
ML Detection and Isolation of Functional Failures using Syndrome
Diagnostics

Yan Li1, Daniel Chan2, Navid Zaman3, Evan Apostolou4, and Paddy Conroy5

3 PHM Technology, Melbourne, VIC, 3068, Australia
navid.zaman@phmtechnology.com

ABSTRACT

Failure identification in complex engineering systems of-
ten needs to be in form of multilevel analysis, the first of
which involves detection and isolation of functional disrup-
tions across the system down to a discrete item. Considering
that there is a functional flow(s) of operation in the machine,
the loss or deviation of that functional flow(s) will imply a
Functional Failure of the system. Most often, the disruption
may propagate from where it may be first found and thus, the
root issue can be isolated via the causal relationship between
components and their flows. This paper references the idea
of Causation-based AI: intelligence that brings together the
fast estimations of machine learning and the domain-based
physics of failure via qualitative models in the form of Syn-
drome Diagnostics (SD). There are three main routines in
SD. Firstly, the current operating mode of the system is de-
termined. Secondly, functional failure detection techniques
are used to detect the existence of an anomaly. Thirdly, a
functional failure isolation routine is executed to isolate the
failing component, which is composed of two steps: using
classification methods to generate a predicted syndrome and
matching this generated syndrome with the failure syndrome
pattern extracted from the Digital Risk Twin of the system
(where the causation aspect is taken advantage of). A series
of experiments are conducted and 90% of the failures in val-
idation data have been correctly identified, which verifies the
effectiveness of SD in terms of functional failure detection
and isolation.

1. INTRODUCTION

Diagnostics, the processes of detection and isolation of fail-
ures (Ly, Tom, Byington, Patrick, & Vachtsevanos, 2009),
check the system health conditions. Failure detection is to de-
tect the occurrence of failures in the system and failure isola-
tion is the process of determining which type of failure occurs
among all possible failures. Failure detection and isolation

Yan Li et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

(FDI) is of great importance in complex and mission-critical
engineering systems in that it helps reasonably schedule Pre-
dictive Maintenance (PdM) at an optimal timing to prevent
catastrophic failure consequences. Detecting failures at an
early stage can reduce unexpected system breakdowns and
costs – the most urgent industrial issue to be addressed (Ye,
2018), which requires real-time condition monitoring.

The development of industry 4.0 and the Internet of Things
(IoT) platforms provides a large amount of sensor data, which
makes it possible to monitor system health state with multiple
sensors (Zhang, Liu, Zhang, & Miao, 2020), thus facilitating
the application of machine learning or artificial intelligence
(AI) methodologies for failure diagnosis. In recent years, ma-
chine learning technologies such as classification (X. Zhao,
2012) and anomaly detection (Farbiz, Miaolong, & Yu, 2020)
have elucidated the capability and feasibility of solving the
FDI task. Even though this type of pure data-driven method
can make the most of the sensor readings, they might not pro-
vide reliable information on system health conditions due to
the lack of engineering domain knowledge, based on which
ineffective maintenance would be arranged resulting in ma-
chine failure or shutdown eventually.

To provide reliable detection of functional failures in a sys-
tem, we propose a real-time health condition monitoring ma-
chine learning system – Syndrome Diagnostics (SD), which
not only takes advantage of the fast data analysis and pattern
recognition of cutting-edge machine learning algorithms but
also leverages the domain expertise and reliability of physics-
based system modeling, that is, a Digital Risk Twin of the
system of interest, to detect and isolate functional failures in
real-time.

2. FUNCTIONAL FAILURES

2.1. Definition of Functional Failures

An engineering system and its constituent items may be de-
fined by its function(s), and indeed this is a key step in the
authoring of an Failure Mode Effects Analysis (FMEA), a
ubiquitous analysis and document undertaken for virtually all

1



Annual Conference of the Prognostics and Health Management Society 2022

critical engineering products.

If items within the system may be defined by their functions,
then the failure of these items may be understood through
a disruption of their capability to function. If an item can
no longer perform its as designed for function, then the item
may be said to have failed. It is this paradigm that allows us
to conceptualize functional failures as a lens to analyze the
system of interest (Rudov-Clark & Stecki, 2014).

Functional failures are of course, an abstraction of the root
causes of failure that impact a system. An item does not ex-
perience a functional failure without a physical (in the broad
sense of the word) event precipitating it. In the framework
put forward in this paper these physical events (aka physical
failures) are seen as the physical failure paths that act inter-
nally to the item experiencing the failure (e.g. the mechanism
of failure is occurring on an item that is resulting in that item
entering a fault state). These physical failures disrupt item
function resulting in a functional failure (Zaman, Apostolou,
Li, & Conroy, 2021). That functional failure may then prop-
agate throughout the rest of system resulting in system wide
function disruption.

Figure 1. Failure Diagram

2.2. Modeling of Functional Failures

The basic structure of physical failures resulting in a local
functional failure which then impacts the broader system is
relatively recognizable and comparative to traditional FMEA
generation processes and templates (DoD, 1980). As such

this represents core knowledge of RAM engineers / teams.
Transitioning this knowledge base away from static docu-
mentation to a model-based framework has many benefits for
the RAM specialists themselves (Conroy, Kim, Tran, & Chan,
2021) but a fortuitous benefit is the externalization of knowl-
edge into a structure that may be analyzed by those outside of
the RAM sphere, including those in the diagnostics domain.

2.2.1. Representing System Dependencies

Utilizing the functional modelling topology outlined in
(Rudov-Clark & Stecki, 2014) a system structure can be mod-
elled where items that are defined functionally are connected
to one another via functional flow properties that are mod-
elled as inputs and outputs of items. These functional flow
properties are the physical properties that a system or item
may act upon. As an example, a pump (item) produces (func-
tion) a liquid flow rate (flow property). The causal interac-
tions between the functional flow properties in the system is
a dependency map from which a number of simulation meth-
ods can be overlaid for analysis.

2.2.2. Generating a Propagation Table

Two such methods are Fuzzy Cognitive Maps (FCM) and
Power Bond Modelling. Background to these simulations
are given in (Conroy, Stecki, Bautista, & Ringeri, 2018) and
(Dransfield & Teo, 1979) respectively. Ultimately what may
be produced is a propagation table that maps functional fail-
ures (i.e. an abstracted root cause of failure event) to poten-
tially observable changes in system functional flow properties
(aka potential test points). As an example, a blockage failure
of the previously defined pump may reduce its flow rate out-
put, downstream of this failure there will be a loss of flow rate
observed, whereas upstream, an increase in pressure may be
observed. These failure-functional flow change relationships
occur throughout a system and using a model-based repre-
sentation they may be simulated and captured in order to be
translated into a propagation table.This propagation table can
be further minimized to generate a set of sensors that would
uniquely identify each failure, thus resulting in a minimized
propagation table.

Figure 2. Propagation Table

2.2.3. Defining a Syndrome and Symptoms

Taking the above format for understanding failures there are
two key concepts that need to be defined. Firstly, a symptom
of failure. A symptom is a singular instance or location in the

2



Annual Conference of the Prognostics and Health Management Society 2022

propagation table. A symptom is the qualitative reading that
describes the change that has occurred at a location in the sys-
tem, it relates to a functional flow property. Symptoms may
manifest in this framework as a nominal response (the flow
property is within its nominal bounds of failure free opera-
tion), low (flow property is lower that its nominal), and high
(flow property that is higher than its nominal). Secondly, a
syndrome (or syndrome of failure), which is a series of symp-
toms that together indicate the presence of a specific failure.
This is represented by one row in the propagation table, trac-
ing originating failure to expected, system wide responses.

3. MACHINE LEARNING INTRODUCTION

The two important types of learning problems in the ma-
chine learning domain are supervised learning and unsuper-
vised learning. Supervised learning requires that the training
data comprises both the input vectors and the target vectors,
and the classification task is one of its examples that targets
assigning each input vector to a label, that is, one of the fi-
nite number of discrete categories. The target vectors are not
always available, therefore, unsupervised learning works for
this case where the training data only consists of the input
vectors. As an example of unsupervised learning, clustering
is to discover groups of samples with similarities in the data.

The machine learning pipeline employed in SD is illustrated
in Figure 3, mainly including the following steps:

Figure 3. Machine Learning Workflow

• Data preprocessing is the first step of data preparation
mainly involving tasks such as handling non-numeric
values, imputation of missing values, re-sampling data,

reducing noises, and scaling. Scaling is essential for
some scale-sensitive machine learning algorithms like
Principal Component Analysis (PCA), and the input vari-
ables with a higher value will dominate when training
the models without pre-step scaling leading to unreliable
results. MinMaxScaler and Normalizer are two options
provided in SD for performing scaling before feature ex-
traction (Buitinck et al., 2013). We also split the data
into training, validation, and test sets in this step.

• Feature engineering is the second step of data preparation
and it is mainly about selecting or extracting useful fea-
tures from the input data to make it easier for algorithms
to detect patterns in the data. Although feature engineer-
ing might not be needed for deep learning algorithms
(Chollet, 2017), it is a significant aspect of traditional
machine learning algorithms since it eliminates irrele-
vant and redundant data, and reduces the data size, thus
enhancing model accuracy and speeding up computation.
PCA, Statistics (Stat), Continuous Wavelet Transform
(CWT), and some more algorithms are available in SD
for feature engineering, among which the Stat method is
basically extracting the statistics of the data as features,
such as median, mean, maximum, minimum, root mean
square values and so on. The user of SD can select a
specific algorithm or make it run through all the com-
binations of feature engineering algorithms and training
algorithms to get the best one.

• Model training and selection steps are performed af-
ter feature engineering, where hyper-parameter tuning is
also involved. Bayesian Optimization method is a can-
didate for selecting a set of optimal hyper-parameters
for the model. Different types of models with their best
hyper-parameters are trained and tested on the test data
set, then the best model is chosen based on the defined
evaluation metrics.

• The selected best model is deployed for health condition
monitoring. Similar to the training phase, the real-time
sensor signals need to be first preprocessed and features
need to be extracted by the feature engineering step. In
most cases, the scalar and extractor used in real-time
have been trained in the training phase and only data
transformation is performed. Then the deployed model
is used for making predictions on the prepared data.

4. SYNDROME DIAGNOSTICS

4.1. Definition of Syndrome Diagnostics

SD is a machine learning-powered system that detects and
isolates functional failures in an engineering system in real-
time by analyzing sensor readings (measured responses) and
matching the results with failure propagation patterns (syn-
dromes) identified from the Digital Risk Twin (a structured
causation model) of the system.

3



Annual Conference of the Prognostics and Health Management Society 2022

SD consists of the following two main high-level compo-
nents: a training engine that trained machine learning mod-
els including deep learning models on historical data and a
real-time inference engine that made predictions on real-time
sensor signals with the trained models. In real-time, SD will
first trigger an alert when an abnormal behavior of the mon-
itored system is detected, it then runs failure isolation algo-
rithms to get an actual syndrome of the system, and finally,
it matches the actual syndrome with the syndrome generated
by the causation model and isolates the specific failure. The
resulted failure information helps maintenance operators to
understand the health condition of a system and identify the
component responsible for any occurring failure.

4.2. Overall Workflow

The overall workflow of SD is illustrated in Figure 4.

Figure 4. Syndrome Diagnostics

Compared to the integrated systems-based framework for di-
agnosis and prognosis proposed in (Ly et al., 2009), SD takes
into consideration the impact of different operating modes

and adds an extra operating mode determination routine pro-
viding a sound basis for the following failure detection and
isolation steps. In addition, SD separates the failure detection
and isolation into two processes so that only abnormal time
series window will be processed for failure isolation, which
will significantly improve the inference efficiency in real-
time monitoring. Besides, unlike pure data-driven techniques
where FDI is treated as a classification task (Tidriri, Chatti,
Verron, & Tiplica, 2016) and can only predict seen failures,
SD implements a two-step failure isolation approach (clas-
sification and syndrome identification) leveraging the failure
propagation table generated based on domain knowledge, not
only making it possible to detect unseen failures, but also im-
proving the effectiveness of failure diagnosis.

4.3. Input Data

Sensor readings are of increasing importance for the moni-
toring of complex, mission-critical systems to improve their
availability with the development of IoT techniques. Vari-
ous sensors continuously collect data from the physical world
showing how the relationship between different variables of
the system changes over time. The input data to SD is sensor
reading – time-series data with failure labels. Each sensor is
attached to a component to measure the functional flow of the
system.

4.4. Operating Mode Determination

Most engineering systems have multiple operating modes
corresponding to different functionalities. Systems behaves
differently in different operating modes resulting in different
trends or distributions of the attached sensor data. Therefore,
it is significant to take into consideration the specific mode in
which the monitored system is operating within for monitor-
ing real-time system health status.

A candidate for operating mode determination is the classi-
fication method, which works for the case where the oper-
ating mode labels are available in the training phase. How-
ever, labeled system monitoring data is rarely readily avail-
able, especially for complex engineering systems with var-
ious operation modes, so unsupervised clustering methods
come in handy. In general, we can categorize time se-
ries clustering into clustering by shape (similarity in space),
clustering by time point (similarity in time), and clustering
based on deep learning. SD takes advantage of both meth-
ods to handle different situations, where Support Vector Ma-
chine (SVM), Gradient Boost, and neural networks are used
for classification, and KMeans, Deep Temporal Clustering
(DTC) (Madiraju, Sadat, Fisher, & Karimabadi, 2018) are
used for clustering.

4



Annual Conference of the Prognostics and Health Management Society 2022

4.5. Failure Detection

Correlation-based Anomaly Detection is the first step toward
determining an issue with the system. The methods used here
are expected to be lightweight, system-wide, and fast decision
to trigger further analysis if needed. Compared to a specific
failure, the prediction at this step would be a more general
idea of “something wrong in the system”. This is an impor-
tant step before failure isolation for filtering out normal data
in real-time to improve inference efficiency.

Failure detection is more of a novelty detection task across
the system, the basic gist of which is that an anomaly score
is computed based on one or multiple measurements, and the
anomalies are determined based on a certain threshold, and if
the anomaly score of observation is higher than this threshold.
This threshold can be either pre-defined or computed from the
data.

There are several anomaly detection methods available in
SD, including individual methods such as K-Nearest Neigh-
bors (KNN) (Angiulli & Pizzuti, 2002), Local Outlier Factor
(LOF) (Breunig, Kriegel, Ng, & Sander, 2000), Local Corre-
lation Integral (LOCI) (Papadimitriou, Kitagawa, Gibbons, &
Faloutsos, 2003), and Angle-base Outlier Detection (ABOD)
(Kriegel & Zimek, 2008), and method ensemble methods.
In contrast to individual methods, outlier ensemble methods
can obtain more robust anomalies by combining the results
from the different algorithm executions (Aggarwal, 2017),
with Isolation Forest, Feature Bagging, and Locally Selective
Combination in Parallel Outlier Ensembles (LSCP) (Y. Zhao,
Nasrullah, Hryniewicki, & Li, 2019) as representatives. Su-
pervised algorithms are also available for the case where the
anomaly labels are provided.

4.6. Failure Isolation

Failure isolation includes two steps, the first step is to clas-
sify sensor data into one of the classes (symptoms): high (1),
nominal (0), and low(-1), and generate a syndrome from these
labels for all the sensors. The second step is to match this
generated syndrome with the syndrome pattern in the propa-
gation table, so the failure mode can be pointed and the failing
component is isolated.

4.6.1. Classification

Classification is a supervised learning task that categorizes
sensor data into different classes. In the training phase, the
high, nominal, and low labels are obtained by matching fail-
ures of historical data with the syndrome rows of the propaga-
tion table, then the data associated with the labels are fed into
a classifier (classification algorithm) to get a trained model.

Another option is to use the normal classification routine, that
is, directly feed the sensor and failure label to a classifier,
which, however, is inapplicable to the industry scenario since

in this case, the classifier can only classify the data into one
of the failures it has seen in the training phase, while our two-
step method can detect all the failures that could occur in the
monitored system, that is, all the failures listed in the propa-
gation table.

SD employs multiple classifiers including SVM, Gradient
Boost, Multilayer Perceptrons Neural Network (MLP), Con-
volutional Neural Network (CNN), etc. All these algorithms
are shared among all supervised tasks in SD.

4.6.2. Syndrome Identification

The next step after the syndrome is predicted is to match it
with the minimized propagation table where there is this chal-
lenge that not all sensor symptoms match exactly with one
row of the minimized propagation table. We come up with a
method called Score Multiply to deal with this, and the main
idea is, instead of getting the exact symptoms (high, nomi-
nal, low), to first get the probabilities of each symptom by
making predictions with the trained classifier, then multiply
the corresponding probabilities for each failure based on the
propagation syndrome to generate failure scores, finally the
failure with the highest score is selected as the identified fail-
ure mode. The component of this failure mode is the failing
component isolated.

Here is a toy example. Assuming that Table 1 is the proba-
bilities of each symptom for each sensor generated from the
classification step and the first four columns of Table 2 is the
minimized propagation table, the score of Failure 1 is calcu-
lated by multiplying the probability of Sensor 1 being High
(0.3), the probability of Sensor 2 being Nominal (0.1), and the
probability of Sensor 3 being Nominal (0.3), that is 0.009. In
the same way, we can get the scores for the rest three failures
as shown in the last column of Table 2. Eventually, Failure 4
with the largest score is identified as the failure occurring.

Table 1. Probabilities of Symptoms

Symptom Sensor 1 Sensor 2 Sensor 3
Low 0.5 0.2 0.6

Nominal 0.2 0.1 0.3
High 0.3 0.7 0.1

Table 2. Minimized Propagation Table and Scores

Failure Sensor 1 Sensor 2 Sensor 3 Score
Failure 1 High Nominal Nominal 0.009
Failure 2 High Low Nominal 0.018
Failure 3 Nominal Low High 0.004
Failure 4 Low High Low 0.21

5



Annual Conference of the Prognostics and Health Management Society 2022

5. CASE STUDY: LUBRICATION SYSTEM

5.1. System Description

The lubrication system is required to provide lubrication and
cooling for other parts of a system such as bearings, splines
and gears. The lubrication system is made up of an oil
tank which supplies lubricant to the system – the lubricant is
pumped through the system via a gear pressure pump which
is driven by the engine but is also driven by the pressure dif-
ferential at the bearing and sumps (Rolls-Royce, 1996).
The lubricant travels from the pump through a filter to collect
any contaminants which may be deposited into the oil from
the wear of bearings and gears. To prevent high pressures
which may damage the filters, high pressure relief valves are
located in several locations in the lubrication system (Rolls-
Royce, 1996). Following the filters, the manifold then dis-
tributes the lubricant to the required areas through check
valves and pipes, such as bearings, gears and splines.

Figure 5. Lubrication System (Rolls-Royce, 1996)

5.2. Propagation Table

A digital diagnostic twin (DDT) (using Power Bond Mod-
elling) of the lubrication system was developed to generate a
propagation table which is used to drive the functional failure
detection of SD.
The propagation table of the lubrication system contains 34
rows (corresponding to 34 possible failures) and 26 columns
(corresponding to 26 components in the DDT). A subset of
the propagation table is shown below.

Figure 6. Manifold Failure - Propagation Table Row

The propagation table was minimized to generate 13 sensors
for this case study, which would uniquely identify each fail-
ure. This led to a set of rules which can be used to determine

where the failure has occurred within the system (i.e., diag-
nostic rules). SD uses a table of these rules, essentially a min-
imized propagation table, to determine where the failure has
occurred within the lubrication system - notice the diagnostic
rules in Figure 7 match the responses shown in the propaga-
tion table row image.

Figure 7. Manifold Failure - Diagnostic Rule

5.3. Dataset

There are 13 sensors in both the training and validation data
sets. Figure 8 and Figure 9 shows the training and validation
sensor signals respectively, where each color indicates differ-
ent failure labels.

The first part of Figure 8 highlighted by green color is the
healthy data and labeled as “No Failure”, followed by 4 fail-
ures: “Oil Nozzles Flow rate (Lube oil) Low (Flow re-
sistance increased)”, “Line Volume B2-6 Pressure (Lube
oil) Low (Compressibility flow rate decreased)”, “Oil Fil-
ter Flow rate (Lube oil) Low (Flow resistance increased)”,
and “Flex Shaft Coupling Torque (Mechanical rotational)

Low (Angular velocity differential decreased)”. It is easily
observed that there are many more healthy data points than
failure data in the training data set, which reflects a real in-
dustry scenario, that is, historical failure data is much harder
to obtain than the healthy data.

There are 10 colors in Figure 9 corresponding to 10 labels:
“Line Volume Pressure (Lube oil) Low (Compressibility
flow rate decreased)”, “Manifold Pressure (Lube oil) Low
(Compressibility flow rate decreased)”, “No Failure”, “Oil
Gear Pressure Pump Flow rate (Lube oil) Low (Pressure
differential decreased)”, “Oil Nozzles Flow rate (Lube oil)
Low (Flow resistance increased)”, “Line Volume B2-6 Pres-
sure (Lube oil) Low (Compressibility flow rate decreased)”,
“Line Volume B7-8 Pressure (Lube oil) Low (Compress-
ibility flow rate decreased)”, “Oil Filter Flow rate (Lube
oil) Low (Flow resistance increased)”, “Oil Nozzles Flow
rate (Lube oil) High (Flow resistance decreased)”, and “Flex
Shaft Coupling Torque (Mechanical - rotational) Low (An-
gular velocity differential decreased)”.

The ratio of the number of failures in training and validation
sets is 4 to 9, which makes it impossible to isolate failures by
using a normal classification routine where the classifier can
only recognize seen failures, thus revealing the need for an
effective strategy – the two-step failure isolation method we
propose.

6



Annual Conference of the Prognostics and Health Management Society 2022

Figure 8. Training Data

Figure 9. Validation Data

5.4. Anomaly Detection Visualization

We took windows of data from the training and validation
sets with 20 points for each window and the windows with all
normal data are labeled as 0s and the windows with all failure
data are labeled as 1s, so we have 320 windows of healthy
data and 120 windows of failure data for training. This task
turns out to be an unbalanced binary classification task.

SD provides both unsupervised and supervised anomaly de-
tection algorithms, we used the supervised Gradient Boost
method to conduct experiments. The data was scaled and
features were extracted, a machine learning model was then
trained on top of the features. After that, the model was used
to make predictions on the validation dataset. Accuracy and
f1 score are used as the evaluation metrics and the results are
90.00%, and 91.37% respectively.

As indicated in the Figure 10 drawn by using PCA to project
high-dimensional validation data into 2D, most of the predic-
tions are correct in comparison to the ground truth labels, and
only the circled points are misclassified.

Figure 10. Anomaly Detection Results

5.5. Syndrome Identification Experiments

We conducted several experiments using SVM and Gradient
Boost methods. The general steps were first using one of
these two algorithms to train a model, then making predic-
tions on the validation data, after that, we utilized the Score
Multiply algorithm to isolate the failures by matching the pre-
dictions with the minimized propagation table. The accuracy
metric was used to evaluate how many failures in the valida-
tion data were correctly predicted, and f1 score was another
metric to assess the failure isolation performance.

The experiment results are shown in Table 3. The first ex-
periment was using SVM and Stat to classify the validation
data into high, nominal, and low labels, resulting in 60% ac-
curacy and 53.33% f1 score. To improve the experiment per-
formance, we kept the Stat method for feature extraction but
used GB as the training method, leading to slightly higher ac-
curacy and f1 score with values of 70% and 61.67% respec-

7



Annual Conference of the Prognostics and Health Management Society 2022

tively.

Table 3. Failure Isolation Results

Algorithm Feature Extraction accuracy f1 score
SVM Stat 0.6 0.5333
GB Stat 0.7 0.6167
GB CWT 0.9 0.8667

While Stat allows us to explore the time domain of the input
data, CWT makes it possible to explore the frequency do-
main. Therefore, the third experiment was conducted with
GB and CWT, which dramatically increased the accuracy to
90%, and the f1 score was improved to 86.67%.

5.6. Evaluation Results Visualization

A confusion matrix of the third experiment results was illus-
trated in Figure 11, where the y axis represents the ground
truth of 10 failure labels (including “No Failure”) in the val-
idation data and the x-axis represents the predicted failures
which are the index of the same failures as the y-axis. We
can observe that only failure “Manifold Pressure (Lube oil)

Low (Compressibility flow rate decreased)” was isolated
wrongly as “Flex Shaft Coupling Torque (Mechanical - rota-
tional) Low (Angular velocity differential decreased)”, and
all the rest 90% has been correctly isolated.

Figure 11. Confusion Matrix for Failure Isolation Results

6. DISCUSSION AND FUTURE WORK

The results above suggest the capability of SD isolating fail-
ures through the proposed two-step causation-based failure
isolation strategy by training only on a small part of the fail-
ure data, which cannot be achieved by a normal data-driven
classification routine.

The evaluation results can be further improved by exploit-
ing balancing algorithms, hyper-parameter tuning, and more

complex algorithms, which are all available options in SD.

However, the complexity of these training processes and the
possible lack of data scientists in the engineering industry
asks for automated training of machine learning models and
eventually automated failure diagnosis, which is not shown
in this paper but is already incorporated in SD. Besides, SD
is still evolving as a machine learning system, which requires
more attention on the software engineering side of it, such as
the API to connect with the customer’s database, the continu-
ous training pipeline, and the real-time processing infrastruc-
ture.

7. CONCLUSION

Diagnosis of failures occurring is of great importance to engi-
neering systems. This paper has presented a causation-based
strategy to detect and isolate failures in an engineering sys-
tem by taking advantage of both the domain knowledge about
the system and machine learning algorithms. As a machine
learning-powered application, SD has proven to be a valuable
tool for failure diagnosis, which involves not only predict-
ing the existence of an anomaly or failure but also identifying
what the failure is and the exact component in the system that
has caused this failure.

REFERENCES

Aggarwal, C. C. (2017). Outlier analysis. Springer, Cham.
Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in

high dimensional spaces. Springer.
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J.

(2000). Lof: identifying density-based local outliers.
ACM.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., . . . Varoquaux, G. (2013).
API design for machine learning software: experiences
from the scikit-learn project. In Ecml pkdd workshop:
Languages for data mining and machine learning (pp.
108–122).

Chollet, F. (2017). Deep learning with python (1st ed.). USA:
Manning Publications Co.

Conroy, P., Kim, H., Tran, K., & Chan, D. (2021). Model-
based rams: Optimizing model development in a dis-
tributed working environment. In 2021 annual relia-
bility and maintainability symposium.

Conroy, P., Stecki, J., Bautista, J., & Ringeri, A. (2018). Ap-
plications of artificial intelligence and decision making
methods in phm. In European conference of the prog-
nostics and health management society.

DoD, U. (1980). Procedures for performing a failure mode
effects and criticality analysis (Tech. Rep. No. MIL-
STD-1629A). Department of Defense.

Dransfield, P., & Teo, M. K. (1979). Using bond graphs in
simulating an electra-hydraulic system. In Journal of

8



Annual Conference of the Prognostics and Health Management Society 2022

the franklin institute.
Farbiz, F., Miaolong, Y., & Yu, Z. (2020). A cognitive

analytics based approach for machine health monitor-
ing, anomaly detection, and predictive maintenance.
In 2020 15th ieee conference on industrial electron-
ics and applications (iciea) (p. 1104-1109). doi:
10.1109/ICIEA48937.2020.9248409

Kriegel, H.-P., & Zimek, e. a., Aurthur. (2008). Angle-based
outlier detection in high-dimensional data. ACM.

Ly, C., Tom, K., Byington, C. S., Patrick, R., & Vacht-
sevanos, G. J. (2009). Fault diagnosis and failure
prognosis for engineering systems: A global perspec-
tive. In 2009 ieee international conference on au-
tomation science and engineering (p. 108-115). doi:
10.1109/COASE.2009.5234094

Madiraju, N. S., Sadat, S. M., Fisher, D., & Karimabadi,
H. (2018). Deep temporal clustering : Fully un-
supervised learning of time-domain features. ArXiv,
abs/1802.01059.

Papadimitriou, S., Kitagawa, H., Gibbons, P. B., & Faloutsos,
C. (2003). Loci: fast outlier detection using the local
correlation integral. IEEE.

Rolls-Royce. (1996). The jet engine. Rolls-Royce plc.
Rudov-Clark, S. D., & Stecki, J. (2014). The language of

fmea: on the effective use and reuse of fmea data. In
Aiac-13 thirteenth australian international aerospace
congress.

Tidriri, K., Chatti, N., Verron, S., & Tiplica, T.
(2016). Bridging data-driven and model-based ap-
proaches for process fault diagnosis and health mon-
itoring: A review of researches and future chal-
lenges. Annual Reviews in Control, 42, 63-81. doi:
https://doi.org/10.1016/j.arcontrol.2016.09.008

Ye, C. (2018). A system approach to implementation of pre-
dictive maintenance with machine learning (phdthe-
sis). Massachusetts Institute of Technology.

Zaman, N., Apostolou, E., Li, Y., & Conroy, P. (2021). Real-
time diagnosis of physical failures using causation-
based ai. In Proceedings of the 6th european confer-
ence of the prognostics and health management soci-
ety.

Zhang, H., Liu, E., Zhang, B., & Miao, Q. (2020, 08). Rul
prediction and uncertainty management for multisensor
system using an integrated data-level fusion and upf ap-
proach. IEEE Transactions on Industrial Informatics,
PP, 1-1. doi: 10.1109/TII.2020.3017194

Zhao, X. (2012). Data-driven fault detection, isolation and
identification of rotating machinery: With applications
to pumps and gearboxes.

Zhao, Y., Nasrullah, Z., Hryniewicki, M. K., & Li, Z.
(2019, May). LSCP: locally selective combination in
parallel outlier ensembles. In Proceedings of the 2019

SIAM international conference on data mining, SDM
2019 (pp. 585–593). Calgary, Canada. Retrieved from
https://doi.org/10.1137/1.97816119756
73.66 doi: 10.1137/1.9781611975673.66

BIOGRAPHIES

Y. Li Yan Li is a data scientist at PHM Technology, mainly
focusing on the research and development of the Syndrome
Diagnostics product. She has got her Master of Information
Technology degree at the University of Melbourne, Australia
since 2020. Before her master’s study, she had been working
for 6 years in the logistics and training industries and has a
good understanding of customer needs for business software
tools.

D. Chan Daniel Chan is the Chief Operating Officer at
PHM Technology. Since graduating as a systems engineer,
Daniel has been involved with various projects across mul-
tiple industries including automotive, industrial engineering
and aerospace defense. His interests are in the design of op-
timized model-based processes and methodologies to enable
efficiency and consistency for engineering analyses.

N. Zaman Navid Zaman is a master of electrical engineering
graduate from the University of Melbourne, Australia since
2020, where he focused on signals, systems and control the-
ory. He has interned at Outotec Ausmelt for a few months
before joining PHM Technology as lead data scientist. He
has co-authored a RAMS paper previously, centered around
the causation-based AI tool, Syndrome Diagnostics.

E. Apostolou Evan Apostolou is currently working at PHM
Technology as an Engineer. His primary focus in the com-
pany is engineering support for Syndrome Diagnostics and
MADe. Since graduating from the University of Melbourne
with a Master of Engineering (Mechanical), he has worked at
PHM Technology, gaining experience and knowledge in the
safety, RAMS and PHM industries. He previously worked
at RUAG Australia, Bosch Australia and Airbus Helicopters
Germany where his roles varied from materials engineering,
maintenance and system design.

P. Conroy Paddy Conroy is a Senior Engineer and Research
Lead at PHM Technology. He received a Bachelor degree of
Aerospace Engineering through RMIT University, Australia.
Paddy has 6+ years of experience in a range of engineering
disciplines including aerospace, naval, land, and automotive
across mechanical and electrical domains. His specific inter-
ests are the research and development of RAMS and diagnos-
tic model-based engineering methodologies and the processes
required to integrate them into design and sustainment activ-
ities.

9


