
A Data Quality Scorecard for Assessing the Suitability of Asset
Condition Data for Prognostics Modeling

Sarah Lukens1, Damon Rousis2, Dominic Thomas3, Travis Baer4, Michael Lujan5, and Marshall Smith6

1,2,3,4,5,6 LMI, Tysons, VA, 22102, USA
sarah.lukens@lmi.org
damon.rousis@lmi.org

dothomas@lmi.org
tbaer@lmi.org

mlujan@lmi.org
msmith@lmi.org

ABSTRACT

High efficacy algorithm development for prognostics requires
quality data from sensors and other contextual sources, such
as maintenance, usage and inspection data. Data quality chal-
lenges, such as lack of sensor-based history (depth) across the
entire fleet of components (breadth), can prohibit the ability
to develop algorithms which are both cost-effective and use-
ful. Therefore, the first step in prognostics modeling is de-
termining the sufficiency of the data required to support the
development of predictive algorithms. We present an assess-
ment process for determining data suitability in the develop-
ment of prognostic models based on available data that deter-
mines which modeling approaches are feasible, allowing for
a first determination of decision-making for data adequacy.
The assessment process follows a full data quality framework
which also identifies where data eligibility and quality may be
further enhanced using advanced technologies for data qual-
ity improvement approaches such as imputation, increasing
the probability of obtaining the required data needed for the
successful development of predictive algorithms. Use of this
framework maximizes the quantity of quality data harvested
from industrial data sources, increasing the probability of ob-
taining the required data needed for the successful develop-
ment of predictive algorithms. Additionally, repeating this
assessment as further data becomes available enables further
expansion of the set of usable prognostic models as data avail-
ability grows.

1. INTRODUCTION

Time series data, collected from sensors on industrial assets,
provides a means for measuring and monitoring asset health.

Lukens Sarah et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

The amount of sensor data is increasing with the reduction of
costs around the acquisition and installation of sensor tech-
nology, resulting in data stores of immense volume. The
combination of increased availability of sensor data, devel-
opment of data science tools and emerging technologies have
led to opportunities for developing quantitative approaches to
assist decision making. While there have been significant ad-
vances in prognostics modeling approaches over the past two
decades, much of the published algorithm development has
been focused on benchmark data sets which lack many char-
acteristics of raw sensor data collected from the field. Chal-
lenges and considerations around handling field data include
considerations of the size (high volume), structure, complex-
ity and quality of the data.

One component of the solution is the development of a data
pre-processing pipeline which supports best practices for con-
suming asset condition data from different sources in prepara-
tion for prognostics model building. Understanding the suit-
ability of the data for model development is another important
component. The condition of the raw data must first be eval-
uated to identify if the data can support training prognostics
models. Any quality issues in the raw data must be identified
which can lead to reduced accuracy of model predictions. In
the context of model development for prognostics and health
management (PHM), reduced accuracy can mean notification
of an event which will not occur in the near future (false pos-
itive), failure to notify an event before it occurs (false nega-
tive) or notification of an event but without enough advanced
notice to take appropriate action.

In practice, data quality issues often are present in the data
and can directly impact model performance. Data quality is-
sues can arise due to a number of reasons, including:

• how data is captured, transmitted, and stored;

• missing or incomplete data;
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• inconsistencies between data sources;

• limitations in the data model; or

• systemic features of the problem domain.

Analysis of sensor data alone is not enough to accomplish this
task. Appropriate context must be given to the sensor read-
ings data from two additional categories: maintenance and
operating time data. Maintenance data is typically transac-
tional records representing remove, replace, and repair events
that provide additional information about the health of sensor
measurements. Furthermore, when transaction maintenance
records are recorded with units of calendar time, operating
time, translates these units into an aging unit more appropri-
ate for prognostics modeling. These three data categories,
often from disparate data systems, must be aligned using join
keys (such as asset IDs or serial numbers) to build the data set
for training prognostics models.

In this paper, we present a rubric for calculating the qual-
ity of sensor data. A qualitative assessment of the implica-
tions on prognostic model performance is provided through a
simplified case study, which is also used to demonstrate how
the rubric may be applied to a real problem. The case study
is based on open source simulated C-MAPSS (Commercial
Modular Aero-Propulsion System Simulation) data for turbo-
fan engine degradation (Saxena, Goebel, Simon, & Eklund,
2008).

Our research goals. The purpose of data quality scorecard
presented in this paper is to formalize the process of prepar-
ing data for building prognostics models. By systematizing
data analysis, we hope to address the sometime ad-hoc ap-
proach to Exploratory Data Analysis (EDA) specifically in
the context of PHM that often comprises the early stages of
projects. The discipline of building machine learning models
has widely accepted frameworks, metrics (e.g. accuracy, pre-
cision, recall, F-score), and approaches for improving those
metrics. EDA, on the other hand, remains a somewhat art-
ful endeavor. The goal is to bring a scientific rigor to EDA
and offer metrics that quantify suitability of entering into the
model building phase of PHM.

Interpreting the results. Performance in one or more data
quality areas or in several scorecard metrics should not be in-
terpreted as a go/no-go threshold, but rather the first step in
experimentation and model building. The specific contribu-
tions of this work are formalization of a process of preparing
data for building prognostics models which accounts for data
quality challenges commonly found in the field, with some
recommendations for specific data quality measures for sce-
narios which are concerned with predicting lifetime regarding
major removal or replacement events of critical components.

The paper is organized as follows. Section 2 provides back-
ground information on data and data quality considerations
for prognostics model development and reviews related lit-

erature on which the approach was built from. Section 3
summarizes a full pipeline for evaluating data for prognos-
tics modeling suitability, with a series of data quality checks
and decision points. Section 4 introduces the case study and
data quality measures specific to the case study. Section 5
provides examples of the data quality scorecard process for
the case study. Section 6 contains conclusions, remarks and
future work.

2. BACKGROUND

The goal of a PHM initiative is to incorporate asset condition
data with other relevant information sources, such as avail-
able labor resources, parts demand and maintenance histo-
ries to predict the need for maintenance actions on compo-
nents prior to failure. With enough advanced notice, such pre-
dictions can lead to more accurate demand forecasts driving
changes in supply posture, provisioning of labor resources,
prevention of catastrophic failure or other actions that ulti-
mately increase up-time and reduce cost of asset operations.

Many organizations have years of sensor data, such as process
control data or diagnostics data, but have not evaluated its use
towards developing lifetime prediction models (Nguyen et al.,
2019; Corrêa et al., 2022; Kwon, Hodkiewicz, Fan, Shibu-
tani, & Pecht, 2016). There are also organizations who may
already have PHM programs in place, but are interested in
updating their modeling approaches or for using the data and
models in other areas of their organization beyond the main-
tenance department, such as fleet-level demand forecasting of
spare parts and inventory. Evaluating the suitability of already
available data for such purposes is a bottom-up approach.

From a formal, top-down perspective, the industry accepted
best practice for evaluating the implementation of a PHM
program on existing systems is to perform some sort of
maintenance strategy evaluation process, such as Reliability-
Centered Maintenance (RCM). In RCM, the risk-cost trade-
offs are considered in the context of the intended purpose
of the asset or system. Information from the data provides
an opportunity to augment the classic RCM process, which
can help for prioritization (Baker, Nixon, Banks, Reichard, &
Castelle, 2020). From a business or operations perspective, it
does not make sense to apply PHM as a maintenance strategy
for every asset, component or failure mode. In fact, there are
many assets or components where it makes much more sense
to have fixed interval replacement or run to failure strategies
(Goebel et al., 2017; Gulati & Smith, 2021; Atamuradov,
Medjaher, Dersin, Lamoureux, & Zerhouni, 2017). Guide-
lines for requirements specifications for a prognostics initia-
tive which integrates safety, reliability, cost and real-time vi-
ability are found in (Saxena et al., 2010; Goebel et al., 2017;
Walker & Kapadia, 2009).
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2.1. Prognostics Modeling for Equipment Life Prediction

Prognostics modeling, as defined by techniques for equip-
ment life prediction such as Remaining Useful Life (RUL),
is one component of a full PHM system. Equipment life
predictions are used to inform predictive maintenance (PdM)
or condition-based maintenance (CBM) programs aimed at
predicting and preventing incipient failures on critical assets.
Fleet-level decision making also consume equipment life pre-
dictions such as for informing demand forecasts for stock-
room inventory, determining optimal fixed intervals in pre-
ventative maintenance tasks, and for various life cycle cost-
ing analyses such as analyses based on reliability, availability
and maintainability of assets.

For PdM/CBM programs, if the available data is not suit-
able for equipment life predictions, other approaches such as
fault detection or diagnostics can still be deployed effectively
for early failure detection (Atamuradov et al., 2017; Elattar,
Elminir, & Riad, 2016). In contrast, if the available data is not
suitable for equipment life predictions for fleet-level decision
making, other population-level statistical approaches such as
Weibull analysis or Cox Proportional Hazards model can be
deployed effectively for making fleet-level predictions (Coble
& Hines, 2011). Prognostic models, individualized to an as-
set through incorporation of asset condition data as well as
historical and expected operating conditions, may be useful
for both the execution of a predictive maintenance strategy
and for refined fidelity in fleet-level decision making.

The major components of the PHM modeling life cycle
framework are data operations, model operations and com-
munications. Data operations is concerned with data acqui-
sition, such as how data is collected (such as manually tak-
ing measurements or use of sensors) as well as data storage,
aggregation and pre-processing considerations. Model oper-
ations is concerned with model development, training, vali-
dation and storage capabilities of PHM models. Communica-
tions refers to processes around initiating action based on the
model.

2.2. Data Sources for Prognostics Modeling

Asset condition measurements are usually in the form of
time-series data, which can be collected automatically from
sensors or manually such as from regularly occurring spot
readings. Information measured by sensors includes condi-
tion monitoring data, time series data for process measure-
ments and diagnostic readings. Diagnostic variables are typi-
cally boolean or categorical, such as an indicator at a certain
time when an alarm triggers. This paper is concerned with
sensor data, referring to time series data collected by sensors
either for measuring asset condition or for operations or pro-
cess which may possibly also be used for condition assess-
ment. Special considerations are often required for handling
sensor data, which is larger in volume than most other data

sources due to higher sampling rates and possibly high num-
ber of sensor variables.

Transactional data often contains information providing con-
text around events regarding an asset or component such as
dates and details around failure mode occurrence and main-
tenance activities. For prognostics model development, the
nature of the required contextual data will depend on the spe-
cific application desired. Examples of contextual data sources
include maintenance work orders, logbooks, financial report-
ing and operator entered information.

Aging or usage data contains information on the aging of the
equipment or component and is used in prognostics models
to map between calendar time and equipment operating time.
Such information is not typically uniformly captured across
different asset categorizations and needs to be determined
case by case. For example, for vehicular assets such as air-
craft or ground vehicles, usage data may include vehicle trip
start and end logs or mileage. In manufacturing operations,
where asset usage is scheduled and often continuous, usage
data may be extracted from data sources containing stoppage
or scheduling information.

2.3. Quality of Sensor Data

Data quality has been defined as data which is fit for a pur-
pose (Hodkiewicz, Kelly, Sikorska, & Gouws, 2006). Qual-
ity data for the development of prognostic models requires
sensor data which is available and labeled with the needed
contextual information. In practice, data for training prog-
nostics models is often unavailable, unlabeled and not orga-
nized. Failed sensors, sensors out of calibration or faulty data
collection and processing systems may lead to distorted or
missing data. Environmental conditions, aging and degrada-
tion may also affect accuracy of sensor data. The redundancy
from multiple sensors on a system may address some of these
challenges, but introduce new challenges such as handling
misaligned timestamps and highly correlated data. Consis-
tently labeled data is required for training data-driven mod-
els, but often sensor readings are unlabeled. When records
are labeled, class imbalance is a common challenge (Omri,
Al Masry, Mairot, Giampiccolo, & Zerhouni, 2021; Dangut,
Skaf, & Jennions, 2021; Zhang et al., 2019).

Data quality measurement and improvement frameworks
have been proposed and implemented for transactional main-
tenance data (Hodkiewicz et al., 2006; Lukens, Naik, Saetia,
& Hu, 2019). In order to measure (and improve) the quality
of the data, it is important to have defined goals and purposes
for the data. In this paper, we assume that the goals are for
the development and training of prognostics models for pre-
dictive maintenance or for fleet management. Once goals are
defined, data quality can be measured and data identified as
“sufficiently good” can be used. For data which is identified
as insufficient, data quality can be improved through improv-
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ing historical data if possible while implementing best prac-
tices for improving future data. Analytical tools can often be
employed to improve historical data, such as imputation for
handling missing values. For improving the quality of future
sensor data, the data quality measures help identify and guide
what data is needed and how it needs to improve. Data qual-
ity measures may also help identify requirements for where to
install sensors and data collection resources (thus informing
an RCM process) or specifying calibration tolerances.

2.4. Related Literature

There are published frameworks providing guidance for as-
sessing the suitability of sensor data for building PHM mod-
els. Chen, Zhu and Lee developed a methodology for both
evaluating and improving the quality of training data for train-
ing fault detection and diagnostic models (Chen, 2012; Chen,
Zhu, & Lee, 2013). They established procedures and quanti-
tative metrics for assessing acquired training data in its suit-
ability for classification modeling for fault detection and pro-
posed an efficient approach for filtering out outliers and inef-
ficient features from the data. Jia, Zhao, Di, Yang and Lee
proposed an iterative framework for assessing the suitabil-
ity of sensor data for PHM modeling tasks specifically for
PdM/CBM applications, specifically fault detection, diagnos-
tic and prognosis (Jia, Zhao, Di, Yang, & Lee, 2017). This
framework includes recommended metrics for evaluating the
suitability of the data; detectibility if the data supports fault
detection, diagnosibility if the data supports diagnostics and
trendability if the data supports prognostics models. Omri,
Masry, Mairot, Giampiccolo and Zerhouni (Omri et al., 2021)
added to this framework through proposing data quality met-
rics for the fault detection task considering data quality di-
mensions of data volume, data accuracy and data complete-
ness.

Coble and Hines proposed suitability metrics for prognostics
models based on three key qualities for prognostics param-
eters: monotonicity, prognosability and trendability (Coble
& Hines, 2009). Calculation of these metrics helps not only
identify the suitability of data, but also helps in fitting a prog-
nostic parameters through methods such as regression. Data
reduction, feature selection and the above frameworks for as-
sessing the suitability of the data for PHM modeling assume
the data is already “clean” (labeled, in equipment operating
time and with few or no missing values).

In many field cases, there is often a gap between raw data and
data in a form for evaluating the suitability for different PHM
modeling tasks. Recently, published works with specific rec-
ommendations for how to handle and prepare raw sensor data
for PHM analysis have emerged. Griffiths, Corrêa, Hod-
kiewicz and Polpo recommend best practices in the alignment
of time series variables (Griffiths, Corrêa, Hodkiewicz, &
Polpo, 2022), addressing challenges when sensors have dif-

ferent sampling rates. Griffiths et al. (2022) also make rec-
ommendations for integrating contextual data sources, such
as linking contextual data sources to time series data for la-
beling the data while also mitigating the large storage needs
of streaming data. Cofre-Martel, Lopez Droguett and Modar-
res developed a step-by-step guideline for processing sensor
data for PHM modeling with emphasis on handling the high
volume of data and incorporation of expert knowledge from
field engineers (Cofre-Martel, Lopez Droguett, & Modarres,
2021). They stress the importance of reproducible and consis-
tent processes for data pre-processing and show the impact of
pre-processing decisions on final PHM models. Addressing
the challenge of labeling sensor data, Corrêa, Polpo, Small,
Srikanth, Hollins and Hodkiewicz proposed a data-driven ap-
proach for labeling process data using contextual data sources
(Corrêa et al., 2022).

Data reduction and feature extraction and selection are im-
portant data preparation steps for prognostics model building
which are well-covered in the literature. Data reduction typi-
cally includes identifying highly correlated variables in order
to discard redundant variables as well as variables with low
variability (Eg: close to constant value) which may not act
strongly as explanatory variables (Cofre-Martel et al., 2021;
Nguyen et al., 2019; Griffiths et al., 2022). Feature extrac-
tion and selection may involve preparing data ranging from
calculating features such as lag times to employing analyt-
ics for identifying significant explanatory variables. Feature
extraction techniques are covered in many places as a key
area for data pre-processing in a PHM model development
pipeline (Atamuradov et al., 2017; Elattar et al., 2016), and
have different considerations when deep learning models are
introduced (Fink et al., 2020).

3. FULL DATA OPERATIONS PIPELINE FOR PROGNOS-
TICS SUITABILITY

Data Operations, the first stage in the PHM modeling life cy-
cle, consists of components related to data acquisition and
processing data for model development. For field data, this
also includes identification if the available data quality is suf-
ficient for model development and any analytical approaches
for measuring and improving data quality. Figure 1 shows
the full data operations framework from input data sources
to outputs suitable for model operations, which includes the
development, training, testing, validation and storage of mod-
els. The dashed box illustrates the portion of data operations
covered in detail by this paper. The following sections con-
tain brief summaries and reviews of the components of the
individual steps.

3.1. Data Survey and Data Model Assessment

The first step in preparing raw sensor data for analysis is the
Data Survey. Key metadata documented during this step in-
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Figure 1. Data operations pipeline for identifying, collecting
and assessing the feasibility and suitability of sensor data for
prognostics modeling. The portion covered by this paper in
detail is in the dashed lines.

clude scope of the asset coverage, component coverage, cal-
endar period covered, and numbers of variables and observa-
tions. The authors have found that simply documenting and
comparing date ranges between disparate data sources can
uncover issues often encountered downstream. In creating
the data survey, we also document relevant field names and
data types which assists in identifying true time series sensor
variables, binary indicators, categorical indicators, and iden-
tifying which to keep for the analysis.

During the data survey we consider data size and its implica-
tions on storage and computation as well. We audit the size
of each data source on disk before and after any compres-
sion or optimization to better understand burden on hardware
and compute resources moving forward. Size of the data of-
ten places important requirements on algorithm chosen dur-
ing modeling phase of PHM, and the goal is to establish those
requirements as early as possible.

We conclude the Data Survey step with creation of Data
Model Assessment, an important outcome aimed at answer-
ing the following question: does the way in which informa-
tion is stored support alignment? In particular, we apply the
following criteria for each of the three data categories:

• The data exists and is human readable.

• The data is structured and machine readable.

• Join key/s exist.

• Join key/s are unambiguous.

Furthermore, we impose additional criteria on the mainte-
nance dataset.

• Maintenance action is captured and human readable.

• Maintenance action is codified.

• Failure cause is captured and human readable.

• Failure cause is codified.

The above criteria can be evaluated as a stoplight chart with
green (criterion completely satisfied), yellow (criterion par-
tially satisfied), or red (criterion not satisfied) color coding.

3.2. Data Alignment and Integration of Contextual Data
Sources

Once the data scope and model have satisfied the criteria
above and deemed viable, the next step in the data prepara-
tion process is aligning the three major data categories: sen-
sor, maintenance, and operating time. First the different sen-
sor variables are aligned with each other, which may include
truncating or normalizing data and timestamps to adjust mis-
aligned sensor readings (Griffiths et al., 2022). Once the sen-
sor variables are aligned, integration with the contextual data
is performed. A general approach is to map the desired infor-
mation from the other data sources to time-series data, such as
creating and populating an array or column containing a rep-
resentation of the contextual information of interest at speci-
fied time points. Equipment aging may be represented in time
series form where each point contains the component’s age
at the time stamp. The desired labeling information is often
an event such as a detected fault, failure mode or time inter-
val indicating the period between an installation event and the
subsequent removal. The occurrence of significant events can
be represented as a discrete event or as a calculated value such
as an aggregation of observed events during a specified time
window or measuring the time leading up to the occurrence
(Simon & Schoenhof, 2021; Alam, Jalali, Ghosh, Farahat, &
Gupta, 2021; Griffiths et al., 2022). The end result of data
alignment and integration is a transformed time-series data
which is aligned in time and labeled.
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3.3. Data Quality Assessment

The data quality assessment measures if the aligned and inte-
grated data is suitable for use in prognostics modeling. Data
quality measures include specific checks around data com-
pleteness, data volume and accuracy. Completeness is the
most straightforward of the data quality dimensions, measur-
ing how much data is present and how much is missing. Other
data quality dimensions address the quality of the data which
is not missing. Once the sensor data is aligned and integrated
with contextual data sources, data completeness can be eval-
uated with respect to partially missing data.

For instance, if after aligning and integrating the data, ide-
ally each time point contains a label representing the occur-
rence of a significant event. Data quality can be measured to
evaluate if, when and how often sensor data is measured but
knowledge about an event is unknown, or if there is an event
occurrence but no supporting sensor data. For the data which
is not missing, other data quality measures such as detecting
outliers or noisy data may be measured. Data volume mea-
sures can be assessed to see how much data falls in each class,
assessing class imbalance possibilities and seeing if enough
data is in the minority class (Omri et al., 2021).

As equipment usage information is needed for prognostics
model building for conversions between calendar time and
operating time, sensor data missing while an asset was in
operation should be accounted for as such data may impact
prognostic model performance. How and how much such in-
formation is missing may have various degrees of impact.
This paper is focused primarily on recommending specific
methodology, and more specific details on the methodology
are in Section 4.2.

If the quality of the sensor data is deemed sufficient from this
step (or specific areas where the data is sufficient is identi-
fied), the data is ready for the next step - data reduction and
feature selection. For data that may have missing areas, the
process can assist in identifying if imputation may be possible
and what imputation approach is appropriate. For example, if
sensor values are missing intermittently, a different imputa-
tion approach may be used than if sensor values are missing
for an entire component over a significant period of time. Ad-
ditionally, the decision points from this step can also identify
gaps in asset condition coverage, helping to inform a deci-
sion process of where to install new sensors and where to use
already collected data.

3.4. Data Reduction, Feature Extraction and Selection
and Model Suitability Assessments

In practice, the next step in the prognostics modeling pipeline
are data reduction, feature extraction and selection, which
were reviewed in Section 2.4 and assumes by this point the
data is sufficiently clean and labeled. The tests for PHM

model suitability (such as trend-ability) are applicable at this
stage to inform the decision process. For PdM/CBM pro-
grams, if the data is determined unsuitable for prognostic
modeling, the data may still be suitable for diagnostics or
fault detection algorithms. If the goal is fleet level insights
and the data is determined unsuitable for prognostics model-
ing, the data may be suitable for reliability-based approaches
such as Cox Proportional Hazards modeling or Weibull Anal-
ysis (Coble & Hines, 2011; Nguyen et al., 2019).

4. ILLUSTRATIVE CASE STUDY FOR DATA QUALITY
SCORECARD

Specific details on how data is labeled and evaluated for prog-
nostic modelings are specific to the organizational goals from
modeling. For this reason, in this section we define a case
study scenario which will drive specific details presented for
the rest of the paper, but will be generic enough that the de-
sired prognostics models may be useful in both CBM/PdM
programs and for fleet-level decisions using equipment life-
time predictions for demand forecasting. In this scenario, the
event (or response) of interest are component removals which
lead to a major repair and/or replacement event. Specifically,
a removal event which causes “supply chain engagement”.
We define a maintenance interval as the time unit between a
component install and removal (component lifetime) and treat
the membership of a sensor reading to its maintenance inter-
val as a “label”. The duration of the interval, or RUL, is the
historical lifetime value.

The case study is intended to provide an example of the dif-
ferent steps of the pipeline, with emphasis on the data quality
assessment after the sensor data is integrated with the main-
tenance and usage data sources. Specifically, the main focus
of the case study will be showing how gaps in the data be-
tween the sensor readings and the equipment usage data are
identified, characterized and presented in a scorecard for de-
cision making towards determining modeling adequacy. The
case study assumes some sort of vehicular asset which has ir-
regular usage and operations in the form of vehicle starts and
stops, where a ”sufficiently good” mapping between equip-
ment operating time and calendar time is a strong requirement
for prognostic model performance.

We develop synthetic data to illustrate the data quality score-
card assessment process based on the widely used open
source C-MAPSS (Commercial Modular Aero-Propulsion
System Simulation) data set, which is simulated data for
turbo-fan engine degradation (Saxena et al., 2008). The C-
MAPSS data in its downloaded state is clean and suitable for
prognostics modeling. To illustrate the case study, we apply a
“backwards mapping” process to the C-MAPSS data to syn-
thetically make the data more resemble a “raw” data source.
For simplicity, the most basic C-MAPSS data subset (FD001)
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Table 1. Representative sample of vehicle trip data used for
creating calendar times based on vehicle usage

Trip
ID

Trip
start time

Trip
end time Duration Cum.

usage
(hrs) (hrs)

1 2022-05-03 19:55 2022-5-03 21:44 1.9 1.9
2 2022-05-04 02:16 2022-5-04 05:24 3.2 5.1
3 2022-05-17 04:40 2022-5-17 06:35 2.0 7.1
4 2022-05-18 00:00 2022-5-18 03:00 3.0 10.1

is used which has 100 units, one fault mode and one operating
condition.

While preparing the data for the case study, some assump-
tions regarding the physical system were made. While the
time unit on the C-MAPSS data (one engine cycle) is sup-
posed to represent a single vehicle trip, we assume that each
time point is a reading in time, distributed over different cy-
cles. As a result, the resulting calendar time window and
number of vehicle trips over the time window do not reflect
the intended C-MAPSS time scale of engine fault initiation
and degradation. We made the simple assumption that a unit
number in the C-MAPSS dataset corresponds to one engine
which is treated as a component on a vehicular asset.

Asset operation time intervals were created in the form of ve-
hicle trip start and stop data for vehicular assets expressed in
calendar time. The authors developed this usage data based
on generating trip times and durations in statistically similar
ways as heuristically observed on real vehicular data. A sam-
ple of the generated operating times are shown in Table 1. For
each observed sensor value, a calendar dates is generated at
a spacing of five minute intervals. A plot of one of the vari-
ables in the C-MAPSS dataset is plotted in Figure 2 to give
a visual comparison between equipment operating time and
calendar time. Gaps in the calendar time plot correspond to
periods where the component is not operating (for a vehicu-
lar asset, when the engine is off). In the field, longitudinal
plots of raw sensor data for vehicular assets resemble the plot
in Figure 2(b) and need to be converted to operating time for
model building.

The maintenance interval, signifying the time between com-
ponent install and removal, are simulated using the first time
series calendar date as the component install date and the last
time series calendar date as the last date as a suspension. For
simplicity, the age of the asset and the age of the component
are both zero at the start of the interval (component instal-
lation). In reality, both the asset and component may have
ages at installation which need to be incorporated into the
equipment lifetime calculations. It is important to note that in
field data, there is nearly always a significant amount of work
preparing maintenance intervals from maintenance data.

Since the original data is of “perfect” data quality, we would
expect that the backwards mapped “raw” version will return

perfect scores at every step of the way. In the case study ex-
amples, the scores from the perfect data are reported as the
baseline (Scenario 1) and two additional scenarios are created
for comparison. Scenario 2 is the “promising data” scenario,
where data quality issues exist, but there is promise for prog-
nostic modeling possibilities. Scenario 3 is the “insufficient
data” scenario, where the data quality is so poor, it is insuf-
ficient for prognostics modeling. The data quality measures
supplied in the case study are synthetic, but have values which
are simulated based on actual observations from the authors’
experiences.

4.1. Alignment and Integration Methodology

For the case study, preparing data for use in prognostics algo-
rithms requires three sources: sensor readings, maintenance
intervals, and operating time. Figure 3 shows how the three
data sources are plotted together over a single maintenance
interval, which is shown as the thick gray bar. The blue tick
marks on the top row show the regions where condition in-
dicator data observed, and the gray tick marks on the second
row show the regions where ”flight”/vehicle trip cycle data is
observed.

The outcomes of the alignment step are the appropriate la-
bels (membership to maintenance interval and interval dura-
tion) and an age value at each measurement time. Formally,
the first step is to align the different sensor readings to com-
mon time points. For the case study, we assume this is com-
pleted (observe the C-MAPSS data comes aligned) and focus
on alignment and integration between sensor data and con-
textual sources. The sensor readings are aligned against the
maintenance intervals in calendar time through labeling each
sensor reading with the corresponding maintenance interval.
This may involve adding columns to the sensor data with the
interval information, such as unique ID, install and removal
date and duration. The next step involves the mapping be-
tween calendar time and operating time, using the operations
data set. At this step, the age of the component can be in-
ferred at every measurement time point. An example of the
fused data is shown in Table 2.

4.2. Data Quality Scorecard Methodology

The proposed methodology for evaluating the data quality of
aligned and integrated sensor data for prognostics modeling is
detailed in this section. For the purposes of this case study we
assume that maintenance data is always recorded (install and
removal events are in the data), remarking that maintenance
data quality is a topic by itself. Table 3 summarizes differ-
ent observed challenges observed when comparing coverage
of the different data sources. Note that this table does not
contain an exhaustive list, but rather suggests different data
quality issues which could be observed and could be used as
a starting point.
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Figure 2. One variable (s1) from the C-MAPSS data (unit 1) plotted in equipment operating units and calendar units. (a)
Sensor readings plotting in equipment operating units. Each point here is a “cycle” in the original data. (b) After “backwards”
transformation, showing the values read in calendar time. The large gaps correspond to periods when the component is not
running.

The main possible data issues reported for data quality iden-
tification are organized into categories which are used to cat-
egorize each maintenance interval. These data quality cate-
gories are: no operating data, incomplete operating data (ob-
served gaps), low component aging, no sensor data and mea-
surement ambiguity between healthy and unhealthy readings.
Measurement ambiguity may occur when there are time se-
ries readings at the time of a significant event, such as install
or removal. In this case, it is ambiguous if the readings cor-
respond to a newly installed or about to be removed part and
may lead to training models on mislabeled data. Knowing
where this occurs and how often helps guide decisions made
in model development and training (decisions such as if to
remove data or consult a subject matter expert). When there
is low component aging observed, such as a very small usage
time, the recommended action may be to inspect the data and
determine special logic such as remove the data or try models
with or without the data.

In cases when there is no sensor data, it is unlikely that
sensor-based prognostics can be built, but there is need to fur-

ther investigate the issue. Depending on the scope and nature
of where the sensor data is missing, it may or may not be pos-
sible to use data imputation and use the coverage measures
to help inform what type of imputation. For example, sensor
data may be missing for an asset, but data from a similar asset
with similar operating conditions can be used to contextually
help impute missing values. Additionally, for fleet manage-
ment insights, such information can be used to justify using
reliability-based approaches in the modeling initiative.

The other major issues are around missing or incomplete op-
erating data. In both cases, challenges may occur when map-
ping between calendar and equipment operating time. It may
be possible to infer component ages at different reading times,
but it is important to be mindful of the uncertainty that this
practice may introduce into the prognostics model, both in
training and for making predictions. There is a lot of ambigu-
ity in when and how these cases occur, particularly when the
gaps are incomplete. For this reason, the data quality score-
card approach further assists in drilling down to characteriz-
ing these gaps.
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Figure 3. Legend for reading data alignment plots. Three data sources are plotted together over calendar time (x-axis): sensor
data, where occurrences are shown as ticks in the top row; usage data, where vehicle trips are shown as ticks in the bottom over;
and maintenance intervals, which are shown as thick gray bars over the vehicle trips.

Table 2. Example of aligned data with integration of contextual sources. For the case study, the key information is the main-
tenance interval where each reading has membership (represented by Interval ID, install date and duration columns) and us-
age/operating window (represented by Trip ID). The Age column is calculated from the integration and denotes the operating
age of the component at each time reading and is necessary for prognostics model development.

Time Sensor 1 Interval ID Install date Duration Trip ID Age

2022-5-03 01:00 641.82 1 2022-5-01 31 1 0
2022-5-03 01:05 642.15 1 2022-5-01 31 1 5
2022-5-03 01:10 642.35 1 2022-5-01 31 1 10
2022-5-04 03:45 642.35 1 2022-5-01 31 2 15
2022-5-04 03:50 642.37 1 2022-5-01 31 2 20

Each interval is classified based on consistency and complete-
ness of data within the range of the interval. As modelers,
we are particularly interested in the size of the gaps and the
location of the gaps of sensor readings within each mainte-
nance interval. Gaps in sensor data in the beginning or end of
the interval represent missing positive identification of either
healthy or unhealthy measurements respectively. Gaps in the
middle of the maintenance interval could inhibit the ability to
model degradation from healthy to unhealthy behavior if it is
observable for specific failure modes. Small gaps may possi-
ble be overcome by other modeling techniques such as impu-
tation whereas large gaps may force throwing away mainte-
nance intervals in the dataset.

Table 4 lists the categories each maintenance interval is
placed along with an image of an example. Observe the data
shown in the table has been mapped from calendar time to
equipment operating time at the best of the ability of the avail-
able data, so that any gaps shown represent missing sensor
readings at periods when the asset was in operation. The ta-
ble shows the categories in increasing order of severity, where
Type A represents the “cleanest” and D is the “dirtiest.” The
first characterization, A.1, is the type of data desired for prog-
nostics modeling, while the other extreme, D.2, is where the
asset is in operation but there are no measurements. The “B”
category corresponds to small gaps and the “C” category is
large gaps, and the cut-off between small and large can be

user specified. The different qualitative characterizations are
missing data at the beginning or end of the interval (*.2) and
missing data in the middle of the interval (*.1).

Application of this measurement process involves character-
izing every maintenance interval in scope of the data as falling
in to one of these categories. The result is a high level score-
card summarizing the data quality.

5. RESULTS OF DATA QUALITY SCORECARD APPLIED
TO CASE STUDY

The below sections walk through the various components of
the data quality scorecard process and illustrate how the dif-
ferent measurements could look in the three case study sce-
narios.

5.1. Data Survey and Data Model Assessment

The “stoplight chart” summarizing the results of the Data
Model Assessment (Section 3.1) is shown in Table 5, applied
to the three scenarios described in section 4. The first sce-
nario, which depicts the situation where perfect data is avail-
able and underlying data model does not introduce any ambi-
guity, is colored as completely green.

Scenario 2, the “Promising data” scenario, has several areas
where the Data Model Assessment falls short of a perfect
score but does not entirely halt progress on development of
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Table 3. Summary of different data quality challenges which arise from integrating sensor data with maintenance and usage
data. We focus further on characterizing the different gaps in operating data for better recommendations on the suitability of a
dataset.

Issue
Sensor

data

Maint.

data

Operating

data
Detail

Possible root

causes

Modeling

implications

No operating data Yes Yes No Sensor data exists
and maintenance
records indicate
parts are aging.
Operating data does
not exist.

Missing operating
data. Sensors are
measured, but
certain criteria are
not met to record
operating data data

Cannot map to
calendar data to
operating time -
either see if aging
can be approximated
or interval unusable
for training.

Gaps in operating
data

Yes Yes Gaps Component aging
calculated from the
maintenance data
will be higher than
the sum of operating
hours.

Operating records
may be missing,
operating recording
issues or sensors
measured but certain
criteria not met

Challenge in
mapping calendar
data to operating
time - introduces
high uncertainty to
any prognostic
modeling

Low component
aging

Often

missing
Yes

Often

missing
Equipment aging
between install and
removal is very
small (eg: less than
10 hours).

Incorrectly installed,
infant mortality or
controlled exchange

Inclusion (or
exclusion) to
prognostics model
may introduce bias,
removal of data may
reduce size of
training data

No sensor data No Yes Yes Sensor data does not
exist, but operating
time indicates
component was in
operation and aging

Records do not
exist, or equipment
is not monitored

Cannot build
sensor-based
prognostics model -
need to investigate
scope of this issue

Measurement

ambiguity
Yes Yes Yes Sensor readings

occur at the same
time as a significant
event, leading to
ambiguity on when
they are observed

Differences in
recording practices
between data types

Prognostic
algorithm trained on
mislabeled data

prognostic models. Two areas where the data partially ful-
fills the criteria (yellow) are in join key ambiguity. Join key
ambiguity could be yellow because times of events are cap-
tured with a DATE datatype not TIMESTAMP in both main-
tenance and operating time data. Events could have occurred
anywhere in a 24 hour window, which introduces ambiguity
when attempting to align with sensor data, which does have a
TIMESTAMP datatype.

Another aspect where criteria are not met in Scenario 2 (red)
is capturing failure cause and maintenance action as codified
fields. Instead, these fields could be free-text fields written by
the maintenance personnel performing the action. Additional
effort will be required to interpret or translate the natural lan-
guage into something that can be used for modeling.

Scenario 3 represents the most severe case where sensor data

is not human readable and thus entirely precludes proceed-
ing with the data alignment step without remediation. In
this example, the original sensor data was encrypted by the
original equipment manufacturer (OEM) and required signif-
icant effort beyond the scope of this paper to decrypt. An
additional complication is that failure code information is not
available nor could corrective maintenance actions be differ-
entiated from scheduled maintenance.

5.2. Data Quality Scorecard for Sensor Data Coverage

Data Completeness: High Level Assessment. Table 6
shows the total percentage (normalized by maintenance in-
terval) of occurrence of the categories from Table 3 for the
three scenarios. Observe that these numbers need not add up
to 100 because issues may overlap. For Scenario 3 (insuf-
ficient data), we see that 12% of the maintenance intervals
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Table 4. Data quality categories based on completeness of sensor data readings over equipment operating time across a main-
tenance interval (from component installation to removal).

Type Description Example

A.1 Sensor data consistent from
interval start to end

B.1 Small gap in sensor data in
the middle of interval

B.2 Small gap in sensor data at
beginning or end of interval

C.1 Large gap in sensor data in
middle of interval

C.2 Large gap in sensor data at
beginning or end of interval

D.1 Sensor data very sparse
throughout interval

D.2 Sensor data does not
exist in interval

have low aging. This may be important to note because there
may be insufficient lifetime data volume for model training
or data quality issues which need addressing. In this case, the
user could drill down to see where and how this happens and
make decisions such as whether to make certain exclusions
from the training data. Also note that in the insufficient case,
60% of the sensor readings are missing or incomplete over
their respective maintenance intervals and 32% are missing
or incomplete 2 for the promising case.

Data Quality Scorecard for Missing Operating Data. The
amount of sensor data coverage within the maintenance re-
movals for each scenario are reported in Table 7. The num-
ber in each cell represent the fraction of total maintenance
intervals for that component that fall into that coverage cate-
gory: A.1 (most pristine, sensor data throughout interval) to
D.2 (poorest data quality, e.g. no sensor data within the in-
terval). For the three scenarios, only one sensor variable is
shown because we did not assume different sensor variables
were missing or had different sampling rates, so all sensors
had equal coverage. In reality, understanding the respective

coverage across different variables could be hugely informa-
tive in selecting which variables potentially use for prognostic
model development.

A visualization of the numbers summarized in Table 7 com-
paring the three scenarios is shown in Figure 4. Such visual-
izations are powerful for quickly reporting and communicat-
ing the results of the data quality analysis.

Using these type of data quality measures, the analyst can
gauge the suitability of their data for modeling. In the per-
fect data scenario, the analyst can begin dimension reduction,
feature selection and assessing which prognostic modeling
approaches may be suitable given the data. In the insuffi-
cient data scenario, the information in the data quality score-
card can be presented to communicate the feasibility of prog-
nostics modeling given the data before attempting to build a
model. The promising data scenario is definitely grayer, but
the scorecard can give qualitative and quantitative insights to-
wards how to proceed depending on the use case and the na-
ture of the data. In all cases, the results of the data quality
scorecard process are not necessarily good or bad, but rather
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Table 5. Data Model Assessment, shown as a “stoplight
chart”, for three scenarios with increasing levels of data dirt-
iness.

Scenario 1: Scenario 2: Scenario 3:
Perfect Promising Insufficient

Criterion (%) (%) (%)

Sensor data is
human readable

Sensor data is
machine readable N/A

Sensor data join
key/s exist N/A

Sensor data join
key/s unambiguous N/A

Maintenance data is
human readable

Maintenance data
machine readable

Maintenance data
join key/s exist

Maintenance data join
key/s unambiguous

Operating time data is
human readable

Operating time data
machine readable

Operating time join
key/s exist

Operating time join
key/s unambiguous

Failure cause is
human readable

Failure cause is
codified

Maintenance action
human readable

Maintenance action
codified

a formal process for evaluating and better understanding the
possibilities of using available data for prognostics modeling.

5.3. Implications

Imbalanced data: When gaps in sensor measurements exist
at the start (labeled as healthy) or end (labeled as unhealthy)
of maintenance intervals, this introduces imbalance in train-
ing samples. Many machine learning models assume bal-
anced data, which causes them to have poor predictive per-
formance for under-sampled classes, often the most interest-
ing. Furthermore, over/under-sampling healthy or unhealthy
sensor readings may lead to inaccurate estimate of model per-
formance. For example, a model may be very accurate at
predicting healthy components (low false positive rate) at the
same time poor at identifying unhealthy components (high
false negative rate).

Table 6. Examples of high level sensor data quality measure-
ments comparing the 3 hypothetical data quality scenarios.

Scenario 1: Scenario 2: Scenario 3:
Perfect Promising Insufficient

Issue (%) (%) (%)

No operating
data 0% 1% 4%

Gaps in
operating data 0% 32% 60%

Low aging
(<10 hours) 0% 3% 12%

No sensor
data 0% 2% 19%

Measurement
ambiguity 0% 0% 1%

Figure 4. Comparison of operating coverage scorecards
across three scenarios

Degradation modeling: For those failure modes that have
smooth and predictable transition between healthy and un-
healthy (e.g. corrosion and wear), gaps in sensor data lead to
step-changes in behavior rather than consistent observations
over the degradation period. In this case, the problem may
be reduced to anomaly detection rather than prediction of re-
maining useful life.

Reduced training dataset: At some point, sensor data be-
comes too sparse, and we are forced to eliminate entire main-
tenance intervals from our training dataset. This has impor-
tant modeling implications where less data on which to train
can lead to overfitting. Models that overfit on few samples do
not generalize well to new observations.

Model-specific implications: In the example of linear re-
gression, we can train a model that gives point estimates of
the model parameters (e.g. y-intercept, slope) based on ob-
servations, and those point estimates have standard errors that
depend on number of observations: fewer samples means
higher error.

Performance implications: Lastly, our ability to estimate
model accuracy is decreased when we have fewer samples
with which to calculate performance metrics. For example, a
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Table 7. Example of data quality scorecard for characteriz-
ing operating data across the 3 scenarios. Every maintenance
interval is classified into a category, with A.1 the most desir-
able. The number of maintenance intervals in each class are
reported as a percentage of the total maintenance intervals.

Scenario 1: Scenario 2: Scenario 3:
Perfect Promising Insufficient

Type Description (%) (%) (%)

A.1
Sensor data
consistent from
interval start
to end

100% 68% 0%

B.1
Small gap in
sensor data in
the middle
of interval

0% 11% 1%

B.2
Small gap in
sensor data at
beginning or end
of interval

0% 5% 7%

C.1
Large gap in
sensor data in
middle
of interval

0% 9% 0%

C.2
Large gap in
sensor data at
beginning or end
of interval

0% 4% 16%

D.1
Sensor data very
sparse throughout
interval

0% 2% 18%

D.2
Sensor data does
not exist in
interval

0% 1% 58%

model that correctly predicts 900 out of 1,000 samples has the
same accuracy as a model that predicts 9 out of 10. However,
we are much more certain of the estimate in the first case. In
the context of a PdM/CBM program, this could be the differ-
ence between a viable and inviable maintenance policy.

6. CONCLUSION

A methodology was proposed which can be used for an initial
data quality assessment of available sensor data for prognos-
tics model development. A case study concerned with pre-
dicting the next major repair or replacement event on a crit-
ical component was used to specifically show execution of
the methodology and the decision points made before feature
selection in a prognostics model building pipeline. The data
quality framework provides scope of the suitability of the data
for the development of prognostic models and can be used
to target data issues for data quality improvement, inform
specific data quality improvement strategies, assist the mod-
eler in forming hypotheses, designing experiment and tuning
models, and quantify the return on investment for data quality
improvement initiatives.

In addition to evaluating existing data for its feasibility for
prognostics modeling, there are additional applications. The

data quality framework can also be used to inform a data qual-
ity improvement initiative, such as identifying challenges in
condition measurement sampling. The data quality measure-
ment approaches could be used to inform an RCM process
for developing a PHM maintenance strategy by summarizing
existing information which could be re-purposed. Compar-
isons of the different measures from this approach could be
to compare sensor data from similar systems with different in-
strumentation strategies for analysis, such as comparing data
from assets with retrofitted sensors against data from assets
with health ready components.

While it is known that the quality of the data will impact prog-
nostic model performance, a rigorous process for measuring
how much, under what data quality assumptions and man-
aging uncertainty is future work. The synthetic data based
on the C-MAPSS dataset is a starting point in this direction,
as prognostics modeling approaches and their performance
are well documented. Two major categories in how the C-
MAPSS data fails to depict real-world data is (1) it is missing
many real system characterization features such as mainte-
nance logs, data quality and other diverse sources of factors
that add uncertainty to the data, and (2) it is not very large
in size. Incorporating considerations around big data into a
framework are important too, as in reality, condition indi-
cator dataset is massive. The newer C-MAPSS dataset (N-
CMAPSS) is a natural place to expand on creating synthetic
data containing data quality challenges (Arias Chao, Kulka-
rni, Goebel, & Fink, 2021).

Many works focused on PHM analytics are focused on the
PdM/CBM use case and not on fleet management applica-
tions. This paper has focused on prognostics models and the
role of equipment lifetime predictions. There is opportunity
for organizations which have existing PdM/CBM programs
in place to also use the data and analytics in their organi-
zation for fleet management purposes such as demand fore-
casting. In practice, data, models and information can be in
silos across an organization. Restricted access to condition
indicator data may not just be across different departments,
but also occurs between owner/operators and the OEMs who
have proprietary encryption. The challenge of siloed data is-
lands can be larger as decision making uses for the data can
have far reaches within different departments in an organiza-
tion and across the supply chain.
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NOMENCLATURE

PHM Prognostics and Health Management
PdM Predictive Maintenance
CBM Condition Based Maintenance
RCM Reliability Centered Maintenance
EDA Exploratory Data Analysis
OEM Original Equipment Manufacturer
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