

1

An Ontology for Prognostic Health Management in Spacecraft

Avionics

Michael C. Halvorson1, Noah Moyers2, L. Dale Thomas1

1University of Alabama in Huntsville, Complex Systems Integration Lab, Huntsville, AL, 35899, USA

mch0043@uah.edu

ldt0001@uah.edu

2Auburn University, Auburn, AL, 36849, USA

ncm0034@auburn.edu

ABSTRACT

Prognostic Health Management (PHM) is the disciplined

application of measurement, monitoring, and support

strategies to protect structural, electrical, or data entities

precluding the failure of measured systems in all phases of

operation. Model-Based Systems Engineering (MBSE) can

be used to formalize system structure, operations, behavior,

and requirements using an Architecture Framework (AF),

Process Framework (PF), modeling language, and ontology;

whereas the AF, PF, and modeling language may be specific

to the program or mission employing MBSE, ontologies may

be developed specific to a given domain. The PHM domain

considers failure modes, effects, and criticality, and

ontological system analysis in this domain can inform system

structure, operations, behavior, or requirements. A reference

ontology for the PHM domain in spacecraft avionics is

presented here including aspects of existing ontologies such

as the Basic Formal Ontology (BFO), a Top-Level Ontology

(TLO) newly recognized by the International Organization

for Standardization (ISO), the Information Artifact Ontology

(IAO), and the Space Object Ontology (SOO). A distinction

is made between a full PHM domain ontology, which would

include many mechanical or electrical systems with myriad

purposes, and a PHM domain ontology specific to spacecraft

avionics. Present ontological development originated using

the parlance and format of BFO and IAO in Stanford

University’s Protégé software but diverged to include

International Union of Pure and Applied Chemistry (IUPAC)

terminology and classifications. When interacting with this

ontology, engineers seeking to characterize system-specific

failure modes, effects, and criticality can query the ontology

with their hardware or software entities to obtain failure

information specific to the operation of their system in a

given operational environment. While this domain ontology

is robust, the authors do not claim it to be complete or

validated for all spacecraft avionics. It should be considered

version one of a useful PHM tool with continual updates

occurring after peer review and feedback.

1. INTRODUCTION

All models are wrong, but some are useful (Box, 1976).

Ontologies are models of the concepts inherent to a given

domain, how those concepts are differentiated taxonomically

with increasing levels of specificity, and how those concepts

categorically relate to one another. They are agreements on

conceptual representation with rigorously scrutinized

definitions and are only useful if they serve some accessible

purpose (Smith, 2018; Seppälä, Ruttenberg, & Smith, 2017).

For Prognostic Health Management (PHM) engineers, that

purpose is the characterization of system failure. At the

Institute of Electrical and Electronics Engineers (IEEE)

Aerospace Conference in March 2022, experts discussed

misconceptions of spacecraft PHM inherent to newcomers

and veterans alike. Some engineers misunderstood concepts

inherent to PHM whereas others debated definitions of

established PHM material. It was clear an ontology for PHM

in spacecraft avionics, an agreement on PHM entity

taxonomy, definitions, and relations with explicit conceptual

usage, would be vital as a foundation for intellectual

communication, but it needed to be useful.

Not all ontologies are made equal. The term ontology was

first used in the Ogdoas Scholastica by Jacob Lorhard in

1606, but the first ontology is considered Aristotle’s

Categories (Smith, 2022) wherein the categories of existing

things were defined as substance, quantity, quality, relation,

place, time, position, doing, having, and being affected.

Semantically, these are problematic, but it was a start. In

1998, the Gene Ontology (GO), arguably the most successful

and globally utilized ontology (Smith, 2018), was created for

Michael Halvorson et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

2

rigorous genome characterization, which spawned the

creation of the Open Biological and Biomedical Ontologies

(OBO) Foundry. The OBO Foundry acts as a hub for other

biological ontologies to be created as spokes wherein OBO

entity definitions are utilized in spoke ontologies; it is still in

use as of this writing (Jackson, Matentzoglu, Overton, Vita,

Balhoff, Buttigieg, Carbon, Courtot, Diehl, Dooley, &

Duncan). Biology and genomics received the majority of

ontological attention until 2004 when the Web Ontology

Language 1.0 was released and applied to Stanford

University’s Protégé software for ontology development

(Musen, 2015). Anyone could create ontologies, so there

were quickly many models that were useful only to narrowly

defined applications. Nearly all those domain ontologies

failed to be useful due to concept redundancy between

multiple ontologies, inconsistency in concept definitions, and

a lack of common development methodology (Smith, 2018).

Centrally, new domain ontologies needed a common Top-

Level Ontology (TLO), or common root structure, and

methodology for taxonomizing concepts or entities. Thus, the

Basic Formal Ontology (BFO) was born (Smith, Kumar, &

Bittner, 2005).

The BFO, having received multiple updates since its

inception, is primarily divided into continuants and

occurrents with a root node of entity. A continuant is defined

as, “an entity that exists in full at any time in which it exists

at all, persists through time while maintaining its identity, and

has no temporal parts.” An occurrent is defined as, “an entity

that has temporal parts and that happens, unfolds, or develops

through time.” Ontological definitions for the specialization

of a given entity are best written in a specific style (Seppala

et al., 2017), e.g. “an [entity] that/which” followed by the

aspect of the entity that specializes it from the higher-level

entity. Entity, as the root node for BFO, does not have a

definition because it does not have a higher-level node to

specialize from. Definition creation in an ontology for PHM

in spacecraft avionics becomes problematic because most

widely accepted definitions for complex engineering

concepts stem from the ISO which sometimes provides

multiple definitions for a concept and does not adhere to the

ontological style of definitions. A visual breakdown of the

BFO taxonomy is provided for continuant in Figure 1 and

occurrent in Figure 2.

Figure 1: BFO Taxonomy of Continuant

Figure 2: BFO Taxonomy of Occurrent

 3

Continuant is specialized into generically dependent

continuant, which includes data entities, independent

continuant, which includes objects, and specifically

dependent continuant, which includes qualities such as color.

Operating systems, protons, circuits, permanence, Mean

Time To Failure (MTTF), and induced faults are all examples

of continuants. Occurrent is specialized into process, process

boundary, spatiotemporal region, and temporal region. Data

encryption, particle interactions, startup, and shutdown are all

examples of occurrents. These concepts provide the basis for

which to define PHM-specific concepts and to relate non-

PHM domain ontologies also using the BFO as a foundational

ontology.

Avionics here means electrically-interfaced hardware and

controlling software, and PHM for spacecraft avionics

contains many aspects that could merit domain ontologies of

their own. The most important concept is reliability;

engineers only perform PHM to ensure systems function as

intended. The hardware engineers use to build spacecraft

must be taxonomized because it is the subject of mechanical

or electrical health monitoring, and spacecraft software is

increasingly critical with the advent of components like

software-defined radios. Taxonomizing software also allows

a relation of software to physical bit representations on

memory devices and corresponding software functionality,

meaning a fault incurred at one or more bits may result in an

error in one or more granular software functions.

The Space Radiation Environment (SRE) contains photons,

protons, neutrons, electrons, and heavy ions (Nöldeke, 2015)

which interact with spacecraft hardware resulting in

quantifiable metrics such as Total Ionizing Dose (TID), Non-

Ionizing Energy Loss (NIEL), Charged Particle Heating

(CPH), Single Event Effects (SEE), and both surface and

deep dielectric charging. Each SRE features different particle

types and fluxes, each particle type can cause different

radiation effects based on its energy and target material, and

each radiation effect can result in differing faults that may or

may not manifest as errors.

Ontologies have a primary use case that can be expressed in

various methods, but the governing user interaction is, for this

application, to assert system hardware, function, and SRE

using input queries and generate mission-tailored products

such as the relation of software errors to possible hardware

faults. Ontologies should exist in the background of user-

friendly tools, and querying occurs by using a GUI-based

data input and processing wrapper around an ontology built

in some ontological development tool such Protégé. Well-

made ontologies can also be used as reference dictionaries

because of their rigorous definition structures, another use

case, but ontological development tools are not user-friendly

dictionaries.

A graphical example of relations stemming from a queried

ontology is provided in Figure 3 and described here using the

Single Event Dielectric Rupture (SEDR) SEE on a

Complementary Metal-Oxide Semiconductor (CMOS). A

CMOS is a Metal-Oxide Semiconductor Field Effect

Transistor (MOSFET). A MOSFET has a gate. A MOSFET

gate has an oxide layer, which is a dielectric layer. A

dielectric layer has a dielectric displacement field. Protons

may exist in a given SRE. A proton strike ionizes a MOSFET

gate oxide layer. Ionization of a MOSFET gate oxide layer

breaks down the dielectric displacement field. Transistor

function is dependent on the dielectric displacement field.

Lack of transistor function is a fault. A fault manifests as an

error when sensitized by a particular system state. The

ontology taxonomy and relationships therefore establish how

hardware faults can be initiated in a given SRE, and faults

manifesting as software errors due to the lack of hardware

functionality can be related to functions in spacecraft

software. By querying the ontology in this way, an error

manifesting in software can provide insight into hardware

health, and PHM is performed.

.

Figure 3: Query Example in the Domain Ontology for Spacecraft Avionics

 4

2. ONTOLOGY DEVELOPMENT METHODOLOGY

There are many ways to create a domain ontology;

historically, most result in failure or lack of adoption (Smith,

2018). The Calspan-University of Buffalo Research Center

(CUBRC) has been researching ontological development

through the Data Science and Information Fusion Group

since 2008 (CUBRC, 2022) and has developed the Common

Core Ontologies (CCO) method. CCO is rooted in the Basic

Formal Ontology (BFO) and extends BFO through 9 other

“common” ontologies intended to provide a basis for

enterprises to build knowledge networks (CUBRC, 2022).

Enterprises using CCO can build domain ontologies using

CCO definitions and instantiate enterprise-specific content

with predefined relations. Public, non-CCO linkages of

domain ontologies with common Top-Level Ontology (TLO)

structures are known professionally as the semantic web, a

term coined by internet inventor Tim Berners-Lee, and

colloquially as Web 3.0 (Smith, 2018). For large enterprises

with broad scope, starting with CCO is arguably the best

method for creating domain ontologies. However, CCO

includes ontologies for currency units, units of measure, and

geospatial regions not relevant for the scope of this work.

There are outstanding philosophical issues within BFO which

present challenges for engineers characterizing hardware

interacting with subatomic particles. Entities such as liquids

and energy do not yet have an accepted categorization within

BFO (Smith, 2018), and the continuant division of material

versus immaterial entities does not coincide with how the

standard model of particle physics organizes relations

between matter and energy.

For this work, the BFO was utilized as a TLO with minor

changes. Non-CCO domain ontologies were considered for

conceptual inclusion, and domain concepts relevant to PHM

in spacecraft avionics were taxonomized. International Union

of Pure and Applied Chemistry (IUPAC) classifications were

considered, relations between entities were created using the

Resource Description Framework (RDF) format, and

definitions were compared to ISO standards. While ISO,

International Electrotechnical Commission (IEC), and IEEE

standards, specifically ISO/IEC/IEEE 24765:2017: Systems

and Software Engineering – Vocabulary (ISO, 2017), were

recognized as accessible sources for ontological definitions,

discussed is a lack of rigor and clarity in some ISO

terminology content.

The two non-CCO ontologies considered for inclusion were

the Space Object Ontology (SOO) for its characterization of

the relation between spacecraft parts and functions (Cox,

Nebelecky, Rudnicki, Tagliaferri, Crassidis, & Smith, 2016)

and the Information Artifact Ontology (IAO) for its

representation of software entities (Smith, Malyuta,

Rudnicki, Mandrick, Salmen, Morosoff, Duff, Schoening, &

Parent, 2013). There exists an Information Entity Ontology

within CCO, but without using the rest of CCO it is baseless.

2.1. Using the Basic Formal Ontology

ISO/IEC 21838-1 defines the requirements of a TLO (ISO,

2021), and ISO/IEC 21838-2 recognizes the BFO as a TLO

(ISO, 2021). Both the BFO and its derivation into the present

PHM domain ontology for spacecraft avionics are reference

ontologies per ISO/IEC 19763-3 (ISO, 2020), meaning all

child entities have at most one parent. When child entities

have more than one parent or when instances of entities are

mixed with ontological categories, the ontology becomes an

application ontology. Reference ontologies may be reused

and updated as needed for use by the general community

whereas application ontologies are specific to a narrow field

or problem and are generally not reusable.

Because the present PHM ontology does not strictly adhere

to BFO or CCO structures, it is not conformant to the

Metamodel Framework for Interoperability (MFI). Being

MFI-compatible per ISO/IEC 19763-3 allows direct merging

of disparate ontologies because they share the same TLO or

broader CCO structure. If engineers at disparate companies

create distinct ontologies using a common, MFI-compatible

TLO without changing the TLO, merging ontologies in

Protégé is easily performed using the “refactor” feature. A

built-in reasoner function allows existing relations to be

applied to new entities, and the utility of both ontologies is

preserved and expanded. Becoming MFI-compatible is a goal

of the present ontology, but the addition of IUPAC intensive

and extensive quantities, widely accepted and useful to

engineers, breaks the standard BFO structure and precludes

MFI compliance. It is the intent of this work to useful first

and conformant second.

2.1.1. What’s the Matter with BFO?

For the purpose of taxonomizing concepts related to the PHM

of spacecraft avionics, the BFO was first augmented to

represent particle physics entities. Subatomic particles, a

consistent and inexorable source of spacecraft software errors

due to fault creation in electronic hardware, are problematic

for BFO because the distinctions within independent

continuant are material entity and immaterial entity. The

etymology of the word “material” sources the Latin

materialis and translates to “of or belonging to matter”. It can

be understood by persons of ordinary capacity that material

in the BFO means composed of matter and immaterial means

not composed of matter, but that is not how the standard

model of particle physics is organized (Elert, 2022). Without

detailing definitions of particle physics terminology outside

the scope of this work, elementary particles are logically

separated into fermions and bosons, shown in Figure 4. To

reiterate, the particles of interest for PHM in spacecraft

avionics are photons, protons, neutrons, electrons, and heavy

ions.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

5

 Figure 4: Particle Physics Taxonomy Overview

Bosons are divided into gauge bosons and scalar bosons.

Photons and gluons, which do not have mass, are types of

gauge bosons. W and Z bosons, which do have mass, are also

types of gauge bosons. Whether the particle has mass or not

is not the base differentiator for taxonomization in particle

physics; actual differentiators such as spin and adherence to

Pauli’s exclusion principle are outside the scope of this work.

Fermions include particles such as quarks and leptons, with

electrons being a type of lepton. Neutrons and protons are

considered composite fermions, and heavy ions could be

composite fermions or composite bosons based on how many

particles comprise them. It is clear the distinction of material

versus immaterial is insufficient for the purposes of an

ontology characterizing interactions of subatomic particles.

To remedy this problem, taxonomies for elementary

particles, e.g. photons and electrons, and composite particles,

e.g. neutrons and protons, were created. The object category

under material entity includes an atom as an example in its

description, so heavy ions were considered part of the object

category despite elemental atoms technically being

composite particles. This taxonomy addition, which does not

render the present ontology MFI-incompatible because it

merely adds to the BFO, is visually represented in Figure 5.

Figure 5: Particle Organization as Independent Continuants

The decision to assert an atom as an object stems from the

concept of causal unity, described at length in the BFO 2.0

Specification and User’s Guide (Smith, 2015), wherein an

object is described as “a maximal causally unified material

entity”. Causal unity is characterized in the parlance of

Ingarden (Smith & Brogaard, 2003; Ingarden, 1983),

meaning material entities are, “both structured through a

certain type of causal unity and maximal relative to this type

of causal unity.” Three paradigms of causal unity are offered:

unity by the presence of a covering membrane, unity by

existence as a solid portion matter, or unity as an engineered

artifact. An atom counts as an object here via unity by

existence as a solid portion of matter. Describing an atom as

a “solid” is limiting when considering phases of matter, but

atoms may analogously be regarded as matter by means of

tangible continuum identity. Considering atoms in various

phases of matter could be composite particles, taxonomizing

engineering-relevant entities such as liquids, plasma, and

other forms of energy may require fundamental BFO

restructuring without the presence of matter as a fundamental

delineator.

While causal unity influences independent continuant

categorization, causality theory itself is not incorporated into

BFO (Smith, 2015). Alongside object, the BFO features an

independent continuant subcategory for object aggregate, e.g.

The Beatles or five apples. A Printed Circuit Board (PCB),

MOSFET, or any other avionics circuitry is herein considered

an object via unity as an engineered artifact and not an object

aggregate. This decision is intended to simplify hardware

taxonomies in the present ontology, though a dissenting case

could be made within reason.

2.1.2. Qualifying and Quantifying in BFO

The preceding material distinctions may be substantiated for

a domain ontology on PHM in spacecraft avionics, but they

do not preclude MFI compliance. Subatomic particle

characterization is an addition to BFO allowed of any domain

ontology, and asserting spacecraft hardware as objects in lieu

of object aggregates for simplicity is within reason. A central,

limiting problem regarding the application of BFO to this

domain exists in the categorization of quality, and it is here

asserted that this is a shortcoming of BFO in a holistic sense.

Humorously, the missing piece required of this PHM

ontology was described in Aristotle’s Categories; it is the

concept of quantity.

BFO defines quality as, “a specifically dependent continuant

that…does not require any further process in order to be

realized.” Axiomatically, “if an entity is a quality at any time

that it exists, then it is a quality at every time that it exists.”

Both the definition and axiom could be used to describe

quality or quantity, but provided examples for quality include

the color of a tomato, the shape of a person’s nose, and the

ambient temperature of a portion of air. The problem with the

definition of quality is, when considering the usefulness of a

model, not all qualities can be measured as properties. The

Stanford Encyclopedia of Philosophy describes properties as

“those entities that can be predicated of things or…attributed

to them.” Quality is even used as a synonym for property

(Orilia, & Paoletti, 2020). Although neither BFO defines

quality in a way that excludes quantity nor does Stanford

define property in a way that excludes quality or quantity, the

concept of measurability is directly consequential to the

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

6

utility of a practical engineering ontology. A quantity is not

simply a measurable quality. A quality for a data item might

be its data format, and it exists with that quality without

needing any further process after it undergoes a data

transformation process. A memory device might have a

quality of volatility, and it is said to be the bearer of that

quality. Data formats and volatility innately differ from

physical properties, described by Burgin (2016) as “any

property that is measurable, whose value describes a state of

a physical system,” in that they do not have enumerable

values. Data formats could be described by a data type, but

neither data types nor volatility are evaluable. When

properties are formally considered to be quantities, not

qualities, and are ascribed divisions of digital quantity and

physical quantity, the established IUPAC concepts of

intensive quantity and extensive quantity can be utilized. Per

the IUPAC Compendium of Chemical Technology

(McNaught, 2019), an intensive quantity is a, “physical

quantity whose magnitude is independent of the extent of the

system” and an extensive quantity is a, “physical quantity

whose magnitude is additive for subsystems.” Extensive

quantities would include properties such as resistance,

charge, and energy, thus solving BFO’s energy allocation

problem, and intensive quantities would include properties

such as voltage, temperature, and density. The following

definitions are prescribed in ontological format.

Quantity: a specifically dependent continuant that does

not require any further process in order to be realized and

can be prescribed a numeric value.

Digital Quantity: a quantity whose value describes a state

of a digital system.

Physical Quantity: a quantity whose value describes a

state of a physical system.

Extensive Quantity: a physical quantity whose magnitude

is additive for subsystems.

Intensive Quantity: a physical quantity whose magnitude

is independent of the extent of the system.

Because entities such as temperature would not be allocated

to quality as in the BFO, this domain ontology is not MFI-

compliant. A visual reference is provided in Figure 6.

Figure 6: Specifically Dependent Continuant Entities in the

PHM Domain Ontology for Spacecraft Avionics

2.1.3. BFO Continuant Usage

Continuants exist and are of three types: independent

continuant, generically dependent continuant, and

specifically dependent continuant. An independent

continuant bears qualities, quantities, and realizable entities;

other entities inhere within it. Independent continuant in the

PHM domain ontology for spacecraft avionics includes

composite particles, elementary particles, immaterial entities

such as spatial regions, and material entities such as objects.

A generically dependent continuant depends on some

independent continuant to exist, but it is not specific to a

single entity or instance of that entity. Data files, which may

or may not exist in the exact same form on one or more

computers, are examples of a generically dependent

continuant. The only sub-entity for generically dependent

continuant in this domain ontology is information content

entity, a title reused from the IAO, which describes various

data representations within spacecraft software. A dependent

continuant inheres in or is borne by other entities; qualities

such as data formats, quantities such as temperature, and

realizable entities such as roles are examples of specifically

dependent continuants in this domain.

In the BFO, functions are afforded a loose but versatile

definition (Smith, 2015). These functions are, “realized in

processes called functionings.”

Function: a disposition that exists in virtue of the

bearer’s physical make-up [, i.e.] something the bearer

possesses because it came into being either through

evolution…intentional design…[or] in order to realize

processes.

From a philosophical view, this definition is functional. The

BFO authors often liken function to purpose. From an

engineering perspective, it is incomplete because functions

are inherently unitless continuants. Many engineered artifacts

have multiple functions, thereby diluting purpose lest the

purpose is to be multifunctional. Wasson (2016) makes the

analogy of a capability to a vector, stating, “a capability

(vector) is characterized by a function (direction) and a level

of performance (magnitude).” The distinction is made due to

prevalent misconceptions between the concept of functional

analysis and capability analysis in systems engineering

leading to opaque requirements derivation. Wasson’s

juxtaposition of function versus capability is represented in

the present domain ontology in that a level of performance is

a realizable entity evaluating a quantity that can be allocated

to a function to represent a capability. Capability is not a

defined entity separate from function. Unitless functions, e.g.

functions corresponding to all software processes, can still

exist without a level of performance, but capabilities, e.g.

executing an Error Correction Code (ECC) within five

seconds, may be distinguished by allocating a level of

performance to a function.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

7

2.1.4. BFO Occurrent Usage

Occurrents happen and are of four types: process, process

boundary, spatiotemporal region, and temporal region.

Processes contain all software operations, among other

entities, in a sub-entity termed planned process originating

from IAO. Every process exists within a one-dimensional

temporal region, such as startup, and is bounded by two zero-

dimensional temporal regions, such as startup initialization

and startup completion. Spatiotemporal regions bound a

temporal existence of a spatially dimensional entity, e.g. the

spatial region occupied during the mission lifespan of a

spacecraft. An ion strike, a process in the present domain,

would exist in a one-dimensional temporal region bounded in

time by two zero-dimensional temporal regions. If striking a

MOSFET, it would generate a charge funnel occupying some

spatiotemporal region (Baumann, 2004). If the

spatiotemporal region of the charge funnel overlaps with the

spatiotemporal region of MOSFET operation, a SEE may

occur. Therefore, SEEs are logically occurrents in the present

domain which may or may not result in a fault, which is a

continuant.

2.2. Information Artifact and Space Object Ontologies

The IAO and SOO were both considered in the creation of

the present domain ontology. Definitions in the IAO were

directly utilized herein where applicable, but some

definitions, such as that of information content entity, “a

generically dependent continuant that is about some thing,”

could be given more rigorous characterization future work.

The IAO was not created with space applications in mind. It

contains entities such as postal code, email address, and

various textual components of a conference or journal

publication. Those entities deemed irrelevant to the purview

of PHM for spacecraft avionics were removed, and various

terminology regarding “measurement datum” intended for a

journal publication were replaced with quantity terminology

for specifically dependent continuants and a new

classification taxonomy for data items. Where the IAO

displayed significant utility was its organization of directive

information entities including conditional, language,

objective, and plan specifications. Event and time triggers

exist as conditional specifications; algorithms, software, and

Error Detection and Correction (EDAC) codes exist as plan

specifications. A data format specification was added.

One concept that vaguely existed in IAO and was removed

was the concept of units represented as data items. When data

is downlinked from a spacecraft, the Orbital Data Message

(ODM) often contains values understood by mission

operators to be certain units, e.g. energy measured in MeV

instead of keV. Units are not included in the ODM because

representing units wastes valuable bits, and message bit

structures are interpreted to be certain units in the mission

operations center. Sometimes, such as in the case of the Mars

Climate Orbiter, not representing units in downlinked ODMs

is bad practice. The failure of the Mars Climate Orbiter due

to a mismatch in metric units and incessantly useless imperial

units was a dramatic case of unit representation relevance

(Mishap Investigation Board, 1999), but quality assurance

and accurate data interpretation should prevent this problem.

Units are not included in the present domain ontology.

The SOO is an extension of both BFO and CCO and is

therefore not directly compatible with the present ontology.

The SOO also contains entities such as spacecraft mission

plan and spacecraft mission objective not required in the

present domain ontology, which emulates the SOO in that

spacecraft parts are considered bearers of artifact functions.

3. CONCEPTS IN PHM FOR SPACECRAFT AVIONICS

Information relevant to a PHM domain ontology when

applied to spacecraft avionics includes taxonomies for

avionics hardware and software, general avionics processes

such as commanding and scheduling, PHM-specific avionics

processes such as EDAC, SRE entities, radiation physics

terminology, interactions between space radiation and

spacecraft avionics, faults resulting from space radiation

effects, errors induced in hardware and software, and

radiation effect mitigation strategies. Examples of

relationships between taxonomic entities are provided for

select material in RDF format; “is a” relations are implied by

the taxonomy. The ontology taxonomy is visually provided

in the Appendix, and the full ontology including relationships

is available upon request to the authors. Definitions in the

present ontology were cross-referenced with ISO standards,

but few ISO definitions were usable due to a critical lack of

definition consistency within ISO standards.

3.1. Avionics Hardware Taxonomy

Spacecraft hardware is considered an object in the BFO sense

and contains electronic and mechanical hardware for the

present domain. Electronic hardware is subdivided into

circuitry and computer hardware such that circuitry hardware

contains low-complexity electronics such as analog and

digital circuits whereas computer hardware contains high-

complexity electronics such as controlling, processing,

programmable, and storage devices. Fundamental circuitry

such as transistors, diodes, and their subtypes, analog

circuitry such as amplifiers, single-function digital circuitry

such as encoders and latches, multi-function digital circuitry

such as arithmetic logic units, and mixed-signal circuitry such

as Analog-to-Digital Converters (ADC) are all considered

low-complexity electronics under the entity circuitry

hardware. Computer hardware elevates the level of

abstraction to contain many elements of circuitry hardware;

Field-Programmable Gate Arrays (FPGA) and storage

devices exist in this category.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

8

Rigorously defining taxonomical entities is paramount to

ontological utility, and the common forum for fastidious

engineers to obtain definitions is ISO standards. In some

cases, ISO standards fail to provide adequately utilitarian

clarity. The National Aeronautics and Space Administration

(NASA) has the same inter-standard definition consistency

problem (Halvorson & Thomas, 2022). As an example,

ISO/IEC/IEEE 24765:2017 defines Read-Only Memory

(ROM) as a "non-volatile semiconductor storage device,

from which data cannot be removed once it is written" and

Random-Access Memory (RAM) as a "volatile

semiconductor storage device which allows data to be written

or accessed in approximately the same amount of time,

regardless of the data's physical location" (ISO, 2017). The

presented definition of ROM exclusively describes Mask

Read-Only Memory (MROM) and Programmable Read-

Only Memory (PROM) but fails to consider modern ROM

storage devices such as Erasable Programmable Read-Only

Memory (EPROM) and Electronically Erasable

Programmable Read-Only Memory (EEPROM). The

presented definition of RAM exclusively describes types of

Static Random Access Memory (SRAM) and Dynamic

Random Access Memory (DRAM) while excluding all types

of Non-Volatile Random-Access Memory (NVRAM), such

as EEPROM and NOR flash memory. When considering

EEPROM and NOR flash are both types of ROM and types

of NVRAM, a logical flaw in the typical categorizations of

storage devices is apparent from the categorically assumed

equivalence of ROM and RAM. The term ROM is attempting

to describe the quality of a storage device regarding its

inability to be rewritten whereas the term RAM is attempting

to describe the quality of a storage device access method

regarding its ability to access any address inconsecutively

without sacrificing efficiency. Typical categorizations often

lack the term Sequential-Access Memory (SAM),

hierarchically equivalent to RAM, describing the quality of a

storage device access method regarding its inability to access

any address inconsecutively without significant impacts to

efficiency. Accounting for these discrepancies, to present a

more realistic storage device taxonomy than that implied in

ISO/IEC/IEEE 24765:2017, directly categorizing storage

devices under RAM, SAM, and ROM has been avoided in

favor of allocating qualities to particular types of storage

devices. Examples of relations as ontological triples in RDF

format for avionics hardware are provided in Table 1. The

word “object” in RDF format refers to the target of the

relation, not object in the sense of BFO material entity with

an associated causal unity.

Table 1: Avionics Hardware Relation Examples

Subject Predicate Object
computer hardware hasPart circuitry hardware

data process occursIn processing device
memory

management unit
providesAddressTo

storage device

controller
storage device participatesIn data process

3.2. Avionics Software Taxonomy

All data and data representations are considered to be

generically dependent continuants in BFO and are

subcategorized under information content entity in IAO; an

information content entity may be a directive information

entity, data item, identifier, or symbol in the present domain.

IAO introduced conditional, language, objective, and plan

specifications as subtypes of directive information entity, and

both software, a set of instructional data used to operate a

computer system, and algorithms, the ordered content of

instructional data relevant to software, are considered types

of plan specifications. Software subdivides into software

application, software library, software method, software

module, and software script. Software application contains

fully executable software such as application software,

software such as F’ (Bocchino, Canham, Watney, Reder,&

Levison, 2018) designed to achieve the goals of the user, and

system software, software designed to support application

software such as the operating system. Software module

contains independent software components that can be linked

together to form a portion or the entirety of a software

application, such as the operating system kernel, file system,

and scheduler. Software method contains individual software

subroutines such as commands and system calls that can be

linked together to form a portion or the entirety of a software

module. Algorithm subdivides into numerous categories

described by data interactions such that the intent of a

particular software application, software module, or software

method can be identified. Categorical specializations of

software related objective specifications, functions, and

processes were created in an identical manner.

Forms of data intended for software interpretation instead of

direct execution are considered specializations of data item,

including singular datum, non-singular data, and aggregate

data. Singular datum contains data intended for individual

interpretation such as quality, quantity, and setting

parameters. Non-singular data contains data intended for

unified interpretation wherein individual interpretation of

data segments still provides value, such as a Centrally

Registered Identifier Registry (CRID), setting configuration,

and state vector. Each CRID, possibly having set or variable

cardinality and ordinality depending on the interpretation

strategy, is linked to one or more identifiers wherein the

usage of complex data structures such as stacks, queues, or

linked lists allows this linkage to occur. By extension, it is

not necessary for every complex data structure to have its

own CRID so long as the complete data structure is accessible

in some manner using an associated identifier. Aggregate

data contains data intended for unified interpretation wherein

individual interpretation of data segments is less meaningful,

such as a data log, raster graphic, or orbital data message.

Avionics software relation examples displaying ontological

connectivity are provided in Table 2.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

9

Table 2: Avionics Software Relation Examples

Subject Predicate Object
scheduler hasPart process registry

process registry hasQuality ordinality

command hasResult
objective

specification

data objective

specification
isTargetOf data function

data function isRealizedIn data process

3.3. PHM-Specific Avionics Software Taxonomy

Algorithmic implementations of EDAC are necessary to

prevent the occurrence of interpretation or transmission of

corrupt data. EDAC implementations consist of the addition

of redundant data to a given message in the form of ECC.

Error Detection Codes (EDC) allow for the detection of the

presence of errors whereas ECCs allow for both the detection

and correction of errors in a given piece of data. Both EDCs

and ECCs are limited in capability respective to their

implementations (Heidergott, 2004). Types of EDCs include

the repetition code, checksum, cyclic redundancy check,

longitudinal redundancy check, and transverse redundancy

check. Types of ECCs include linear block codes and

convolutional codes. Data scrubbing is an EDAC mechanism

of invoking ECC on a particular address in a storage device

that is both readable and writable regardless of volatility; data

scrubbing techniques include demand scrubbing and patrol

scrubbing (Heidergott, 2004). Demand scrubbing is

automatically invoked by a storage device controller upon

receiving a request to read from an associated ECC-capable

storage device before sending the requested data. Patrol

scrubbing is invoked from software as a request to a storage

device controller associated with an ECC-capable storage

device to iteratively perform demand scrubbing on each

address without returning the data at said address. The usage

of both demand scrubbing and patrol scrubbing slows the

accumulation of uncorrectable multi-bit errors.

Another EDAC mechanism pertains to majority voting paired

with computational redundancy implementable in either

hardware or software. Majority voting involves the repetition

of an identical operation wherein the results of each operation

are provided to a hardware or software construct capable of

determining the highest modal input and returning that input

as a single output. Implementations in hardware involve the

utilization of transistor-transistor logic in the form of digital

circuits composed of basic logic gates and multiplexers

(Choudhary, Balasubramanian, Varghese, Singh, & Maskell,

2019) such that the internal data bus is capable of supporting

the bit-width of each input and output. Implementations in

software involve the utilization of an appropriate algorithm

such as the Boyer-Moore majority vote algorithm, an optimal

approach removing the necessity for input sorting (Boyer &

Moore, 1991). Table 3 details relations for PHM-specific

software enabling software functional traceability.

Table 3: PHM-Specific Software Relation Examples

Subject Predicate Object
storage device

controller
invokesFunction

detect and correct

data error

detect and correct

data error
hasAlgorithm

error detection and

correction

algorithm

error detection and

correction

algorithm

corrects
undesired system

state

3.4. Space Radiation Environment Entities

Space is radioactive, containing Solar Energetic Particles

(SEP), Galactic Cosmic Rays (GCR), Van Allen Belt (VAB)

trapped particles, and locally generated neutrons from

sources such as the surface of the moon (Nöldeke, 2015). All

SREs can be described by particle types, including protons,

neutrons, electrons, photons, and heavy ions, and the

corresponding energy of those particles. Different locations

will feature differing particle profiles at differing energy

levels; Jupiter has a magnetosphere stronger than that of

Earth and therefore traps more particles with higher energies

in its VAB. Deep space, by contrast, features negligible

magnetospherically trapped particles but higher GCR particle

fluxes. For effect examples, a SRE with high particle flux but

low particle energy, such as Earth’s VAB, will cause high

TID. A Coronal Mass Ejection (CME) from the Sun releases

protons causing high NIEL, which manifests as solar array

efficiency degradation. GCR flux increases outside of Earth’s

magnetosphere causing additional SEEs due to very high

particle energies penetrating spacecraft shielding. An

ontology detailing these concepts must define particle types,

properties, microscopic interactions, macroscopic interaction

effects, SRE locations, and solar events.

Particle taxonomy is described by Figure 4, representing the

relevant particles of photons, protons, neutrons, electrons,

and heavy ions under broad categories. Intensive radiative

quantities, such as radiative wavelength, electromagnetic

absorptivity, and linear energy transfer, and extensive

radiative quantities, such as flux and intensity, are

represented as quantities. One unusual assertion of the

present domain is that radiative dose is an extensive quantity.

The units of dose are J/kg, and usually when a parameter is

per kg, e.g. specific internal energy or specific heat capacity,

that quantity is intensive. However, adding more flux or more

material would increase the dose absorbed by the material, so

dose, TID, and NIEL are all considered extensive quantities.

Instances of entities are not to be represented in reference

ontologies, so only deep space and planetary magnetosphere

were included as three-dimensional spatial regions in lieu of

planet-specific locations. Magnetic and electric fields are

considered realizable entities, a type of specifically

dependent continuant.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

10

A process specialization of radiative process was created to

include processes such as solar event, photon interaction,

particle interaction, and SEE. Solar event includes supernova,

solar flare, and CME. Photon interactions are described by

Lechner (2018), and particle interactions include single-

particle processes such as brehmstrallung and induced

processes such as dielectric breakdown. Finally, SEEs are

specified into recoverable and destructive effects, with

recoverable including sensor noise, Single Event Functional

Interrupt, Single Event Hard Error, Single Event Transient

(SET), and Single Event Upset (SEU) and destructive

including Single Event Burnout, Single Event Gate Rupture,

Single Event Latch-Up, and Single Event Snap-Back, and

SEDR.

Relations for the SRE must relate environments to particles,

particles to particle properties, particles and particle

properties to microscopic interactions, microscopic

interactions to macroscopic effects. Effects of interest include

physical properties such as TID, NIEL, and SEEs and digital

properties such as bit error rate. Examples of SRE relations

allowing characterization of particle interactions and effects

on hardware circuitry are detailed in Table 4.

Table 4: SRE Relation Examples

Subject Predicate Object
planetary

magnetosphere
contains proton

proton hasQuantity energy

proton hasInteraction ion strike

ion strike breaksDown
dielectric

displacement field

ion Strike initiates
induced electrical

fault

3.5. Faults and Errors

ISO/IEC/IEEE 24765:2017 provides five definitions for

fault: (1) manifestation of an error in software (2) incorrect

step, process, or data definition in a computer program (3)

situation that can cause errors to occur in an object (4) defect

in a hardware device or component (5) defect in a system or

a representation of a system that if executed/activated could

potentially result in an error (ISO, 2017). Lack of definition

in ontological format aside, it is unclear from the blending of

these definitions if a fault is the manifestation of an error, the

error itself, or the initiating defect. One might argue if five

definitions are needed for a given term when used in five

contexts, the term itself may need qualifying verbiage to

distinguish definitions per contexts, e.g. fault versus latent

vault. ISO/IEC/IEEE 24765:2017 provides an equally

inadequate characterization of errors for use in the present

domain in three definitions: (1) human action that produces

an incorrect result (2) difference between a computed,

observed, or measured value or condition and the true,

specified, or theoretically correct value or condition (3)

erroneous state of the system (ISO, 2017).

An excellent characterization of faults in the context of

radiation effects and soft errors in integrated circuits and

electronic devices is provided by Heidergott (2004),

A fault may be classified by its nature, duration, and

extent; the duration of a fault may be transient,

intermittent, or permanent...errors are the undesired

system states caused by the fault…a fault in a system does

not necessarily result in an error; a fault may be latent in

that it exists but has not resulted in an error; the fault must

be sensitized by a particular system state and input

conditions to produce an error.

Building on Heidergott’s characterization, fault and error are

ascribed the following definitions for the present domain,

Fault: a realizable entity initiated transiently,

intermittently, or permanently by an event that may or

may not manifest as an error when sensitized by a

particular system state.

Error: a realizable entity that manifests as an undesired

system state, a loss of subsystem function, or an inability

to provide a service.

The nature of a fault can be described as latent or induced.

An undiscovered fault in software programming or an

electrical defect in a MOSFET would be considered a latent

fault. A fault initiated as a consequence of a SEE would be

considered induced by radiation. Whether that radiation-

induced fault is recoverable or destructive is simply a

characterization of the duration of the fault as transient or

permanent. If a permanent fault is induced on-orbit,

functionally that fault is equivalent to a latent fault. The

extent of the fault refers to the propagation of the fault across

system interfaces. A SET might induce a SEU, which is

functionally understood as a bit flip, e.g. a zero becoming a

one. If demand scrubbing is performed on the memory device

when the faulty bit is read, an ECC would prevent

downstream propagation of the fault into the software, and

the extent of the fault is contained. Examples of relations

specific to faults and errors are provided in Table 5.

Table 5: Fault and Error Relation Examples

Subject Predicate Object
single event upset hasQuality fault extent

single event

dielectric rupture
hasQuality fault nature

induced electrical

fault
manifestsAs loss of function

3.6. Radiation Effect Mitigation

It is well-established that a fault-tolerant system makes

dedicated use of fault avoidance, fault masking, detection of

compromised system operation, containment of error

propagation, and recovery to normal system operations

(Somani & Vaidya, 1997). Each of these is enabled in the

present ontology.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

11

Fault avoidance primarily occurs through four strategies:

reduction of particle energy that would induce a fault, i.e.

radiation shielding, avoiding deleterious particles by means

of orbital element causation, powering down sensitive

electronics when encountering deleterious particles, or using

electronics hardened to deleterious radiation, i.e. “space-

rated” or “rad-hard” devices. Dedicated radiation shield

technology such as Z-graded radiation shielding (Thomsen,

Kim, & Cutler, 2015) does exist, but any material entity could

be a radiation shield. A role of radiation shield was created

that a material entity could become the bearer of. Qualities

for powered-off and powered-on were created that can be

ascribed to hardware components encountering deleterious

radiation. The quality rating was added to describe derated

components operating below the rated stress level in a given

operational environment (Ebeling, 2004), and a relational

quality for mounting was included to describe mounting

hardware to an insulator as one example of a physical

radiation hardness trait. In modern spacecraft engineering,

many programs are using Commercial Off The Shelf (COTS)

parts without the Military Specification (MIL SPEC)

designation; some experts assert COTS is equally viable to

MIL SPEC for many applications due to increased

understanding of radiative effects on spacecraft electronics

(Leitner, 2022).

Fault masking refers to EDAC, EDC, ECC, majority voting,

scrubbing, and redundancy. Redundancy, under the umbrella

of system reliability, can be informational, spatial,

repetitively temporal, temporally delayed or any combination

therein. Informational redundancy signifies the existence of

the same data item multiple times on a single storage device

whereas spatial redundancy signifies the existence of the

same data on two or more storage devices. Spatial

redundancy could also signify multiple processors or other

hardware in a majority voting schema. Repetitive temporal

redundancy signifies the execution of the same process on the

same hardware or software three or more times and majority

voting the output, and delayed temporal redundancy signifies

the execution of the same process on n spatially redundant

hardware devices with the execution of the process on each

sequential hardware device being delayed by an incrementing

number of clock edges. Delayed temporal redundancy guards

against faults induced by SETs in majority voting schemes,

though it at minimum triples the execution time for the

hardware and is dependent upon the hardware’s Window of

Vulnerability (Fouillat, Pouget, Lewis, Buchner, &

McMorrow, 2004). Redundancy is considered a relational

quality in the present domain ontology.

Reliability constructs such as Mean Time To Failure

(MTTF), Failure In Time (FIT), and minimum life are also

represented in the present domain under the quantity

reliability quantity. Traditionally, a Reliability Block

Diagram (RBD) follows a success perspective to reliability

whereas a fault tree follows a failure perspective. Fault trees

determine cut sets, or a set of basic events whose

simultaneous occurrence ensures that the system failure event

occurs (Kwatny, 2007). All the taxonomies, functions, and

relationships described herein are ontologically useful

because they identify and characterize cut sets resulting in

errors that can be used to prognosticate and diagnose

spacecraft avionics after an error has been detected. More

succinctly, when an error arises or is predicted, the causes,

preventative measures, and potential solutions, even if

multitudinous, are known.

Detection of compromised system operation is only half of

PHM; the other half is to predict it. Errors such as loss of

subsystem function or inability to provide a service are easily

detected as they result in failure messages, but undesirable

system states are more difficult to detect. For parameters,

specifically quantity data as sensor data or setting parameters,

it is possible to evaluate the data to be within prescribed upper

and lower bounds, whether that data is in the correct format,

if it is the correct data type, or if it the return is null.

Parameters can also be monitored to predict if they will drift

above or below the bounds. A useful data operation for PHM

is to compare parameter values during startup and shutdown

to a running log of startup and shutdown values. In the

present domain, the parameter boundary is included as a

conditional specification, startup and shutdown are one-

dimensional temporal regions, the divisions between startup

boundary, nominal operation, and shutdown are each

included as a process boundary, and the log of parameters

during startup and shutdown is represented by the aggregate

data entity, data log.

Containment of error propagation is performed by confining

the error to the component or subsystem in which the fault

occurred (Heidergott, 2004), and containment is most useful

at the lowest level possible. Each subsystem can define

containment boundaries which are logically executed by

continual verification of data value, structure, and format.

Error detection should be decoupled from error correction to

avoid unwanted persistence of one or more errors; halting a

process signaling an error and performing a power cycle on

one or more system elements is warranted. In recovery to

normal system operation, recovery to a previous state thought

to be correct is risky because the fault could still exist in that

state. If possible, a strategy of panic, power cycle, and reset

is recommended. Table 6 details examples of radiation effect

mitigation relations aiding system architecture and design.

Table 6: Radiation Effect Mitigation Relation Examples

Subject Predicate Object
chassis hardware bearsRole radiation shielding

storage device hasQuality
informational

redundancy

startup hasLog startup health log

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

12

4. CONCLUSIONS

Provided here is an ontology for PHM in spacecraft avionics

detailing taxonomic hierarchies of concepts relevant to

spacecraft PHM and ontological triples relating taxonomized

entities. The ontology was derived from the BFO as a TLO,

but changes were made to the BFO to allow practical

applications using IUPAC quantity characterizations.

Instantiating a real world system using the present ontology

allows for error-producing cut sets to be identified regarding

system operation in a given operational environment, and

error causes, preventative measures, and potential solutions,

even if multitudinous, are known. Characterization of

potential system errors provides engineers with substantial

system analysis tools during development and operation. It is

assumed and desired that the present work will undergo

improvements based on PHM community feedback and use

case definition. All entity definitions must be defined

ontologically, and all ISO definitions must be revisited for

clarity. Future work is warranted regarding the addition of

roles for hardware and software, conditionally relating levels

of performance with extensive and intensive physical

quantities, and characterizing fault subtypes relative to types

of hardware and hardware-specific particle interactions.

ACKNOWLEDGEMENT

This work was conducted using the Protégé resource, which

is supported by grant GM10331601 from the National

Institute of General Medical Sciences of the United States

National Institutes of Health.

REFERENCES

Baumann, R. C., (2004) "Soft errors in commercial integrated

circuits." International Journal of High Speed

Electronics and Systems 14.02: 299-309.

Bocchino, R., Canham, T., Watney, G., Reder, L.,& Levison,

J. (2018) "F Prime: an open-source framework for small-

scale flight software systems."

Box, George E. P. (1976), "Science and statistics" (PDF),

Journal of the American Statistical Association, 71

(356): 791–799, doi:10.1080/01621459.1976.10480949.

Boyer, R.S., Moore, J.S. (1991). MJRTY—A Fast Majority

Vote Algorithm. Automated Reasoning. Automated

Reasoning Series, vol 1. Springer, Dordrecht.

https://doi.org/10.1007/978-94-011-3488-0_5

Burgin, M. (2016). Theory Of Knowledge: Structures And

Processes. World Scientific. ISBN 9789814522694.

Calspan-University of Buffalo Research Center. Data

Science and Information Fusion. Retrieved June 19,

2022, from https://www.cubrc.org/index.php/data-

science-and-information-fusion/

Calspan-University of Buffalo Research Center. Common

core ontologies for data integration. Retrieved June 19,

2022, from https://www.cubrc.org/index.php/data-

science-and-information-fusion/ontology

Choudhary, J., Balasubramanian, P., Varghese, D. M., Singh,

P. D., & Maskell, D., (2019) "Generalized Majority

Voter Design Method for N-Modular Redundant

Systems Used in Mission- and Safety-Critical

Applications" Computers 8, no. 1: 10.

https://doi.org/10.3390/computers8010010

Cox, A.P., Nebelecky, C.K., Rudnicki, R., Tagliaferri, W.A.,

Crassidis, J.L. & Smith, B. (2016). The space object

ontology. In 2016 19th International Conference on

Information Fusion (FUSION) (pp. 146-153). IEEE.

Ebeling, C.E., (2004). An introduction to reliability and

maintainability engineering. Tata McGraw-Hill

Education.

Elert, G. (2022). The Standard Model. The Physics

Hypertextbook.

https://physics.info/standard/#:~:text=Bosons%20are%

20divided%20when%20it,Mass%20is%20energy.

Fouillat, P., Pouget, V., Lewis, D., Buchner, S., McMorrow,

D., (2004) Investigation of single-event transients in fast

integrated circuits with a pulsed laser. International

journal of high speed electronics and systems. 2004

Jun;14(02):327-39.

Halvorson, M. & Thomas, L. D., (2022). "Architecture

Framework Standardization for Satellite Software

Generation Using MBSE and F Prime." 2022 IEEE

Aerospace Conference. IEEE, 2022.

Heidergott, W. F. (2004) "System Level Single Event Upset

Mitigation Strategies." International journal of high

speed electronics and systems. 14.02 (2004): 341-352.

Ingarden, R., (1983). Man and Value, Munich.

International Organization for Standardization. (2020).

Information Technology – Metamodel framework for

interoperability (MFI) – Part 3: Metamodel for ontology

registration. (ISO/IEC Standard no. 19763-3). Retrieved

from https://www.iso.org/obp/ui/#iso:std:iso-

iec:19763:-3:ed-3:v1:en

International Organization for Standardization. (2021).

Information Technology – Top-level ontologies (TLO) –

Part 1: Requirements. (ISO/IEC Standard no. 21838-1).

Retrieved from

https://www.iso.org/obp/ui/#iso:std:71954:en

International Organization for Standardization. (2021).

Information Technology – Top-level ontologies (TLO) –

Part 2: Basic Formal Ontology. (ISO/IEC Standard no.

21838-1). Retrieved from

https://www.iso.org/obp/ui/#iso:std:iso-iec:21838:-

2:ed-1:v1:en

International Organization for Standardization. (2017).

Systems and software engineering – Vocabulary.

(ISO/IEC/IEEE Standard no. 24765). Retrieved from

https://www.iso.org/standard/71952.html

Jackson, R., Matentzoglu, N., Overton, J.A., Vita, R.,

Balhoff, J.P., Buttigieg, P.L., Carbon, S., Courtot, M.,

Diehl, A.D., Dooley, D.M. and Duncan, W.D., 2021.

OBO Foundry in 2021: operationalizing open data

principles to evaluate ontologies. Database, 2021.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

13

Kwatny, H., (2007) Lecture Notes from Engineering

Reliability Course, Department of Mechanical

Engineering & Mechanics, Drexel University.

Lechner, A., (2018). CERN: Particle interactions with matter.

CERN Yellow Reports: School Proceedings, Vol. 5/2018,

CERN-2018-008-SP. p.47.

Leitner, J. (2022). Phasing in COTS EEE parts in NASA.

Community of Practice Webinar Series . NASA Goddard

Space Flight Center.

McNaught, A. D. (2019). Compendium of chemical

terminology. (2nd Edition). Oxford: Blackwell Science.

Mishap Investigation Board. (1999). Mars Climate Orbiter

Mishap Investigation Board Phase I Report November

10, 1999.

Musen, Mark. (2015) “The Protégé project: A look back and

a look forward.” AI Matters. Association of Computing

Machinery Specific Interest Group in Artificial

Intelligence, 1(4), June 2015. DOI:

10.1145/2557001.25757003.

Nöldeke, C. M., (2015). The Space Radiation Environment.

Monsenstein Und Vannerdat.

Orilia, F., & Paoletti, M. P., (2020). Properties. Stanford

Encyclopedia of Philosophy.

https://plato.stanford.edu/entries/properties/#DisTer

Seppälä, S., Ruttenberg, A., & Smith, B. (2017). Guidelines

for writing definitions in ontologies. Ciência da

Informação 46 (1): 73-88. PhilArchive copy v3:

https://philarchive.org/archive/SEPGFWv3

Smith, B., & Brogaard, B., (2003). “Sixteen Days”, The

Journal of Medicine and Philosophy, 28 (2003), 45–78.

Smith, B., (2015). Basic Formal Ontology 2.0: Specification

and User’s Guide. University of Buffalo.

Smith, B., (2018). Applied Ontology: Lecture 1. Introduction

to Ontology. University of Buffalo.

Smith, B. (2022). "The birth of ontology." Journal of

Knowledge Structures and Systems 3.1.

Smith, B., Kumar, A., & Bittner, T., (2005). "Basic formal

ontology for bioinformatics."

Smith, B., Malyuta, T., Rudnicki, R., Mandrick, W., Salmen,

D., Morosoff, P., Duff, D.K., Schoening, J. & Parent, K.,

(2013). IAO-Intel: an ontology of information artifacts

in the intelligence domain. Proceedings of the Eighth

International Conference on Semantic Technologies for

Intelligence, Defense, and Security (STIDS), CEUR, vol.

1097. pp. 33-40

Somani, A. K., and Vaidya, N. H., (1997) "Understanding

fault tolerance and reliability." Computer 4: 45-50.

Thomsen, D., Kim, W., & Cutler, J. (2015) "Shields-1, A

SmallSat radiation shielding technology demonstration."

Wasson, C. S., (2016) System Engineering Analysis, Design,

and Development: Concepts, Principles, and Practices.

Wiley Blackwell.

BIOGRAPHIES

Michael Cullen Halvorson received

a B.S. in Aerospace Engineering and

a B.S. in Mechanical Engineering

from Auburn University in 2017. He

then received a M.S. in Mechanical

Engineering from Auburn University

in 2020 and is now a doctoral student

in Aerospace Systems Engineering at

the University of Alabama in

Huntsville. Michael has been Chief

Engineer for three satellite programs and has been Chief

Engineer and acting Lead Systems Engineer for the Alabama

Burst Energetics eXplorer since January 2021. Michael has

been a NASA Research Fellow with the Alabama Space

Grant Consortium since 2018 and leads collaborative

research projects on spacecraft thermal analysis, Model-

Based Project Management, space engineering ontologies,

and climate change mitigation strategy scalability.

Noah Moyers received a B.S. in

Software Engineering from Auburn

University in May 2022. He is

currently a graduate student in the

Computer Science and Software

Engineering department at Auburn

University. Noah has been a member

of the Flight Software team for the

Alabama Burst Energetics eXplorer

since January 2022. His research

interests include computer architectures, embedded systems,

and operating systems.

L. Dale Thomas currently serves as

a Professor and Eminent Scholar of

Systems Engineering in the

Department of Industrial and

Systems Engineering and

Engineering Management at the

University of Alabama in Huntsville

(UAH). He teaches system

engineering students in the art and

science of systems architecture and

design, systems integration, test, and verification, and

systems management. Dale also serves as director of the

Alabama Space Grant Consortium and as deputy director of

the UAH Propulsion Research Center. Prior to his retirement

from NASA in July 2015, Dale served as the Associate

Center Director (Technical) for the NASA Marshall Space

Flight Center (MSFC) in Huntsville, Alabama, providing

technical leadership for all MSFC spaceflight projects. He

had previously served as the NASA Constellation Program

Manager, leading the Constellation Program Office at

Johnson Space Center in Houston, Texas, leading a

nationwide team including all NASA field centers and five

prime contractors.

 14

APPENDIX

