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ABSTRACT 

Bearing condition monitoring is a widely studied field, but 

applications to the automotive industry have received little 

attention as the bearing failure rates are typically low in 

traditional internal combustion engine vehicles with 200 – 

300k mile lifespans. The rapid advancement of electric and 

autonomous vehicles enables vehicles with million-mile 

lifespans. This implies that the reliable life of existing bearing 

designs is exceeded throughout the vehicle life, which can 

potentially lead to vehicle failure. To enable the development 

of a bearing fault detection and prognostics system, healthy 

and faulty bearing data must be collected, and the ground-

truth states of the health of bearings need to be determined 

for algorithm refinement and validation. This work explores 

the fault injecting options, and ground-truthing together with 

their limitations. Two methods based on precision machining 

and seeded spalling are developed and used to inject inner 

race faults in a ball bearing. A non-invasive ground-truthing 

method is proposed to quantify the state of health of the fault 

injected bearings in which bench test data is collected under 

various speed and load conditions. The vibration signals from 

the bench tests are used to calculate the root-square of the 

area under the acceleration Power Spectral Density curve 

(known as GRMS) for each speed and load condition. To 

remove the dependency of the results on load and speed 

conditions, a speed-load-GRMS plot is generated, and a plane 

is fitted to the data for each fault level. Next, the volume 

under the plot is calculated, yielding a single cumulative 

GRMS value for each fault level. This value is used as the 

ground-truth health of bearing for each fault level. For the 

bearing with the faults injected using precision machining 

fault injection, the obtained ground-truth values are 1.56, 

3.68, and 4.36 times larger than the same figure for the 

healthy bearing for the faults with the widths of 0.1 mm, 0.5 

mm, and 2 mm, respectively. The observed correlation 

between the fault sizes and the calculated ground-truth values 

validates the proposed method which can provide a good 

separation among different health states of a bearing. 

1. INTRODUCTION AND BACKGROUND 

1.1. Introduction 

Bearing failure is known as one of the most frequent reasons 

for machine breakdown (Randall & Antoni, 2011). In 

industries such as manufacturing and power generation, 

powerful bearing fault diagnosis methods have been 

established to detect bearing failure at the incipient stage and 

avoid costly downtime (Nabhan, Ghazaly, Samy, and Mousa, 

2015). However, in the automotive industry, bearing failure 

has not been widely studied. For Internal Combustion Engine 

(ICE) powered vehicles, bearings are designed so that their 

lifespan exceeds the vehicle’s life (Garner, Drame, Du, and 

Sadjadi, 2021). Therefore, low bearing failure rates have been 

reported in these vehicles (Garner et al., 2021) (Rao & 

Tjandra, 1994). Even in the case of bearings failure, it is 

expected that the driver can notice an unusual noise and the 

fault can be detected before it becomes safety critical. Due to 

the lack of business cases, bearing health monitoring has 

received little attention in the ICE-powered vehicle industry.  

Electric Vehicles (EVs) are expected to dominate the vehicle 

market soon as leading vehicle manufacturers such as 

General Motors (GM), Volkswagen, Honda, Ford, Volvo, 

and Nissan have announced that they will either manufacture 

Electric Vehicles (EVs) only or in significantly larger number 

than ICE soon (Weiss, 2021). Global regulations aiming to 

limit CO2 emissions, the rapid growth of charging 
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infrastructure, technological advancements, and falling 

prices are accelerating this process (Weiss, 2019). It is 

estimated that there will be 85 million EVs on the roads by 

2030 (Haram, Lee, Ramasamy, Ngu, Thiagarajah, & Lee, 

2021).  

Electric Autonomous Vehicles (EAVs) are also emerging 

quickly in the automotive industry due to the rapid decline in 

costs of some key components such as light detection and 

ranging (LiDAR) (Pan, Fulton, Roy, Jung, Choi, and Gao, 

2021). (The Deloitte University Press, 2016) boldly predicted 

that EAVs may account for half of the new vehicle sales by 

2040. Most of the EAV market will be taken by autonomous 

taxi fleets soon as companies such as Cruise, Waymo, and 

Zoox are now investing in such developments. 

The rapid advancements in battery technology are enabling 

EVs and EAVs with million-mile lifespans (Motavalli, 

2020). This implies that the reliable life of existing bearing 

designs is exceeded throughout the vehicle life (Garner, 

Santanna, and Sadjadi, 2021), and the likelihood of a bearing 

failure (and potentially a vehicle failure because of that) 

increases drastically in EVs compared to ICE vehicles in case 

the bearings are not redesigned. For autonomous taxi fleets, 

it is expected that the bearing failure rate would be even 

higher than EVs because of the following reason: In these 

vehicles, in addition to exceeding the bearing reliable lifespan 

associated with EVs, the bearing failures that could be 

detectable by a human driver are not avoidable as the 

passengers are unfamiliar with the vehicle and any possible 

usual sounds.  

Replacing the bearings on a fixed schedule to maintain 

reliability can be considered the simplest solution to the 

above-mentioned problems. However, it wouldn’t be cost-

effective (Garner, Santanna, and Sadjadi, 2021), especially 

for EAV fleet companies. Instead, an automated bearing 

health monitoring system can be developed to detect and 

isolate bearing faults. The development of such a system can 

extend bearings’ reliable range, reduce the maintenance cost, 

and mitigate safety concerns. 

1.2. Background: Bearing Fault Detection 

As the roller elements pass a local fault on the outer or inner 

race of a bearing, broadband vibration bursts are excited 

(Smith & Randall, 2015). The frequencies at which these 

vibration bursts occur (called bearing critical frequencies) 

can be calculated under a no-slip assumption for inner race 

and outer race faults using the formulas provided in (Randall 

& Antoni, 2011). Experimental variations of 1-2% from the 

ideal critical frequency formulas are expected (Randall & 

Antoni, 2011). Most bearing condition monitoring algorithms 

consume the signals of an accelerometer to capture those 

vibrations. If a peak at critical frequencies (known as fault 

signature) is found in the vibration spectrum, the bearing is 

detected as faulty (Randall & Antoni, 2011).  

In the literature, various signal processing techniques have 

been studied to enhance the fault signature and reduce 

background noise, such as the envelope spectrum  (Darlow, 

Badgley, and Hogg, 1974), bandpass filtering based on 

spectral kurtosis (SK) (Antoni, 2006), unsupervised noise 

cancellation (Antoni & Randall, 2004) and minimum entropy 

deconvolution (Sawalhi, Randall, and Endo, 2007). A 

detailed review of these techniques is available in (Randall & 

Antoni, 2011). 

In (Garner, Santanna, and Sadjadi, 2021), it was concluded 

that the current simulation capabilities are not sufficient for 

developing a high-fidelity bearing fault detection algorithm 

in the automotive industry. Bench test data can be used to 

develop the algorithm, and vehicle data is required for 

refinement and verification. To enable bench test and vehicle 

data collection, bearings with various health states must be 

available. Therefore, a bearing fault injection method must be 

developed and implemented. Then, the state of health must 

be quantified.  

This paper, which is the first in a series of research efforts to 

develop a fault detection algorithm for automotive bearings, 

lays the groundwork for developing an automated bearing 

fault detection system. Section 2 investigates the bearing 

failure modes in the automotive industry, proposes two fault 

injection methods to create faults similar to those from 

fatigue failure, and outlines the pros and cons of the proposed 

methods. Section 3 develops a method to quantify the 

ground-truth health state of a bearing and presents the results. 

2. BEARING FAILURE MODES AND FAULT INJECTION 

2.1. Bearing Failure Modes in Automotive Industry 

Based on ISO 15243, there are 14 bearing failure modes in 

general. These failure modes are mainly categorized into 

fatigue, wear, fracture and cracking, corrosion, electrical 

erosion, and plastic deformation. Each mode can be divided 

into sub-modes: Fatigue includes subsurface and surface-

initiated fatigue. There could be two sorts of wear such as 

adhesive and abrasive. Fracture and cracking can be divided 

into three sub-modes referred as forced and fatigue fracture 

and thermal cracking. Moisture and frictional are two kinds 

of corrosion where the latest one is divided into sub-modes 

including fretting corrosion and false brinelling. Electrical 

erosion is classified into excessive current erosion and 

current leakage erosion. The latest failure mode is 

categorized into overload deformation and indentation from 

debris (SKF, 2014). A detailed description of these failure 

modes is provided in (SKF, 2014).  

Here, the most common failure modes in the automotive 

industry are classified into three main categories: 

contamination ingress, brinelling failure, and fatigue.  

At high mileages, bearing sealing may become damaged. A 

damaged seal will allow water and contaminant ingress into 
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the bearing. When water penetrates a bearing’s seal, either 

through splashing or submergence, it can degrade the 

lubrication and lead to corrosion of the bearing raceways and 

rolling elements. When contaminants in the form of hard 

particles enter the bearing, the rolling elements over-roll the 

particles, which creates indentations in the raceways, 

especially when the particles have sharp edges. 

Bearing brinelling occurs when the bearing experiences a 

heavy impact load, usually because of abuse events such as 

striking a curb or pothole and vehicle collision. This heavy 

stress can result in permanent indentations, known as Brinell 

marks, on the bearing raceway. In (Garner, Santanna, and 

Sadjadi, 2021), a fault injection method was developed to 

create bearing faults similar to those developed in a real 

scenario of a vehicle striking a curb or pothole. That required 

a fault injection mechanism that resembles the forces of a 

curb strike. They proposed a static load test fault injection 

method to stress the bearings and generate Brinell dents. 

Indentation due to contaminant ingress or brinelling can lead 

to fatigue failure. The area around the indentation is subject 

to cyclic stress due to normal over-rolling by the rolling 

elements. Due to this cyclic stress, surface fatigue is initiated, 

and the metal will start to break away from the raceway, 

which is called spalling. Spalling damage can propagate until 

the bearing fails, which can even create safety concerns 

(SKF, 2014) (Upadhyay, Kumaraswamidhas, and Azam, 

2013). Therefore, spalling damage due to fatigue failure can 

be considered as a crucial failure mode which should be 

detected by employing bearing health monitoring systems 

before the faulty bearing degrades significantly. The focus of 

this paper is on fatigue bearing failure.  

2.2. Bearing Fault Injection Methods 

In this section, two fault injection methods (seeded spalling, 

and precision machining) are proposed to create faults similar 

to spalling. The pros and cons of the proposed methods are 

also presented.  

2.2.1. Seeded spalling 

First, a small indent is created on the inner/outer raceway. 

Brinell dent fault injection method introduced in (Garner, 

Santanna, and Sadjadi, 2021) can be used to apply a heavy 

load on the bearing and create this indent. Alternatively, the 

load can be directly applied to a rolling element (as shown in 

Figure 1a) and pressed to the inner/outer raceway until the 

dent with the desired dimension is created. The latter 

approach is used and a dent is created with a diameter of 

0.175 mm on the inner race of a ball bearing, which is shown 

in Figure 1b.  

 

Figure 1. (a) Schematic of the indent creation process (b) 

The created indent on the inner race of a ball bearing. 

 

After the fault is injected, the bearing is assembled and 

installed on a bearing bench test setup with a schematic 

shown in Figure 2. The bearing is run under load 

continuously so that the rolling elements can over-roll the 

injected defect in the previous step, the fault can propagate 

due to this cyclic load, and vibrations are generated. An 

accelerometer is attached to the setup and the vibration level 

is monitored using a computer connected to the 

accelerometer. As soon as the vibration reaches a certain 

level, the test is stopped, and the faulty bearing with a spalling 

defect is ready to use for algorithm development/ refinement 

or validation. The threshold can be selected as a certain ratio 

of root mean square (RMS) of the vibrations in the time 

domain for the faulty bearing to the same figure for a healthy 

bearing. More severe spalling faults can be injected if a 

higher threshold is set.  

 

Figure 2. Schematic of a bearing bench test setup. 

 

Figure 3a shows a ball bearing for which the spalling fault 

was injected into its inner race using the proposed method. It 

started from the 0.175 mm dent shown in Figure 1b, the 

vibrations increased as the fault progressed and reached to 

1.6g (g=9.8 m/s2) after about 240 hours of running the 

bearing on the bench test. It yielded a spalling fault with a 

width of 6 mm shown in Figure 3b.  

a) b) 
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Figure 3. (a) A faulty ball bearing after implementing the 

proposed seeded spalling method, (b) Spalling defect 

created on the inner race of a faulty bearing. 

 

The main advantage of this method is that it is very realistic 

as a similar process happens for dent creation and spalling 

propagation in the vehicle. However, the method is time-

consuming and might need a few hours to a few days of 

running depending on the severity of the desired fault. 

Therefore, it can be considered a relatively expensive 

method. Also, the fault size, shape, and location are difficult 

to control. Therefore, it is almost impossible to replicate the 

fault injection. In addition, in case the fault dimensions need 

to be measured, the bearing is required to be disassembled 

and assembled again, which can damage the bearing. These 

advantages and disadvantages are listed in Table 1. 

Table 1. Comparison between proposed methods for 

spalling fault injection. 
 Seeded 

Spalling 

Precision 

Machining 

Realistic High Low 

Control of the fault size Moderate High 

Control of the fault shape Low High 

Control of the fault 

location 

Moderate High 

Difficulty in measuring 

the fault size 

Moderate Low 

Time Very High low 

Cost High moderate 

 

2.2.2. Precision machining 

In this method, a machine tool is used to create the fault. 

Figure 4a shows the experimental setup used to inject the 

fault. As can be seen in this figure, the bearing is placed in 

the chuck of a lathe spindle, a motion controller can move the 

cutting tool mounted on the tool holder, and the fault can be 

machined on the bearing. In this method, the bearing requires 

to be disassembled for fault injection (Figure 4b shows a fault 

being injected into the inner race of a bearing). After fault 

injection, the bearing is assembled.  The size and shape of the 

cutting tool can be selected based on the shape and size of the 

defect. The tool shown in Figure 4c is used in this paper. 

Figure 4d shows an example of an injected fault using this 

method and this tool under a microscope. As can be seen in 

this figure, the injected fault is similar to a spalling defect in 

terms of the appearance although it is different from a 

spalling in its essence.  

The disadvantage of this method is that a fault similar to 

Figure 4d might be considered too neat to replicate the 

damage in the real application. However, using this method, 

we can control the size, location, and shape of the defect. 

Also, we can ensure that the defect covers the entire width of 

the race so that contact between the rolling elements and the 

fault will be guaranteed. In this method, the injected fault can 

be measured after the fault injection, the fault injection 

process is quick and consequently cost-effective. These 

advantages and disadvantages are listed in Table 1 and 

compared to the seeded spalling method. 

 

 

Figure 4. (a) Experimental setup used for fault injection 

using the precision machining method. (b) A fault is 

injected into the inner race of a bearing. (c) The used cutting 

tool. (d) An example of the injected fault under a 

microscope. 

 

This method is used to inject 0.1, 0.5-, and 2-mm faults into 

the inner race of a ball bearing. The faults are shown in Figure 

5 before re-assembling the bearing. Figure 6 shows the ball 

bearing for which the 2 mm fault is injected after assembly.  

 

Figure 5. Injected faults on the inner race of a ball bearing 

with the width of (a) 0.1 mm, (b) 0.5 mm and (c) 2 mm. 

a) b) 

a) b) 

c) 

d) 

a) b) c) 

c) 
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Figure 6. Injected fault using the precision machining 

method into the inner race of a ball bearing. 

 

3. THE GROUND-TRUTH STATE OF HEALTH 

3.1. Method 

To use the fault injected bearings for fault detection algorithm 

development, refinement, or verification, the injected faults 

must be quantified, and the ground-truth state of health of 

each experimental bearing must be known. The simplest 

method for this ground-truthing is to measure the dimensions 

of the defect and use it to quantify the defect. For fatigue 

failure, in (Lybeck, Marble, and Morton, 2007), spall length 

was used as the ground truth and a good correlation was 

found between the spall length and severity of the fault. The 

benefit of this method is that it directly quantifies the physical 

damage to the bearing. However, this method has two major 

drawbacks: 1- Measuring the defect size requires 

disassembling the bearing. In many cases, it damages the 

bearing. 2- Dimension measurement is difficult and might be 

inaccurate for spalling defects as they are usually small with 

irregular shapes. Also, considering only one dimension (spall 

length) may be a poor metric of the overall bearing state of 

health as the effect of other dimensions (spall width, and spall 

depth) are ignored. Therefore, a more comprehensive metric 

which includes the effect of all contributing factors is 

required to characterize the state of health of the defect. 

An alternative approach for ground-truthing is to quantify the 

effect of the physical damage instead of measuring it directly. 

Noise (sound) and vibrations are considered as two main 

effects of the bearing faults (Park, Kim, Choi, and Lee, 2021). 

However, noise can be easily contaminated with 

environmental noise. It is noted that the algorithm should be 

ideally developed based on the vehicle data to incorporate 

various noise factors while the ground truth is to quantify the 

state of health of a component, and it is better to be developed 

in a controlled environment such as bench tests. Moreover, a 

different approach to the main fault detection algorithm 

requires to be used for ground truthing. Otherwise, it cannot 

be used to evaluate or validate the performance of the 

developed algorithm. As mentioned in section 1.2, most of 

the bearing fault detection algorithms are based on the fault 

signature (peak at critical frequencies) in the frequency 

domain of the vibrations.  

In the proposed method of this paper, a test bench with an 

accelerometer (similar to the one shown in Figure 2) is used 

to capture the bearing vibrations under various load and 

rotational speed combinations. It is noted that torque load is 

calculated from the axial and radial loads and used as one 

single load value in the N.m unit. For each load- speed 

combination, the Power Spectral Density (PSD) of the 

acceleration signals is found. The frequency range of interest 

is identified, and then, the area under the PSD vs. frequency 

curve is calculated for the specified interval. The root-square 

of this area is referred as GRMS (Sutherlin, 2017) (Simmons, 

1997). From these individual measurements and calculation, 

the speed-load-log (GRMS) curve is plotted, and a plane is 

fitted to each fault level data. Log operation is used to 

compress the values for ease of visualization. Then, the 

overall bearing health ground-truth is calculated as the 

volume under the speed-load-log(GRMS) fitted plane. The 

proposed method can be considered a robust method as it uses 

a wide range of load and speed so that it addresses the 

challenge of the dependence of bearing vibration on 

rotational speed and load. The detrimental effect of outliers 

is also greatly reduced by fitting a plane to the speed-load-

GRMS results.  

To implement the proposed method, the vibrations of the 

healthy and three faulty bearings described in section 2.2 

were recorded for 10 seconds over a wide range of torque 

load and speed. The speed and torque ranges considered in 

this study are 1000 rpm <speed<6100 rpm and 21 𝑁. 𝑚 <
𝑡𝑜𝑟𝑞𝑢𝑒 𝑙𝑜𝑎𝑑 < 390 𝑁. 𝑚, respectively. Considering 7 levels 

of speed and 9 levels of torque load in the specified range, 17 

test cases have been considered to test the healthy and three 

severity levels of fault. These 68 generated test cases are then 

used to validate the proposed method in this paper. The 

GRMS is then calculated in the frequency range between 

1/10 ball pass frequency inner race (BPFI) and the 10𝑡ℎ 

BPFI. 

3.2. Results 

In this section, the proposed method is implemented for the 

precision machined fault injected bearings as the defect 

dimensions can be controlled and measured. This allows a  

comparison of the results with the actual width of the defects 

for validation. The validated method proposed in this paper, 

then can be used to quantify the state of health for any 

bearings with fatigue failure including seeded spalling 

without measuring the physical damage.  

Figure 7a. shows 1 second of the vibrations for the fault levels 

of 0.1, 0.5, and 2 mm in the time domain under the nominal 
speed of 3400 rpm and the torque load of 91 N.m. Figure 7b. 

shows the PSD of these vibrations. The GRMS is calculated 

using the area under this figure. GRMS values of 1.97 was 
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obtained for the healthy bearing, and 3.81, 18.95, and 37.22 

m/s2 were calculated for the faulty bearings with the fault 

levels of 0.1, 0.5 and 2 mm, respectively. A well-known 

health indicator known as BPFI peak is commonly 

considered for fault detection algorithm. Here, this fault 

signature (BPFI) and its higher-order harmonics can be seen 

clearly, especially for the 0.5- and 2-mm defects, if an 

envelope is applied before the frequency domain transform 

(shown in Figure 7c.). The developed ground-truth method 

can be used to evaluate fault detection algorithms including 

BPFI based method.  

 

Figure 7. vibrations for the fault levels of 0.1, 0.5, and 2 mm 

under the nominal speed of 3400 rpm and torque load of 91 

N.m in the (a) time-domain (b) frequency domain (c) 

frequency domain after applying an envelope.   

 

Next, GRMS values are calculated for all load-speed 

combinations, shown in Figure 8a. To reduce the effect of 

outliers, a plane is fitted to the G-RMS results shown in figure 

8b. 

 

Figure 8. Calculated GRMS values for bearings with 

different fault levels under various load and speed 

conditions (a) before fitting a plane, (b) after fitting a plane. 

 

Then, the volume under these planes is calculated and listed 

in table 2. As can be seen in this table, a good separation 

between healthy, and faulty results has been achived using 

the proposed method. These values (or the ratio of them to 

the same figure for the healthy bearing) can be used as the 

ground truth to quantify the state of health of the bearing in 

the bearing fault detection algorithm development, and 

refinement of validation. 

Table 2. Ground-truth values obtained for the bearings with 

injected fault using the precision machining method. 

 
 Volume 

(N.m2/s2) × 

104 

Volume (faulty) / 

Volume (healthy) 

Healthy bearing 2.39 1 

Faulty bearing- 0.1 mm 3.75 1.56 

Faulty bearing- 0.5 mm 8.80 3.68 

Faulty bearing- 2 mm 10.42 4.36 

 

4. CONCLUSION 

This paper outlined two approaches to injecting spalling 

faults into automotive bearings: precision machining and 
seeded spalling. It was concluded that seeded spalling creates 

more realistic defects while it is almost impossible to 

replicate a fault. On the other hand, precision machining can 

be used when the ability to control the fault size, location, and 

shape as well as price are important factors. A method was 

also proposed to quantify the state of health of the fault 

a) 

b) 

BPFI 

BPFI x2 
BPFI x3 

c) 

b) 

a) 
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injected bearings, which is a key step for fault detection 

algorithm development, refinement, and validation. In the 

proposed method, vibrations from bench tests are used to 

calculate the GRMS values. To remove the dependency of the 

results on load and speed conditions as well as any possible 

outliers, a speed-load-GRMS plot is generated, a plane is 

fitted to the data for each fault level and the volume under the 

plot is used as the ground truth. A good separation between 

healthy, and faulty results was achieved using this ground-

truthing method.  

From this point, the following steps are required to develop 

an algorithm: 

• Collect vehicle-level test data with both healthy and 

faulty bearings. 

• Develop a fault injection algorithm based on the 

vibration signals in the frequency domain. 

• Assess the proposed fault detection algorithm for 

performance and robustness to noise factors using 

the ground truth.  

• Validate the fault detection algorithm on a set of 

bearings that were not used in development. 

These steps, the results of the development effort will be the 

subject of future publications in our work group. Also, other 

bearing types (e.g., roller bearing) can be used to study the 

ground-truthing candidates in the future.  
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