parameters x.  Let J’(x) 

denote the cost per unit life.  Let Ja(x) denote the cost on the 

condition that the analytic alerts. All these pameters are 

summarized in Table 3. 

Whether there is an unscheduled or scheduled event depends 

upon whether the analytic alerted successfully with enough 

lead time. Thus, it follows that 

𝐽(𝒙) =  𝑝(𝒙) ∗  𝐽𝑎(𝒙) +  (1 − 𝑝(𝒙)) ∗ 𝐶𝑢 (17) 

Given the distribution of lead times g(t,x) (Error! Reference 

source not found.), it is possible to determine the expected 

cost of acting on an alert.  This can be done in a similar 

fashion as in equation (12). 

𝐽𝑎 =  𝐶𝑢𝑤 + 𝐶𝑠 (1 − 𝑤) +
𝑅

𝜇
 ∫ 𝑡 ∗ 𝑔 𝑑𝑡 

∞

0

 (18) 

Finally, in order to determine the cost per unit time or unit 

cycle of implementing the analytic, we normalize the cost per 

unit by the expected life span 

𝐽(𝐱) =
𝐽(𝒙)

𝜇(𝒙)
                          (19) 

Equation (19) represents the component expected operational 

life for an analytic that has probability of alert p, distribution 

of time between maintenance and next alert h, and life 

distribution in absence of alert k. As before, 𝐽(x)is a gauge of 

the per cycle or per time cost of a prognostic analytic. The 

relative benefit of the analytic is determined when (𝐽(𝐱) =
𝐽(𝒙)

𝜇(𝒙)
                          (19) is compared to (𝐽 ﷧ =

𝐽

𝜇
=

 
𝐶𝑢

E(𝑓)
  (11). 

With this construct, we can look specifically at the 

unscheduled, scheduled, and RUL components of 

maintenance cost J in terms of p, w, R, and . 

𝐽 = 𝐶𝑢(𝑝𝑤 + (1 − 𝑝)) + 𝐶𝑠𝑝(1 − 𝑤) + 
𝑅

𝜇
𝑝E(𝑔)  

(20) 

𝜇 = 𝑝E(ℎ) + (1 − 𝑝)E(𝑘)  (21) 

The equations ((20)-((21) are a more intuitive and compact 

form of (15)-(18). The overall objective is to minimize 𝐽 =
𝐽/𝜇. This means that terms like p, which determines whether 

a failure can be detected before onset, must be high, leading 

to a higher proportion of components in distribution h instead 

of k. This is the same concept as recall. Further, we wish to 

maximize E(h), meaning we want a significant lifespan 

before the first alert. This is equivalent to precision. Third, 

we would like a small lead time (E(g)) that is greater than t0 

but not too much greater or we will have to contend with the 

penalty of excess remaining useful life.  

4.5. Soft Life and Prognostic Model  

Every component in the undetected distribution k is subject 

to the high unscheduled maintenance cost. One approach for 

reducing the k is to introduce a fixed time interval T for unit 

replacement along with the prognostic alerts. This means 

certain components are removed proactively when the 

analytic alerts with enough lead time t0 and the total life is 

less than T, others are removed without any prognostic alert 

at T because T either arrived before the alert or the non-

alerted failure, and a third category has no prognostic alert 

and fails before T.  

In this case, the distributions h and k are segregated into hv, 

and kv for the portions of h and k that are less than T, and hr, 

and kr for the portions of h and k that are greater than T. 

ℎ𝑣 = ∫  ℎ 𝑑𝑡
𝑇

0

     ℎ𝑟 = ∫  ℎ 𝑑𝑡
∞

𝑇

 (22, 23) 

𝑘𝑣 = ∫  𝑘 𝑑𝑡
𝑇

0

     𝑘𝑟 = ∫  𝑘 𝑑𝑡
∞

𝑇

 
(24, 25) 

The probability of falling into one of these sub-categories, for 

instance hv and kv, is as follows: 

𝑃(ℎ𝑣) = 𝑝(𝒙) ∗
ℎ𝑣

ℎ𝑣 + ℎ𝑟
 (26) 

𝑃(𝑘𝑣) = (1 − 𝑝(𝒙)) ∗
𝑘𝑣

𝑘𝑣 + 𝑘𝑟
 

(27) 

Note that both h and k are partial distributions; the entire 

population is reflected in the sum of h and k. We can express 

the expected life of a component with the combined approach 

as follows. 

𝜇 = 𝑃(ℎ𝒗)E(ℎ𝒗) + 𝑃(𝑘𝒗)E(𝑘𝒗) (28) 
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+𝑃(ℎ𝒓)E(ℎ𝒓) + 𝑃(𝑘𝒓)E(𝑘𝒓) 

 

The lead time distribution g will now be truncated to g’ with 

corresponding short lead time segment w’ because it is not 

possible to have a life span greater than T. Therefore, there is 

no scope of alerts with lead time greater than T.  

𝐽 = 𝐶𝑢(𝑃(ℎ𝑣)𝑤′ + 𝑃(𝑘𝑣)) 

+𝐶𝑠(𝑝(1 − 𝑤′) + 𝑃(𝑘𝑟)) 

+ 
𝑅

𝜇
(𝑃(ℎ𝑣)E(𝑔′) + 𝑃(ℎ𝑟)(E(𝑓) − 𝐸(ℎ𝑟)) 

+𝑃(𝑘𝑟)(E(𝑓) − 𝐸(𝑘𝑟)) 

(29) 

The terms in equation ((29) are analogous to ((20) in that the 

three terms reflect the unscheduled, scheduled, and loss of 

remaining useful life costs.  

5. IMPLEMENTATION FRAMEWORK 

In section 3 we presented a method to amplify the expected 

degradation element in a noisy signal. The objective was to 

find a way to filter optimally such that the degradation was 

evident with only minimal noise. In this manner, we improve 

the correlation between the feature and the discrete event. In 

section 4, we considered the relative costs of acting on an 

analytic alert. 

The overall framework is a two-part optimal feature and alert 

development. The steps are as follows: 

1. Model the expected degradation progression with an 

increasing function (Figure 6) 

2. Average the signal traces in the intervals leading up to 

each event (Figure 6) 

3. Optimize a filter (or similar time series model) using an 

evaluation like score from Table 1 as an objective 

function 

4. Find a threshold and hyperparameter set that minimizes 

the per unit life cost of the analytic 𝐽 ̃from equations 

((20)-((21), compare to no-analytic and fixed 

replacement interval (soft life) cases 

5. Consider whether there is an advantage to implementing 

a fixed replacement interval along with the prognostic 

analytic 

With this framework, the model development has two 

optimization steps. The first one, in step 3, will reduce noise 

in the data. Noise is anything in the signal that does not 

correlate to component degradation. Once noise cancellation 

methods are applied, any residual noise may be traced to 

failure cases where there was no detectable degradation (false 

negatives) or cases where there was a degradation signature 

without an immediate recorded event (false positive). Given 

these detection challenges, the filtered signal will produce the 

best approximation of degradation. 

Once the signal is as clean as possible, the second 

optimization step is for the discrete, decision-making 

elements (step 4). The signal must be subject to a decision 

threshold or some other hyperparameter driven heuristics to 

generate a definitive alert. These must be set in a manner to 

optimize the costs associated with the analytic: the loss of 

remaining life and the reduced operational time balanced 

against the savings from avoiding unscheduled events. 

6. NUMERICAL EXAMPLE 

An example case has been constructed to demonstrate the 

described method on synthesized data. We will begin by first 

demonstrating the signal evaluation and processing methods 

of section 3. We consider a component which has a lifespan 

distributed normally with mean 1250 cycles and standard 

deviation 250 cycles. Over the course of 10000 cycles, there 

are 7 failure events. 

A degradation signature is modeled as a linearly increasing 

signal in the 500 cycles leading up to the event, and zero at 

all other points. This represents a form of physical process 

where the degradation is evident only in the final stage of life 

and progresses at a constant rate until failure. In many 

practical scenarios, the degradation signal may not always be 

present before failure. To simulate this case, the degradation 

element has been removed for failure number 4. This is a 

false negative example. 

A noisy indicator will contain traces of the component 

degradation and noise from various sources. For this 

example, the noise is a set of 8 sinusoidal signals with random 

amplitudes up to .65 and frequencies spanning .01 to .03 Hz. 

Then, uniform random noise is added with zero mean and 

amplitude 2.5. The resulting noisy degradation signal is 

shown in Figure 11. This represents a raw sensor signal. 

This raw signal now contains weak signatures prior to each 

event but one. Where the signatures exist, they are almost 

indistinguishable against the noise. A plot of lead time traces 

prior to each of the seven events is shown, mean-normalized, 

in Error! Reference source not found.. The individual 

profiles are the signal value subtracted by the mean and then 

divided by the standard deviation, in the 500 cycles 

immediately before each event. Even though Profile 4 has no 

degradation component, it is similar to all the other profiles 

which do contain the linear degradation. 

Next, an optimal filter was developed in the form of equation 

(6). Note that we could have also used a nonlinear time series 

approach like a deep neural net or Gaussian process 

regression (GPR). The coefficients ai and bi were chosen to 

maximize the objective function, which was simply S from 

Table 4.  Running multivariate optimization yielded a0-

=0.8060, a1=-0.7890, b1=1.000, b2=-0.9295, b3=1.1388E-3. 

The normalized filtered signal traces leading up to each event 

are shown in Error! Reference source not found., with the 

resulting time series shown in Figure 14. Now there is a clear 
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separation between the profiles containing the degradation 

and profile 4, the one without degradation. This indicates that 

the filter is amplifying the modeled degradation and 

suppressing the attendant noise.  

Note that even with the filter, some residual noise remains. 

This left over noise is in some part related to the omission of 

event 4’s degradation, in effect pushing the filter to retain 

some noise in attempt to find the signal. 

Table 2 summarizes the performance of the filter across each 

event and for two of the evaluation metrics from Table 1. 

Although the filter was optimized for the score metric S, it 

also improves on the critical Z metric for the cases where 

degradation was present. Event 4 did not have a degradation 

signal so the metrics decrease after the filter suppresses noise. 

As shown in Table 2, the overall score value S improved from 

.752 to 1.436, and the overall critical Z also improved from 

.919 to 1.762. 

Next, we will expand our database of failure events and 

examine the relative tradeoffs between the cost of acting on a 

prognostic alert against not acting. The cost of a prognostic 

maintenance strategy is represented by 𝐽, the cost per unit life 

as represented in equations ((20)-((21). The 𝐽 ̃of a run to 

failure program is represented in equation (𝐽﷧ =
𝐽

𝜇
=  

𝐶𝑢

E(𝑓)

  (11). The relative cost savings is the 

comparison of the two is the ratio of the two expressions.  

In this example, we let Jrtf and  rtf represent the run to failure 

case. 

𝐽

𝐽𝑟𝑡𝑓
= (𝑝𝑤 + (1 − 𝑝)) + 

𝐶𝑠

𝐶𝑢
𝑝(1 − 𝑤) + 

𝑅

𝐶𝑢𝜇
𝑝𝐸(𝑔)  

(30) 

𝜇/𝜇𝑟𝑡𝑓 = 𝑝E(ℎ)/E(𝑓) + (1 − 𝑝)E(𝑘)/E(𝑓)  (31) 

 

 
Figure 11. Synthetic data incorporating signal and noise – 

degradation is omitted for the fourth event 

 
 

Figure 12. Filtered signal traces with a larger difference 

between the average and non-degraded fourth profile  

 
Figure 13. Baseline normalized traces showing behavior 

before each event, with profile n signature before event n. 

 
Figure 14. Resulting filtered signal 
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Equations ((30) and ((31) can be evaluated for the numerical 

example leaving symbols for the costs. We first institute a 

threshold of 3.5 and an alerting criterion that generates an 

alert when the threshold is breached for any 10 cycles in a 

consecutive 25 cycle window. With these values, the run to 

failure f, remove at alert h, and the missed detection k 

distributions are shown in the top chart of Figure 15. The lead 

time distribution g is shown in the bottom of Figure 15. There 

were 1000 total events with alerts preceding 830, so the 

recall, p, is 0.83. For simplicity, we have left the precision at 

1.0. Accordingly, the ratio of the expected life / rtf from 

(29) is 0.8566, so the average life  =1289.3 cycles. 

If we assume a min lead time requirement (t0) of 115 cycles, 

the value for w from Eq. ((16) is 3.91E-3. So the relative 

advantage of prognostics from Eq. ((28) becomes: 

𝐽

𝐽𝑟𝑡𝑓
= 0.1467 +

𝐶𝑠

𝐶𝑢
0.8533 + 

𝑅

𝐶𝑢
 0.1785 (32) 

Ultimately, we must balance the cost reduction captured in 

Eqn. ((32) with the loss of life in Eqn. ((31). So, we employ 

the ratio from Eqn. (𝐽(𝐱) =
𝐽(𝒙)

𝜇(𝒙)
                          (19) to 

provide the complete picture. 

𝐽

𝐽𝑟𝑡𝑓
=

𝐽/𝐽𝑟𝑡𝑓

𝜇/𝜇𝑟𝑡𝑓
= 0.1713 +

𝐶𝑠

𝐶𝑢
0.9961 + 

𝑅

𝐶𝑢
 0.2084 (33) 

Equation ((33) captures the overall benefit of the prognostic 

algorithm, taking into account the factors of performance like 

lead time to alert, E(g), ability to capture the degradation 

(recall p), and how consistently the first alert occurs near the 

end of life (precision, E(h)).  In this case, the average lead 

time E(g) is relatively small partly since we did not allow for 

any false positives. Therefore, the main cost component is the 

ratio between the scheduled and unscheduled maintenance, 

Cs/Cu.  

7. CONCLUSIONS 

The framework presented here is fundamentally a two-step 

evaluation method for a prognostic analytic.  While the 

analytic may be based on an understanding of physical 

degradation, unknown effects, confounding factors, and 

signal limitations will present estimation challenges. The 

level of signal correlation to an expected degradation 

progression is one type of evaluation metric.  

Second, the decision point of when to act can be separately 

evaluated. Prognostic alerts are most valuable when the 

relative benefit of reducing unexpected failures is balanced 

with the cost of reducing useful life  

The discrete classifier evaluation methods (Fawcett, 2006) 

require arbitrary boundaries between true positives and false 

positives, and these metrics change with the threshold value. 

Attempts to disambiguate the threshold, like the receiver 

operator characteristic (ROC) are not well suited for 

prognostic applications which use continuous sensor signals. 

The RUL evaluation approaches are an improvement on the 

binary classifier, but they unnecessarily consider errors at 

large RUL (for MAE and RMSE) or the importance of that 

error grows geometrically (MAPE). 

The approaches presented here address those shortcomings 

by evaluating behavior in the lead intervals ahead of events 

and considering key behavior patterns like whether the signal 

is anomalous (critical Z from Table 1) or whether the signal 

roughly tracks the RUL (score from Table 1). 

Once the detection problem is addressed, the decision 

threshold can be determined based on operational value. The 

paper has proposed a cost model to represent the overall cost 

of the prognostic algorithm compared to a baseline run to 

failure and a fixed interval approach. 

 
Figure 15. Distributions for (top) run to failure f, remove 

at prognostic alert h, missed detection k, and (bottom) 

lead time between alert and failure g 

Table 4. Evaluation Results from Example 

  
 Score S Critical Z 

Event Life Degraded Base Filter Base2 Filter2 

1 1858 Yes 0.953 1.777 1.169 2.384 

2 1656 Yes 1.040 1.946 1.589 2.792 

3 1242 Yes 0.895 1.773 0.422 1.519 

4 1187 No -0.311 -0.736 0.988 0.401 

5 1045 Yes 0.872 1.790 1.084 1.702 

6 1634 Yes 0.866 1.626 0.332 1.677 

7 848 Yes 0.951 1.878 0.846 1.858 

AVG 1353  0.752 1.436 0.919 1.762 
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 These techniques segregate the problem into first, evaluating 

the signal to event correlation, and second, evaluating the 

decision thresholds. The nature of communication around 

prognostics should adopt this continuous-discrete duality 

mindset and evaluate models at both levels. 

NOMENCLATURE 

Cs Cost of scheduled action 

Cu Cost of unscheduled action 

E(f) Expected time-to-failure of distribution f 

F Feature trace tracking a measure of degradation 

f Time-to-failure probability density 

FN False negative 

FP False positive 

g Distribution of time from first alert to event 

h Distribution of life from installation to first alert 

J Per unit cost of maintenance program 

Ja Per unit cost of maintenance when analytic alerts 

𝐽 Maint. program cost per unit life (J/) 

k Distribution of life when analytic fails to alert 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

P Fraction of failure events detected (Recall) 

R Component operational value 

RMSE Root mean squared error 

ROC Receiver operating characteristic 

RUL Remaining useful life 

S Score-based correlation of lead interval to event 

STD Standard deviation  

T Life at which component is replaced 

t Unit of life (time or cycles) 

t0 Minimum time interval required to avoid event 

tE Time of the event 

ti Time marking the beginning of the lead interval 

TP True positive 

TN True negative 

X Averaged lead interval before events 

Z Z-score normalization of the feature 
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