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ABSTRACT 

Prognostic Health Management (PHM) is the disciplined 

application of measurement, monitoring, and support 

strategies to protect structural, electrical, or data entities 

precluding the failure of measured systems in all phases of 

operation. Model-Based Systems Engineering (MBSE) can 

be used to formalize system structure, operations, behavior, 

and requirements using an Architecture Framework (AF), 

Process Framework (PF), modeling language, and ontology; 

whereas the AF, PF, and modeling language may be specific 

to the program or mission employing MBSE, ontologies may 

be developed specific to a given domain. The PHM domain 

considers failure modes, effects, and criticality, and 

ontological system analysis in this domain can inform system 

structure, operations, behavior, or requirements. A reference 

ontology for the PHM domain in spacecraft avionics is 

presented here including aspects of existing ontologies such 

as the Basic Formal Ontology (BFO), a Top-Level Ontology 

(TLO) newly recognized by the International Organization 

for Standardization (ISO), the Information Artifact Ontology 

(IAO), and the Space Object Ontology (SOO). A distinction 

is made between a full PHM domain ontology, which would 

include many mechanical or electrical systems with myriad 

purposes, and a PHM domain ontology specific to spacecraft 

avionics. Present ontological development originated using 

the parlance and format of BFO and IAO in Stanford 

University’s Protégé software but diverged to include 

International Union of Pure and Applied Chemistry (IUPAC) 

terminology and classifications. When interacting with this 

ontology, engineers seeking to characterize system-specific 

failure modes, effects, and criticality can query the ontology 

with their hardware or software entities to obtain failure 

information specific to the operation of their system in a 

given operational environment. While this domain ontology 

is robust, the authors do not claim it to be complete or 

validated for all spacecraft avionics. It should be considered 

version one of a useful PHM tool with continual updates 

occurring after peer review and feedback. 

1. INTRODUCTION 

All models are wrong, but some are useful (Box, 1976). 

Ontologies are models of the concepts inherent to a given 

domain, how those concepts are differentiated taxonomically 

with increasing levels of specificity, and how those concepts 

categorically relate to one another. They are agreements on 

conceptual representation with rigorously scrutinized 

definitions and are only useful if they serve some accessible 

purpose (Smith, 2018; Seppälä, Ruttenberg, & Smith,  2017). 

For Prognostic Health Management (PHM) engineers, that 

purpose is the characterization of system failure. At the 

Institute of Electrical and Electronics Engineers (IEEE) 

Aerospace Conference in March 2022, experts discussed 

misconceptions of spacecraft PHM inherent to newcomers 

and veterans alike. Some engineers misunderstood concepts 

inherent to PHM whereas others debated definitions of 

established PHM material. It was clear an ontology for PHM 

in spacecraft avionics, an agreement on PHM entity 

taxonomy, definitions, and relations with explicit conceptual 

usage, would be vital as a foundation for intellectual 

communication, but it needed to be useful.  

Not all ontologies are made equal. The term ontology was 

first used in the Ogdoas Scholastica by Jacob Lorhard in 

1606, but the first ontology is considered Aristotle’s 

Categories (Smith, 2022) wherein the categories of existing 

things were defined as substance, quantity, quality, relation, 

place, time, position, doing, having, and being affected. 

Semantically, these are problematic, but it was a start. In 

1998, the Gene Ontology (GO), arguably the most successful 

and globally utilized ontology (Smith, 2018), was created for 
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rigorous genome characterization, which spawned the 

creation of the Open Biological and Biomedical Ontologies 

(OBO) Foundry. The OBO Foundry acts as a hub for other 

biological ontologies to be created as spokes wherein OBO 

entity definitions are utilized in spoke ontologies; it is still in 

use as of this writing (Jackson, Matentzoglu, Overton, Vita, 

Balhoff, Buttigieg, Carbon, Courtot, Diehl, Dooley, & 

Duncan). Biology and genomics received the majority of 

ontological attention until 2004 when the Web Ontology 

Language 1.0 was released and applied to Stanford 

University’s Protégé software for ontology development 

(Musen, 2015). Anyone could create ontologies, so there 

were quickly many models that were useful only to narrowly 

defined applications. Nearly all those domain ontologies 

failed to be useful due to concept redundancy between 

multiple ontologies, inconsistency in concept definitions, and 

a lack of common development methodology (Smith, 2018). 

Centrally, new domain ontologies needed a common Top-

Level Ontology (TLO), or common root structure, and 

methodology for taxonomizing concepts or entities. Thus, the 

Basic Formal Ontology (BFO) was born (Smith, Kumar, & 

Bittner, 2005).   

The BFO, having received multiple updates since its 

inception, is primarily divided into continuants and 

occurrents with a root node of entity. A continuant is defined 

as, “an entity that exists in full at any time in which it exists 

at all, persists through time while maintaining its identity, and 

has no temporal parts.” An occurrent is defined as, “an entity 

that has temporal parts and that happens, unfolds, or develops 

through time.” Ontological definitions for the specialization 

of a given entity are best written in a specific style (Seppala 

et al., 2017), e.g. “an [entity] that/which” followed by the 

aspect of the entity that specializes it from the higher-level 

entity. Entity, as the root node for BFO, does not have a 

definition because it does not have a higher-level node to 

specialize from. Definition creation in an ontology for PHM 

in spacecraft avionics becomes problematic because most 

widely accepted definitions for complex engineering 

concepts stem from the ISO which sometimes provides 

multiple definitions for a concept and does not adhere to the 

ontological style of definitions. A visual breakdown of the 

BFO taxonomy is provided for continuant in Figure 1 and 

occurrent in Figure 2.  

Figure 1: BFO Taxonomy of Continuant 

Figure 2: BFO Taxonomy of Occurrent 
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Continuant is specialized into generically dependent 

continuant, which includes data entities, independent 

continuant, which includes objects, and specifically 

dependent continuant, which includes qualities such as color. 

Operating systems, protons, circuits, permanence, Mean 

Time To Failure (MTTF), and induced faults are all examples 

of continuants. Occurrent is specialized into process, process 

boundary, spatiotemporal region, and temporal region. Data 

encryption, particle interactions, startup, and shutdown are all 

examples of occurrents. These concepts provide the basis for 

which to define PHM-specific concepts and to relate non-

PHM domain ontologies also using the BFO as a foundational 

ontology.  

Avionics here means electrically-interfaced hardware and 

controlling software, and PHM for spacecraft avionics 

contains many aspects that could merit domain ontologies of 

their own. The most important concept is reliability; 

engineers only perform PHM to ensure systems function as 

intended. The hardware engineers use to build spacecraft 

must be taxonomized because it is the subject of mechanical 

or electrical health monitoring, and spacecraft software is 

increasingly critical with the advent of components like 

software-defined radios. Taxonomizing software also allows 

a relation of software to physical bit representations on 

memory devices and corresponding software functionality, 

meaning a fault incurred at one or more bits may result in an 

error in one or more granular software functions.  

The Space Radiation Environment (SRE) contains photons, 

protons, neutrons, electrons, and heavy ions (Nöldeke, 2015) 

which interact with spacecraft hardware resulting in 

quantifiable metrics such as Total Ionizing Dose (TID), Non-

Ionizing Energy Loss (NIEL), Charged Particle Heating 

(CPH), Single Event Effects (SEE), and both surface and 

deep dielectric charging. Each SRE features different particle 

types and fluxes, each particle type can cause different 

radiation effects based on its energy and target material, and 

each radiation effect can result in differing faults that may or 

may not manifest as errors.  

Ontologies have a primary use case that can be expressed in 

various methods, but the governing user interaction is, for this 

application, to assert system hardware, function, and SRE 

using input queries and generate mission-tailored products 

such as the relation of software errors to possible hardware 

faults. Ontologies should exist in the background of user-

friendly tools, and querying occurs by using a GUI-based 

data input and processing wrapper around an ontology built 

in some ontological development tool such Protégé. Well-

made ontologies can also be used as reference dictionaries 

because of their rigorous definition structures, another use 

case, but ontological development tools are not user-friendly 

dictionaries. 

A graphical example of relations stemming from a queried 

ontology is provided in Figure 3 and described here using the 

Single Event Dielectric Rupture (SEDR) SEE on a 

Complementary Metal-Oxide Semiconductor (CMOS). A 

CMOS is a Metal-Oxide Semiconductor Field Effect 

Transistor (MOSFET). A MOSFET has a gate. A MOSFET 

gate has an oxide layer, which is a dielectric layer. A 

dielectric layer has a dielectric displacement field. Protons 

may exist in a given SRE. A proton strike ionizes a MOSFET 

gate oxide layer. Ionization of a MOSFET gate oxide layer 

breaks down the dielectric displacement field. Transistor 

function is dependent on the dielectric displacement field. 

Lack of transistor function is a fault. A fault manifests as an 

error when sensitized by a particular system state. The 

ontology taxonomy and relationships therefore establish how 

hardware faults can be initiated in a given SRE, and faults 

manifesting as software errors due to the lack of hardware 

functionality can be related to functions in spacecraft 

software. By querying the ontology in this way, an error 

manifesting in software can provide insight into hardware 

health, and PHM is performed. 

 

. 

Figure 3: Query Example in the Domain Ontology for Spacecraft Avionics 
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2. ONTOLOGY DEVELOPMENT METHODOLOGY 

There are many ways to create a domain ontology; 

historically, most result in failure or lack of adoption (Smith, 

2018). The Calspan-University of Buffalo Research Center 

(CUBRC) has been researching ontological development 

through the Data Science and Information Fusion Group 

since 2008 (CUBRC, 2022) and has developed the Common 

Core Ontologies (CCO) method. CCO is rooted in the Basic 

Formal Ontology (BFO) and extends BFO through 9 other 

“common” ontologies intended to provide a basis for 

enterprises to build knowledge networks (CUBRC, 2022). 

Enterprises using CCO can build domain ontologies using 

CCO definitions and instantiate enterprise-specific content 

with predefined relations. Public, non-CCO linkages of 

domain ontologies with common Top-Level Ontology (TLO) 

structures are known professionally as the semantic web, a 

term coined by internet inventor Tim Berners-Lee, and 

colloquially as Web 3.0 (Smith, 2018). For large enterprises 

with broad scope, starting with CCO is arguably the best 

method for creating domain ontologies. However, CCO 

includes ontologies for currency units, units of measure, and 

geospatial regions not relevant for the scope of this work. 

There are outstanding philosophical issues within BFO which 

present challenges for engineers characterizing hardware 

interacting with subatomic particles. Entities such as liquids 

and energy do not yet have an accepted categorization within 

BFO (Smith, 2018), and the continuant division of material 

versus immaterial entities does not coincide with how the 

standard model of particle physics organizes relations 

between matter and energy.  

For this work, the BFO was utilized as a TLO with minor 

changes. Non-CCO domain ontologies were considered for 

conceptual inclusion, and domain concepts relevant to PHM 

in spacecraft avionics were taxonomized. International Union 

of Pure and Applied Chemistry (IUPAC) classifications were 

considered, relations between entities were created using the 

Resource Description Framework (RDF) format, and 

definitions were compared to ISO standards. While ISO, 

International Electrotechnical Commission (IEC), and IEEE 

standards, specifically ISO/IEC/IEEE 24765:2017: Systems 

and Software Engineering – Vocabulary (ISO, 2017), were 

recognized as accessible sources for ontological definitions, 

discussed is a lack of rigor and clarity in some ISO 

terminology content.  

The two non-CCO ontologies considered for inclusion were 

the Space Object Ontology (SOO) for its characterization of 

the relation between spacecraft parts and functions (Cox, 

Nebelecky, Rudnicki, Tagliaferri, Crassidis, & Smith, 2016) 

and the Information Artifact Ontology (IAO) for its 

representation of software entities (Smith, Malyuta, 

Rudnicki, Mandrick, Salmen, Morosoff, Duff, Schoening, & 

Parent, 2013). There exists an Information Entity Ontology 

within CCO, but without using the rest of CCO it is baseless.  

2.1. Using the Basic Formal Ontology 

ISO/IEC 21838-1 defines the requirements of a TLO (ISO, 

2021), and ISO/IEC 21838-2 recognizes the BFO as a TLO 

(ISO, 2021). Both the BFO and its derivation into the present 

PHM domain ontology for spacecraft avionics are reference 

ontologies per ISO/IEC 19763-3 (ISO, 2020), meaning all 

child entities have at most one parent. When child entities 

have more than one parent or when instances of entities are 

mixed with ontological categories, the ontology becomes an 

application ontology. Reference ontologies may be reused 

and updated as needed for use by the general community 

whereas application ontologies are specific to a narrow field 

or problem and are generally not reusable.  

Because the present PHM ontology does not strictly adhere 

to BFO or CCO structures, it is not conformant to the 

Metamodel Framework for Interoperability (MFI). Being 

MFI-compatible per ISO/IEC 19763-3 allows direct merging 

of disparate ontologies because they share the same TLO or 

broader CCO structure. If engineers at disparate companies 

create distinct ontologies using a common, MFI-compatible 

TLO without changing the TLO, merging ontologies in 

Protégé is easily performed using the “refactor” feature. A 

built-in reasoner function allows existing relations to be 

applied to new entities, and the utility of both ontologies is 

preserved and expanded. Becoming MFI-compatible is a goal 

of the present ontology, but the addition of IUPAC intensive 

and extensive quantities, widely accepted and useful to 

engineers, breaks the standard BFO structure and precludes 

MFI compliance. It is the intent of this work to useful first 

and conformant second.  

2.1.1. What’s the Matter with BFO? 

For the purpose of taxonomizing concepts related to the PHM 

of spacecraft avionics, the BFO was first augmented to 

represent particle physics entities. Subatomic particles, a 

consistent and inexorable source of spacecraft software errors 

due to fault creation in electronic hardware, are problematic 

for BFO because the distinctions within independent 

continuant are material entity and immaterial entity. The 

etymology of the word “material” sources the Latin 

materialis and translates to “of or belonging to matter”. It can 

be understood by persons of ordinary capacity that material 

in the BFO means composed of matter and immaterial means 

not composed of matter, but that is not how the standard 

model of particle physics is organized (Elert, 2022). Without 

detailing definitions of particle physics terminology outside 

the scope of this work, elementary particles are logically 

separated into fermions and bosons, shown in Figure 4. To 

reiterate, the particles of interest for PHM in spacecraft 

avionics are photons, protons, neutrons, electrons, and heavy 

ions.  
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 Figure 4: Particle Physics Taxonomy Overview 

Bosons are divided into gauge bosons and scalar bosons. 

Photons and gluons, which do not have mass, are types of 

gauge bosons. W and Z bosons, which do have mass, are also 

types of gauge bosons. Whether the particle has mass or not 

is not the base differentiator for taxonomization in particle 

physics; actual differentiators such as spin and adherence to 

Pauli’s exclusion principle are outside the scope of this work. 

Fermions include particles such as quarks and leptons, with 

electrons being a type of lepton. Neutrons and protons are 

considered composite fermions, and heavy ions could be 

composite fermions or composite bosons based on how many 

particles comprise them. It is clear the distinction of material 

versus immaterial is insufficient for the purposes of an 

ontology characterizing interactions of subatomic particles. 

To remedy this problem, taxonomies for elementary 

particles, e.g. photons and electrons, and composite particles, 

e.g. neutrons and protons, were created. The object category 

under material entity includes an atom as an example in its 

description, so heavy ions were considered part of the object 

category despite elemental atoms technically being 

composite particles. This taxonomy addition, which does not 

render the present ontology MFI-incompatible because it 

merely adds to the BFO, is visually represented in Figure 5.   

 

Figure 5: Particle Organization as Independent Continuants 

The decision to assert an atom as an object stems from the 

concept of causal unity, described at length in the BFO 2.0 

Specification and User’s Guide (Smith, 2015), wherein an 

object is described as “a maximal causally unified material 

entity”. Causal unity is characterized in the parlance of 

Ingarden (Smith & Brogaard, 2003; Ingarden, 1983), 

meaning material entities are, “both structured through a 

certain type of causal unity and maximal relative to this type 

of causal unity.” Three paradigms of causal unity are offered: 

unity by the presence of a covering membrane, unity by 

existence as a solid portion matter, or unity as an engineered 

artifact. An atom counts as an object here via unity by 

existence as a solid portion of matter. Describing an atom as 

a “solid” is limiting when considering phases of matter, but 

atoms may analogously be regarded as matter by means of 

tangible continuum identity. Considering atoms in various 

phases of matter could be composite particles, taxonomizing 

engineering-relevant entities such as liquids, plasma, and 

other forms of energy may require fundamental BFO 

restructuring without the presence of matter as a fundamental 

delineator.  

While causal unity influences independent continuant 

categorization, causality theory itself is not incorporated into 

BFO (Smith, 2015). Alongside object, the BFO features an 

independent continuant subcategory for object aggregate, e.g. 

The Beatles or five apples. A Printed Circuit Board (PCB), 

MOSFET, or any other avionics circuitry is herein considered 

an object via unity as an engineered artifact and not an object 

aggregate. This decision is intended to simplify hardware 

taxonomies in the present ontology, though a dissenting case 

could be made within reason.   

2.1.2. Qualifying and Quantifying in BFO  

The preceding material distinctions may be substantiated for 

a domain ontology on PHM in spacecraft avionics, but they 

do not preclude MFI compliance. Subatomic particle 

characterization is an addition to BFO allowed of any domain 

ontology, and asserting spacecraft hardware as objects in lieu 

of object aggregates for simplicity is within reason. A central, 

limiting problem regarding the application of BFO to this 

domain exists in the categorization of quality, and it is here 

asserted that this is a shortcoming of BFO in a holistic sense. 

Humorously, the missing piece required of this PHM 

ontology was described in Aristotle’s Categories; it is the 

concept of quantity.  

BFO defines quality as, “a specifically dependent continuant 

that…does not require any further process in order to be 

realized.” Axiomatically, “if an entity is a quality at any time 

that it exists, then it is a quality at every time that it exists.” 

Both the definition and axiom could be used to describe 

quality or quantity, but provided examples for quality include 

the color of a tomato, the shape of a person’s nose, and the 

ambient temperature of a portion of air. The problem with the 

definition of quality is, when considering the usefulness of a 

model, not all qualities can be measured as properties. The 

Stanford Encyclopedia of Philosophy describes properties as 

“those entities that can be predicated of things or…attributed 

to them.” Quality is even used as a synonym for property 

(Orilia, & Paoletti, 2020). Although neither BFO defines 

quality in a way that excludes quantity nor does Stanford 

define property in a way that excludes quality or quantity, the 

concept of measurability is directly consequential to the 
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utility of a practical engineering ontology. A quantity is not 

simply a measurable quality. A quality for a data item might 

be its data format, and it exists with that quality without 

needing any further process after it undergoes a data 

transformation process. A memory device might have a 

quality of volatility, and it is said to be the bearer of that 

quality. Data formats and volatility innately differ from 

physical properties, described by Burgin (2016) as “any 

property that is measurable, whose value describes a state of 

a physical system,” in that they do not have enumerable 

values. Data formats could be described by a data type, but 

neither data types nor volatility are evaluable. When 

properties are formally considered to be quantities, not 

qualities, and are ascribed divisions of digital quantity and 

physical quantity, the established IUPAC concepts of 

intensive quantity and extensive quantity can be utilized. Per 

the IUPAC Compendium of Chemical Technology 

(McNaught, 2019), an intensive quantity is a, “physical 

quantity whose magnitude is independent of the extent of the 

system” and an extensive quantity is a, “physical quantity 

whose magnitude is additive for subsystems.” Extensive 

quantities would include properties such as resistance, 

charge, and energy, thus solving BFO’s energy allocation 

problem, and intensive quantities would include properties 

such as voltage, temperature, and density. The following 

definitions are prescribed in ontological format.  

Quantity: a specifically dependent continuant that does 

not require any further process in order to be realized and 

can be prescribed a numeric value. 

Digital Quantity: a quantity whose value describes a state 

of a digital system. 

Physical Quantity: a quantity whose value describes a 

state of a physical system. 

Extensive Quantity: a physical quantity whose magnitude 

is additive for subsystems. 

Intensive Quantity: a physical quantity whose magnitude 

is independent of the extent of the system. 

Because entities such as temperature would not be allocated 

to quality as in the BFO, this domain ontology is not MFI-

compliant. A visual reference is provided in Figure 6. 

Figure 6: Specifically Dependent Continuant Entities in the 

PHM Domain Ontology for Spacecraft Avionics 

2.1.3. BFO Continuant Usage 

Continuants exist and are of three types: independent 

continuant, generically dependent continuant, and 

specifically dependent continuant. An independent 

continuant bears qualities, quantities, and realizable entities; 

other entities inhere within it. Independent continuant in the 

PHM domain ontology for spacecraft avionics includes 

composite particles, elementary particles, immaterial entities 

such as spatial regions, and material entities such as objects. 

A generically dependent continuant depends on some 

independent continuant to exist, but it is not specific to a 

single entity or instance of that entity. Data files, which may 

or may not exist in the exact same form on one or more 

computers, are examples of a generically dependent 

continuant. The only sub-entity for generically dependent 

continuant in this domain ontology is information content 

entity, a title reused from the IAO, which describes various 

data representations within spacecraft software. A dependent 

continuant inheres in or is borne by other entities; qualities 

such as data formats, quantities such as temperature, and 

realizable entities such as roles are examples of specifically 

dependent continuants in this domain.  

In the BFO, functions are afforded a loose but versatile 

definition (Smith, 2015). These functions are, “realized in 

processes called functionings.” 

Function: a disposition that exists in virtue of the 

bearer’s physical make-up [, i.e.] something the bearer 

possesses because it came into being either through 

evolution…intentional design…[or] in order to realize 

processes.  

From a philosophical view, this definition is functional. The 

BFO authors often liken function to purpose. From an 

engineering perspective, it is incomplete because functions 

are inherently unitless continuants. Many engineered artifacts 

have multiple functions, thereby diluting purpose lest the 

purpose is to be multifunctional. Wasson (2016) makes the 

analogy of a capability to a vector, stating, “a capability 

(vector) is characterized by a function (direction) and a level 

of performance (magnitude).” The distinction is made due to 

prevalent misconceptions between the concept of functional 

analysis and capability analysis in systems engineering 

leading to opaque requirements derivation. Wasson’s 

juxtaposition of function versus capability is represented in 

the present domain ontology in that a level of performance is 

a realizable entity evaluating a quantity that can be allocated 

to a function to represent a capability. Capability is not a 

defined entity separate from function. Unitless functions, e.g. 

functions corresponding to all software processes, can still 

exist without a level of performance, but capabilities, e.g. 

executing an Error Correction Code (ECC) within five 

seconds, may be distinguished by allocating a level of 

performance to a function.  
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2.1.4. BFO Occurrent Usage 

Occurrents happen and are of four types: process, process 

boundary, spatiotemporal region, and temporal region. 

Processes contain all software operations, among other 

entities, in a sub-entity termed planned process originating 

from IAO. Every process exists within a one-dimensional 

temporal region, such as startup, and is bounded by two zero-

dimensional temporal regions, such as startup initialization 

and startup completion. Spatiotemporal regions bound a 

temporal existence of a spatially dimensional entity, e.g. the 

spatial region occupied during the mission lifespan of a 

spacecraft. An ion strike, a process in the present domain, 

would exist in a one-dimensional temporal region bounded in 

time by two zero-dimensional temporal regions. If striking a 

MOSFET, it would generate a charge funnel occupying some 

spatiotemporal region (Baumann, 2004). If the 

spatiotemporal region of the charge funnel overlaps with the 

spatiotemporal region of MOSFET operation, a SEE may 

occur. Therefore, SEEs are logically occurrents in the present 

domain which may or may not result in a fault, which is a 

continuant.  

2.2. Information Artifact and Space Object Ontologies 

The IAO and SOO were both considered in the creation of 

the present domain ontology. Definitions in the IAO were 

directly utilized herein where applicable, but some 

definitions, such as that of information content entity, “a 

generically dependent continuant that is about some thing,” 

could be given more rigorous characterization future work. 

The IAO was not created with space applications in mind. It 

contains entities such as postal code, email address, and 

various textual components of a conference or journal 

publication. Those entities deemed irrelevant to the purview 

of PHM for spacecraft avionics were removed, and various 

terminology regarding “measurement datum” intended for a 

journal publication were replaced with quantity terminology 

for specifically dependent continuants and a new 

classification taxonomy for data items. Where the IAO 

displayed significant utility was its organization of directive 

information entities including conditional, language, 

objective, and plan specifications. Event and time triggers 

exist as conditional specifications; algorithms, software, and 

Error Detection and Correction (EDAC) codes exist as plan 

specifications. A data format specification was added.  

One concept that vaguely existed in IAO and was removed 

was the concept of units represented as data items. When data 

is downlinked from a spacecraft, the Orbital Data Message 

(ODM) often contains values understood by mission 

operators to be certain units, e.g. energy measured in MeV 

instead of keV. Units are not included in the ODM because 

representing units wastes valuable bits, and message bit 

structures are interpreted to be certain units in the mission 

operations center. Sometimes, such as in the case of the Mars 

Climate Orbiter, not representing units in downlinked ODMs 

is bad practice. The failure of the Mars Climate Orbiter due 

to a mismatch in metric units and incessantly useless imperial 

units was a dramatic case of unit representation relevance 

(Mishap Investigation Board, 1999), but quality assurance 

and accurate data interpretation should prevent this problem. 

Units are not included in the present domain ontology.  

The SOO is an extension of both BFO and CCO and is 

therefore not directly compatible with the present ontology. 

The SOO also contains entities such as spacecraft mission 

plan and spacecraft mission objective not required in the 

present domain ontology, which emulates the SOO in that 

spacecraft parts are considered bearers of artifact functions.  

3. CONCEPTS IN PHM FOR SPACECRAFT AVIONICS 

Information relevant to a PHM domain ontology when 

applied to spacecraft avionics includes taxonomies for 

avionics hardware and software, general avionics processes 

such as commanding and scheduling, PHM-specific avionics 

processes such as EDAC, SRE entities, radiation physics 

terminology, interactions between space radiation and 

spacecraft avionics, faults resulting from space radiation 

effects, errors induced in hardware and software, and 

radiation effect mitigation strategies. Examples of 

relationships between taxonomic entities are provided for 

select material in RDF format; “is a” relations are implied by 

the taxonomy. The ontology taxonomy is visually provided 

in the Appendix, and the full ontology including relationships 

is available upon request to the authors. Definitions in the 

present ontology were cross-referenced with ISO standards, 

but few ISO definitions were usable due to a critical lack of 

definition consistency within ISO standards.  

3.1. Avionics Hardware Taxonomy 

Spacecraft hardware is considered an object in the BFO sense 

and contains electronic and mechanical hardware for the 

present domain. Electronic hardware is subdivided into 

circuitry and computer hardware such that circuitry hardware 

contains low-complexity electronics such as analog and 

digital circuits whereas computer hardware contains high-

complexity electronics such as controlling, processing, 

programmable, and storage devices. Fundamental circuitry 

such as transistors, diodes, and their subtypes, analog 

circuitry such as amplifiers, single-function digital circuitry 

such as encoders and latches, multi-function digital circuitry 

such as arithmetic logic units, and mixed-signal circuitry such 

as Analog-to-Digital Converters (ADC) are all considered 

low-complexity electronics under the entity circuitry 

hardware. Computer hardware elevates the level of 

abstraction to contain many elements of circuitry hardware; 

Field-Programmable Gate Arrays (FPGA) and storage 

devices exist in this category.  
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Rigorously defining taxonomical entities is paramount to 

ontological utility, and the common forum for fastidious 

engineers to obtain definitions is ISO standards. In some 

cases, ISO standards fail to provide adequately utilitarian 

clarity. The National Aeronautics and Space Administration 

(NASA) has the same inter-standard definition consistency 

problem (Halvorson & Thomas, 2022). As an example, 

ISO/IEC/IEEE 24765:2017 defines Read-Only Memory 

(ROM) as a "non-volatile semiconductor storage device, 

from which data cannot be removed once it is written" and 

Random-Access Memory (RAM) as a "volatile 

semiconductor storage device which allows data to be written 

or accessed in approximately the same amount of time, 

regardless of the data's physical location" (ISO, 2017). The 

presented definition of ROM exclusively describes Mask 

Read-Only Memory (MROM) and Programmable Read-

Only Memory (PROM) but fails to consider modern ROM 

storage devices such as Erasable Programmable Read-Only 

Memory (EPROM) and Electronically Erasable 

Programmable Read-Only Memory (EEPROM). The 

presented definition of RAM exclusively describes types of 

Static Random Access Memory (SRAM) and Dynamic 

Random Access Memory (DRAM) while excluding all types 

of Non-Volatile Random-Access Memory (NVRAM), such 

as EEPROM and NOR flash memory. When considering 

EEPROM and NOR flash are both types of ROM and types 

of NVRAM, a logical flaw in the typical categorizations of 

storage devices is apparent from the categorically assumed 

equivalence of ROM and RAM. The term ROM is attempting 

to describe the quality of a storage device regarding its 

inability to be rewritten whereas the term RAM is attempting 

to describe the quality of a storage device access method 

regarding its ability to access any address inconsecutively 

without sacrificing efficiency. Typical categorizations often 

lack the term Sequential-Access Memory (SAM), 

hierarchically equivalent to RAM, describing the quality of a 

storage device access method regarding its inability to access 

any address inconsecutively without significant impacts to 

efficiency. Accounting for these discrepancies, to present a 

more realistic storage device taxonomy than that implied in 

ISO/IEC/IEEE 24765:2017, directly categorizing storage 

devices under RAM, SAM, and ROM has been avoided in 

favor of allocating qualities to particular types of storage 

devices. Examples of relations as ontological triples in RDF 

format for avionics hardware are provided in Table 1. The 

word “object” in RDF format refers to the target of the 

relation, not object in the sense of BFO material entity with 

an associated causal unity.  

Table 1: Avionics Hardware Relation Examples 

Subject Predicate Object 
computer hardware hasPart circuitry hardware 

data process occursIn processing device 
memory 

management unit 
providesAddressTo 

storage device 

controller 
storage device participatesIn data process 

3.2. Avionics Software Taxonomy 

All data and data representations are considered to be 

generically dependent continuants in BFO and are 

subcategorized under information content entity in IAO; an 

information content entity may be a directive information 

entity, data item, identifier, or symbol in the present domain.  

IAO introduced conditional, language, objective, and plan 

specifications as subtypes of directive information entity, and 

both software, a set of instructional data used to operate a 

computer system, and algorithms, the ordered content of 

instructional data relevant to software, are considered types 

of plan specifications. Software subdivides into software 

application, software library, software method, software 

module, and software script. Software application contains 

fully executable software such as application software, 

software such as F’ (Bocchino, Canham, Watney, Reder,&  

Levison, 2018) designed to achieve the goals of the user, and 

system software, software designed to support application 

software such as the operating system. Software module 

contains independent software components that can be linked 

together to form a portion or the entirety of a software 

application, such as the operating system kernel, file system, 

and scheduler. Software method contains individual software 

subroutines such as commands and system calls that can be 

linked together to form a portion or the entirety of a software 

module. Algorithm subdivides into numerous categories 

described by data interactions such that the intent of a 

particular software application, software module, or software 

method can be identified. Categorical specializations of 

software related objective specifications, functions, and 

processes were created in an identical manner. 

Forms of data intended for software interpretation instead of 

direct execution are considered specializations of data item, 

including singular datum, non-singular data, and aggregate 

data. Singular datum contains data intended for individual 

interpretation such as quality, quantity, and setting 

parameters. Non-singular data contains data intended for 

unified interpretation wherein individual interpretation of 

data segments still provides value, such as a Centrally 

Registered Identifier Registry (CRID), setting configuration, 

and state vector. Each CRID, possibly having set or variable 

cardinality and ordinality depending on the interpretation 

strategy, is linked to one or more identifiers wherein the 

usage of complex data structures such as stacks, queues, or 

linked lists allows this linkage to occur. By extension, it is 

not necessary for every complex data structure to have its 

own CRID so long as the complete data structure is accessible 

in some manner using an associated identifier. Aggregate 

data contains data intended for unified interpretation wherein 

individual interpretation of data segments is less meaningful, 

such as a data log, raster graphic, or orbital data message. 

Avionics software relation examples displaying ontological 

connectivity are provided in Table 2. 
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Table 2: Avionics Software Relation Examples 

Subject Predicate Object 
scheduler hasPart process registry 

process registry hasQuality ordinality 

command hasResult 
objective 

specification 

data objective 

specification 
isTargetOf data function 

data function isRealizedIn data process 

3.3. PHM-Specific Avionics Software Taxonomy 

Algorithmic implementations of EDAC are necessary to 

prevent the occurrence of interpretation or transmission of 

corrupt data. EDAC implementations consist of the addition 

of redundant data to a given message in the form of ECC. 

Error Detection Codes (EDC) allow for the detection of the 

presence of errors whereas ECCs allow for both the detection 

and correction of errors in a given piece of data. Both EDCs 

and ECCs are limited in capability respective to their 

implementations (Heidergott, 2004). Types of EDCs include 

the repetition code, checksum, cyclic redundancy check, 

longitudinal redundancy check, and transverse redundancy 

check. Types of ECCs include linear block codes and 

convolutional codes. Data scrubbing is an EDAC mechanism 

of invoking ECC on a particular address in a storage device 

that is both readable and writable regardless of volatility; data 

scrubbing techniques include demand scrubbing and patrol 

scrubbing (Heidergott, 2004). Demand scrubbing is 

automatically invoked by a storage device controller upon 

receiving a request to read from an associated ECC-capable 

storage device before sending the requested data. Patrol 

scrubbing is invoked from software as a request to a storage 

device controller associated with an ECC-capable storage 

device to iteratively perform demand scrubbing on each 

address without returning the data at said address. The usage 

of both demand scrubbing and patrol scrubbing slows the 

accumulation of uncorrectable multi-bit errors.  

Another EDAC mechanism pertains to majority voting paired 

with computational redundancy implementable in either 

hardware or software. Majority voting involves the repetition 

of an identical operation wherein the results of each operation 

are provided to a hardware or software construct capable of 

determining the highest modal input and returning that input 

as a single output. Implementations in hardware involve the 

utilization of transistor-transistor logic in the form of digital 

circuits composed of basic logic gates and multiplexers 

(Choudhary, Balasubramanian, Varghese, Singh, & Maskell, 

2019) such that the internal data bus is capable of supporting 

the bit-width of each input and output. Implementations in 

software involve the utilization of an appropriate algorithm 

such as the Boyer-Moore majority vote algorithm, an optimal 

approach removing the necessity for input sorting (Boyer & 

Moore, 1991). Table 3 details relations for PHM-specific 

software enabling software functional traceability.  

Table 3: PHM-Specific Software Relation Examples 

Subject Predicate Object 
storage device 

controller 
invokesFunction 

detect and correct 

data error  

detect and correct 

data error  
hasAlgorithm 

error detection and 

correction 

algorithm 

error detection and 

correction 

algorithm 

corrects 
undesired system 

state 

3.4. Space Radiation Environment Entities 

Space is radioactive, containing Solar Energetic Particles 

(SEP), Galactic Cosmic Rays (GCR), Van Allen Belt (VAB) 

trapped particles, and locally generated neutrons from 

sources such as the surface of the moon (Nöldeke, 2015). All 

SREs can be described by particle types, including protons, 

neutrons, electrons, photons, and heavy ions, and the 

corresponding energy of those particles. Different locations 

will feature differing particle profiles at differing energy 

levels; Jupiter has a magnetosphere stronger than that of 

Earth and therefore traps more particles with higher energies 

in its VAB. Deep space, by contrast, features negligible 

magnetospherically trapped particles but higher GCR particle 

fluxes. For effect examples, a SRE with high particle flux but 

low particle energy, such as Earth’s VAB, will cause high 

TID. A Coronal Mass Ejection (CME) from the Sun releases 

protons causing high NIEL, which manifests as solar array 

efficiency degradation. GCR flux increases outside of Earth’s 

magnetosphere causing additional SEEs due to very high 

particle energies penetrating spacecraft shielding. An 

ontology detailing these concepts must define particle types, 

properties, microscopic interactions, macroscopic interaction 

effects, SRE locations, and solar events.  

Particle taxonomy is described by Figure 4, representing the 

relevant particles of photons, protons, neutrons, electrons, 

and heavy ions under broad categories. Intensive radiative 

quantities, such as radiative wavelength, electromagnetic 

absorptivity, and linear energy transfer, and extensive 

radiative quantities, such as flux and intensity, are 

represented as quantities. One unusual assertion of the 

present domain is that radiative dose is an extensive quantity. 

The units of dose are J/kg, and usually when a parameter is 

per kg, e.g. specific internal energy or specific heat capacity, 

that quantity is intensive. However, adding more flux or more 

material would increase the dose absorbed by the material, so 

dose, TID, and NIEL are all considered extensive quantities. 

Instances of entities are not to be represented in reference 

ontologies, so only deep space and planetary magnetosphere 

were included as three-dimensional spatial regions in lieu of 

planet-specific locations. Magnetic and electric fields are 

considered realizable entities, a type of specifically 

dependent continuant.  
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A process specialization of radiative process was created to 

include processes such as solar event, photon interaction, 

particle interaction, and SEE. Solar event includes supernova, 

solar flare, and CME. Photon interactions are described by 

Lechner (2018), and particle interactions include single-

particle processes such as brehmstrallung and induced 

processes such as dielectric breakdown. Finally, SEEs are 

specified into recoverable and destructive effects, with 

recoverable including sensor noise, Single Event Functional 

Interrupt, Single Event Hard Error, Single Event Transient 

(SET), and Single Event Upset (SEU) and destructive 

including Single Event Burnout, Single Event Gate Rupture, 

Single Event Latch-Up, and Single Event Snap-Back, and 

SEDR. 

Relations for the SRE must relate environments to particles, 

particles to particle properties, particles and particle 

properties to microscopic interactions, microscopic 

interactions to macroscopic effects. Effects of interest include 

physical properties such as TID, NIEL, and SEEs and digital 

properties such as bit error rate. Examples of SRE relations 

allowing characterization of particle interactions and effects 

on hardware circuitry are detailed in Table 4. 

Table 4: SRE Relation Examples 

Subject Predicate Object 
planetary 

magnetosphere 
contains proton 

proton hasQuantity energy 

proton hasInteraction ion strike 

ion strike breaksDown 
dielectric 

displacement field 

ion Strike initiates 
induced electrical 

fault 

3.5. Faults and Errors 

ISO/IEC/IEEE 24765:2017 provides five definitions for 

fault: (1) manifestation of an error in software (2) incorrect 

step, process, or data definition in a computer program (3) 

situation that can cause errors to occur in an object (4) defect 

in a hardware device or component (5) defect in a system or 

a representation of a system that if executed/activated could 

potentially result in an error (ISO, 2017). Lack of definition 

in ontological format aside, it is unclear from the blending of 

these definitions if a fault is the manifestation of an error, the 

error itself, or the initiating defect. One might argue if five 

definitions are needed for a given term when used in five 

contexts, the term itself may need qualifying verbiage to 

distinguish definitions per contexts, e.g. fault versus latent 

vault. ISO/IEC/IEEE 24765:2017 provides an equally 

inadequate characterization of errors for use in the present 

domain in three definitions: (1) human action that produces 

an incorrect result (2) difference between a computed, 

observed, or measured value or condition and the true, 

specified, or theoretically correct value or condition (3) 

erroneous state of the system (ISO, 2017). 

An excellent characterization of faults in the context of 

radiation effects and soft errors in integrated circuits and 

electronic devices is provided by Heidergott (2004),  

A fault may be classified by its nature, duration, and 

extent; the duration of a fault may be transient, 

intermittent, or permanent...errors are the undesired 

system states caused by the fault…a fault in a system does 

not necessarily result in an error; a fault may be latent in 

that it exists but has not resulted in an error; the fault must 

be sensitized by a particular system state and input 

conditions to produce an error.  

Building on Heidergott’s characterization, fault and error are 

ascribed the following definitions for the present domain, 

Fault: a realizable entity initiated transiently, 

intermittently, or permanently by an event that may or 

may not manifest as an error when sensitized by a 

particular system state.   

Error: a realizable entity that manifests as an undesired 

system state, a loss of subsystem function, or an inability 

to provide a service.  

The nature of a fault can be described as latent or induced. 

An undiscovered fault in software programming or an 

electrical defect in a MOSFET would be considered a latent 

fault. A fault initiated as a consequence of a SEE would be 

considered induced by radiation. Whether that radiation-

induced fault is recoverable or destructive is simply a 

characterization of the duration of the fault as transient or 

permanent. If a permanent fault is induced on-orbit, 

functionally that fault is equivalent to a latent fault. The 

extent of the fault refers to the propagation of the fault across 

system interfaces. A SET might induce a SEU, which is 

functionally understood as a bit flip, e.g. a zero becoming a 

one. If demand scrubbing is performed on the memory device 

when the faulty bit is read, an ECC would prevent 

downstream propagation of the fault into the software, and 

the extent of the fault is contained. Examples of relations 

specific to faults and errors are provided in Table 5. 

Table 5: Fault and Error Relation Examples 

Subject Predicate Object 
single event upset hasQuality fault extent 

single event 

dielectric rupture 
hasQuality fault nature 

induced electrical 

fault 
manifestsAs loss of function 

3.6. Radiation Effect Mitigation  

It is well-established that a fault-tolerant system makes 

dedicated use of fault avoidance, fault masking, detection of 

compromised system operation, containment of error 

propagation, and recovery to normal system operations 

(Somani & Vaidya, 1997). Each of these is enabled in the 

present ontology. 
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Fault avoidance primarily occurs through four strategies: 

reduction of particle energy that would induce a fault, i.e. 

radiation shielding, avoiding deleterious particles by means 

of orbital element causation, powering down sensitive 

electronics when encountering deleterious particles, or using 

electronics hardened to deleterious radiation, i.e. “space-

rated” or “rad-hard” devices. Dedicated radiation shield 

technology such as Z-graded radiation shielding (Thomsen, 

Kim, & Cutler, 2015) does exist, but any material entity could 

be a radiation shield. A role of radiation shield was created 

that a material entity could become the bearer of. Qualities 

for powered-off and powered-on were created that can be 

ascribed to hardware components encountering deleterious 

radiation. The quality rating was added to describe derated 

components operating below the rated stress level in a given 

operational environment (Ebeling, 2004), and a relational 

quality for mounting was included to describe mounting 

hardware to an insulator as one example of a physical 

radiation hardness trait. In modern spacecraft engineering, 

many programs are using Commercial Off The Shelf (COTS) 

parts without the Military Specification (MIL SPEC) 

designation; some experts assert COTS is equally viable to 

MIL SPEC for many applications due to increased 

understanding of radiative effects on spacecraft electronics 

(Leitner, 2022).  

Fault masking refers to EDAC, EDC, ECC, majority voting, 

scrubbing, and redundancy. Redundancy, under the umbrella 

of system reliability, can be informational, spatial, 

repetitively temporal, temporally delayed or any combination 

therein. Informational redundancy signifies the existence of 

the same data item multiple times on a single storage device 

whereas spatial redundancy signifies the existence of the 

same data on two or more storage devices. Spatial 

redundancy could also signify multiple processors or other 

hardware in a majority voting schema. Repetitive temporal 

redundancy signifies the execution of the same process on the 

same hardware or software three or more times and majority 

voting the output, and delayed temporal redundancy signifies 

the execution of the same process on n spatially redundant 

hardware devices with the execution of the process on each 

sequential hardware device being delayed by an incrementing 

number of clock edges. Delayed temporal redundancy guards 

against faults induced by SETs in majority voting schemes, 

though it at minimum triples the execution time for the 

hardware and is dependent upon the hardware’s Window of 

Vulnerability (Fouillat, Pouget, Lewis, Buchner, & 

McMorrow, 2004). Redundancy is considered a relational 

quality in the present domain ontology. 

Reliability constructs such as Mean Time To Failure 

(MTTF), Failure In Time (FIT), and minimum life are also 

represented in the present domain under the quantity 

reliability quantity. Traditionally, a Reliability Block 

Diagram (RBD) follows a success perspective to reliability 

whereas a fault tree follows a failure perspective. Fault trees 

determine cut sets, or a set of basic events whose 

simultaneous occurrence ensures that the system failure event 

occurs (Kwatny, 2007). All the taxonomies, functions, and 

relationships described herein are ontologically useful 

because they identify and characterize cut sets resulting in 

errors that can be used to prognosticate and diagnose 

spacecraft avionics after an error has been detected. More 

succinctly, when an error arises or is predicted, the causes, 

preventative measures, and potential solutions, even if 

multitudinous, are known.  

Detection of compromised system operation is only half of 

PHM; the other half is to predict it. Errors such as loss of 

subsystem function or inability to provide a service are easily 

detected as they result in failure messages, but undesirable 

system states are more difficult to detect. For parameters, 

specifically quantity data as sensor data or setting parameters, 

it is possible to evaluate the data to be within prescribed upper 

and lower bounds, whether that data is in the correct format, 

if it is the correct data type, or if it the return is null. 

Parameters can also be monitored to predict if they will drift 

above or below the bounds. A useful data operation for PHM 

is to compare parameter values during startup and shutdown 

to a running log of startup and shutdown values. In the 

present domain, the parameter boundary is included as a 

conditional specification, startup and shutdown are one-

dimensional temporal regions, the divisions between startup 

boundary, nominal operation, and shutdown are each 

included as a process boundary, and the log of parameters 

during startup and shutdown is represented by the aggregate 

data entity, data log. 

Containment of error propagation is performed by confining 

the error to the component or subsystem in which the fault 

occurred (Heidergott, 2004), and containment is most useful 

at the lowest level possible. Each subsystem can define 

containment boundaries which are logically executed by 

continual verification of data value, structure, and format. 

Error detection should be decoupled from error correction to 

avoid unwanted persistence of one or more errors; halting a 

process signaling an error and performing a power cycle on 

one or more system elements is warranted. In recovery to 

normal system operation, recovery to a previous state thought 

to be correct is risky because the fault could still exist in that 

state. If possible, a strategy of panic, power cycle, and reset 

is recommended. Table 6 details examples of radiation effect 

mitigation relations aiding system architecture and design.  

Table 6: Radiation Effect Mitigation Relation Examples 

Subject Predicate Object 
chassis hardware bearsRole radiation shielding 

storage device hasQuality 
informational 

redundancy 

startup hasLog startup health log 
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4. CONCLUSIONS 

Provided here is an ontology for PHM in spacecraft avionics 

detailing taxonomic hierarchies of concepts relevant to 

spacecraft PHM and ontological triples relating taxonomized 

entities. The ontology was derived from the BFO as a TLO, 

but changes were made to the BFO to allow practical 

applications using IUPAC quantity characterizations.   

Instantiating a real world system using the present ontology 

allows for error-producing cut sets to be identified regarding 

system operation in a given operational environment, and 

error causes, preventative measures, and potential solutions, 

even if multitudinous, are known. Characterization of 

potential system errors provides engineers with substantial 

system analysis tools during development and operation. It is 

assumed and desired that the present work will undergo 

improvements based on PHM community feedback and use 

case definition. All entity definitions must be defined 

ontologically, and all ISO definitions must be revisited for 

clarity. Future work is warranted regarding the addition of 

roles for hardware and software, conditionally relating levels 

of performance with extensive and intensive physical 

quantities, and characterizing fault subtypes relative to types 

of hardware and hardware-specific particle interactions.  

ACKNOWLEDGEMENT 

This work was conducted using the Protégé resource, which 

is supported by grant GM10331601 from the National 

Institute of General Medical Sciences of the United States 

National Institutes of Health.  

REFERENCES 

Baumann, R. C., (2004) "Soft errors in commercial integrated 

circuits." International Journal of High Speed 

Electronics and Systems 14.02: 299-309. 

Bocchino, R., Canham, T., Watney, G., Reder, L.,&  Levison, 

J. (2018) "F Prime: an open-source framework for small-

scale flight software systems." 

Box, George E. P. (1976), "Science and statistics" (PDF), 

Journal of the American Statistical Association, 71 

(356): 791–799, doi:10.1080/01621459.1976.10480949. 

Boyer, R.S., Moore, J.S. (1991). MJRTY—A Fast Majority 

Vote Algorithm. Automated Reasoning. Automated 

Reasoning Series, vol 1. Springer, Dordrecht. 

https://doi.org/10.1007/978-94-011-3488-0_5 

Burgin, M. (2016). Theory Of Knowledge: Structures And 

Processes. World Scientific. ISBN 9789814522694. 

Calspan-University of Buffalo Research Center. Data 

Science and Information Fusion. Retrieved June 19, 

2022, from https://www.cubrc.org/index.php/data-

science-and-information-fusion/  

Calspan-University of Buffalo Research Center. Common 

core ontologies for data integration. Retrieved June 19, 

2022, from https://www.cubrc.org/index.php/data-

science-and-information-fusion/ontology  

Choudhary, J., Balasubramanian, P., Varghese, D. M., Singh, 

P. D., & Maskell, D., (2019) "Generalized Majority 

Voter Design Method for N-Modular Redundant 

Systems Used in Mission- and Safety-Critical 

Applications" Computers 8, no. 1: 10. 

https://doi.org/10.3390/computers8010010 

Cox, A.P., Nebelecky, C.K., Rudnicki, R., Tagliaferri, W.A., 

Crassidis, J.L. & Smith, B. (2016). The space object 

ontology. In 2016 19th International Conference on 

Information Fusion (FUSION) (pp. 146-153). IEEE. 

Ebeling, C.E., (2004). An introduction to reliability and 

maintainability engineering. Tata McGraw-Hill 

Education. 

Elert, G. (2022). The Standard Model. The Physics 

Hypertextbook. 

https://physics.info/standard/#:~:text=Bosons%20are%

20divided%20when%20it,Mass%20is%20energy.  

Fouillat, P., Pouget, V., Lewis, D., Buchner, S., McMorrow, 

D., (2004) Investigation of single-event transients in fast 

integrated circuits with a pulsed laser. International 

journal of high speed electronics and systems. 2004 

Jun;14(02):327-39. 

Halvorson, M. & Thomas, L. D., (2022). "Architecture 

Framework Standardization for Satellite Software 

Generation Using MBSE and F Prime." 2022 IEEE 

Aerospace Conference. IEEE, 2022. 

Heidergott, W. F. (2004) "System Level Single Event Upset 

Mitigation Strategies." International journal of high 

speed electronics and systems. 14.02 (2004): 341-352. 

Ingarden, R., (1983). Man and Value, Munich. 

International Organization for Standardization. (2020). 

Information Technology – Metamodel framework for 

interoperability (MFI) – Part 3: Metamodel for ontology 

registration. (ISO/IEC Standard no. 19763-3). Retrieved 

from https://www.iso.org/obp/ui/#iso:std:iso-

iec:19763:-3:ed-3:v1:en 

International Organization for Standardization. (2021). 

Information Technology – Top-level ontologies (TLO) – 

Part 1: Requirements. (ISO/IEC Standard no. 21838-1). 

Retrieved from 

https://www.iso.org/obp/ui/#iso:std:71954:en 

International Organization for Standardization. (2021). 

Information Technology – Top-level ontologies (TLO) – 

Part 2: Basic Formal Ontology. (ISO/IEC Standard no. 

21838-1). Retrieved from 

https://www.iso.org/obp/ui/#iso:std:iso-iec:21838:-

2:ed-1:v1:en 

International Organization for Standardization. (2017). 

Systems and software engineering – Vocabulary. 

(ISO/IEC/IEEE Standard no. 24765). Retrieved from 

https://www.iso.org/standard/71952.html  

Jackson, R., Matentzoglu, N., Overton, J.A., Vita, R., 

Balhoff, J.P., Buttigieg, P.L., Carbon, S., Courtot, M., 

Diehl, A.D., Dooley, D.M. and Duncan, W.D., 2021. 

OBO Foundry in 2021: operationalizing open data 

principles to evaluate ontologies. Database, 2021. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

13 

Kwatny, H., (2007) Lecture Notes from Engineering 

Reliability Course, Department of Mechanical 

Engineering & Mechanics, Drexel University. 

Lechner, A., (2018). CERN: Particle interactions with matter. 

CERN Yellow Reports: School Proceedings, Vol. 5/2018, 

CERN-2018-008-SP. p.47. 

Leitner, J. (2022). Phasing in COTS EEE parts in NASA. 

Community of Practice Webinar Series . NASA Goddard 

Space Flight Center. 

McNaught, A. D. (2019). Compendium of chemical 

terminology. (2nd Edition). Oxford: Blackwell Science. 

Mishap Investigation Board. (1999). Mars Climate Orbiter 

Mishap Investigation Board Phase I Report November 

10, 1999. 

Musen, Mark. (2015) “The Protégé project: A look back and 

a look forward.” AI Matters. Association of Computing 

Machinery Specific Interest Group in Artificial 

Intelligence, 1(4), June 2015. DOI: 

10.1145/2557001.25757003. 

Nöldeke, C. M., (2015). The Space Radiation Environment. 

Monsenstein Und Vannerdat. 

Orilia, F., & Paoletti, M. P., (2020). Properties. Stanford 

Encyclopedia of Philosophy. 

https://plato.stanford.edu/entries/properties/#DisTer  

Seppälä, S., Ruttenberg, A., & Smith, B. (2017). Guidelines 

for writing definitions in ontologies. Ciência da 

Informação  46 (1): 73-88. PhilArchive copy v3: 

https://philarchive.org/archive/SEPGFWv3 

Smith, B., & Brogaard, B., (2003). “Sixteen Days”, The 

Journal of Medicine and Philosophy, 28 (2003), 45–78. 

Smith, B., (2015). Basic Formal Ontology 2.0: Specification 

and User’s Guide. University of Buffalo.  

Smith, B., (2018). Applied Ontology: Lecture 1. Introduction 

to Ontology. University of Buffalo.  

Smith, B. (2022). "The birth of ontology." Journal of 

Knowledge Structures and Systems 3.1. 

Smith, B., Kumar, A., & Bittner, T., (2005). "Basic formal 

ontology for bioinformatics." 

Smith, B., Malyuta, T., Rudnicki, R., Mandrick, W., Salmen, 

D., Morosoff, P., Duff, D.K., Schoening, J. & Parent, K., 

(2013). IAO-Intel: an ontology of information artifacts 

in the intelligence domain. Proceedings of the Eighth 

International Conference on Semantic Technologies for 

Intelligence, Defense, and Security (STIDS), CEUR, vol. 

1097. pp. 33-40  

Somani, A. K., and Vaidya, N. H., (1997) "Understanding 

fault tolerance and reliability." Computer 4: 45-50. 

Thomsen, D., Kim, W., & Cutler, J. (2015) "Shields-1, A 

SmallSat radiation shielding technology demonstration." 

Wasson, C. S., (2016) System Engineering Analysis, Design, 

and Development: Concepts, Principles, and Practices. 

Wiley Blackwell. 

 

 

 

 

BIOGRAPHIES  

Michael Cullen Halvorson received 

a B.S. in Aerospace Engineering and 

a B.S. in Mechanical Engineering 

from Auburn University in 2017. He 

then received a M.S. in Mechanical 

Engineering from Auburn University 

in 2020 and is now a doctoral student 

in Aerospace Systems Engineering at 

the University of Alabama in 

Huntsville. Michael has been Chief 

Engineer for three satellite programs and has been Chief 

Engineer and acting Lead Systems Engineer for the Alabama 

Burst Energetics eXplorer since January 2021. Michael has 

been a NASA Research Fellow with the Alabama Space 

Grant Consortium since 2018 and leads collaborative 

research projects on spacecraft thermal analysis, Model-

Based Project Management, space engineering ontologies, 

and climate change mitigation strategy scalability.  

Noah Moyers received a B.S. in 

Software Engineering from Auburn 

University in May 2022. He is 

currently a graduate student in the 

Computer Science and Software 

Engineering department at Auburn 

University. Noah has been a member 

of the Flight Software team for the 

Alabama Burst Energetics eXplorer 

since January 2022. His research 

interests include computer architectures, embedded systems, 

and operating systems. 

L. Dale Thomas currently serves as 

a Professor and Eminent Scholar of 

Systems Engineering in the 

Department of Industrial and 

Systems Engineering and 

Engineering Management at the 

University of Alabama in Huntsville 

(UAH). He teaches system 

engineering students in the art and 

science of systems architecture and 

design, systems integration, test, and verification, and 

systems management. Dale also serves as director of the 

Alabama Space Grant Consortium and as deputy director of 

the UAH Propulsion Research Center. Prior to his retirement 

from NASA in July 2015, Dale served as the Associate 

Center Director (Technical) for the NASA Marshall Space 

Flight Center (MSFC) in Huntsville, Alabama, providing 

technical leadership for all MSFC spaceflight projects. He 

had previously served as the NASA Constellation Program 

Manager, leading the Constellation Program Office at 

Johnson Space Center in Houston, Texas, leading a 

nationwide team including all NASA field centers and five 

prime contractors.



 14 

APPENDIX 

 


