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ABSTRACT

To prevent unexpected and costly asset downtime, an accu-
rate estimate of the assets condition is needed. In such prog-
nostics setting typically a Condition Indicator (CI) score is
calculated based on measurement data. When a future CI
surpasses some predefined threshold an alarm can be auto-
matically triggered. Recently, in the literature deep learning
(data-driven) methods were proposed to estimate the CI. To
the best of our knowledge this paper is the first to evaluate
Deep Support Vector Data Description (DSVDD) to estimate
a CI for a rolling element bearing setup that is measured by
an acceleration sensor. DSVDD typically is used for a task of
anomaly detection and hence evaluated in terms of anomaly
detection performance. In this paper the DSVDD model is
learned as is done for anomaly detection but is evaluated dif-
ferently. Based on the DSVDD model a CI score can be esti-
mated. In this paper the DSVDD model is evaluated in terms
of its ability to estimate appropriate CI scores. Due to a distri-
butional shift between data from the training and test set the
model performance can degrade. Therefore, it is investigated
which model adaptations strategies can be used to compen-
sate for this effect. All strategies are compared in terms of
both CI estimation performance and computational complex-
ity. Only adapting the final layer of the model gave a perfor-
mance comparable to that when the full model is adapted to
the target domain while requiring less calculations. The paper
also proposes a simple and easy to calculate center adaptation
strategy. This procedure gave a slightly reduced CI estimation
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performance compared to the alternatives but does not require
any model training.

1. INTRODUCTION

To prevent unexpected and costly asset downtime an accurate
estimate of the assets condition is needed. Prior to break-
down, maintenance is needed when the condition of the asset
does not meet the required norm anymore. When looking
at rotating machinery, the cause of most system failures are
Rolling Element Bearings (REB) (Nabhan, Ghazaly, Samy,
& M.O, 2015). A common method to monitor REB in an
asset is to measure the vibrations produced by REB (Hoang
& Kang, 2019) and to use this data to perform condition
monitoring. In the last few years, various data-driven algo-
rithms have been studied for this purpose, both in terms of
their accuracy and reliability. There are two main approaches
to condition monitoring in bearings, either it is considered
as a diagnostics problem where a signal “simply” is classi-
fied as healthy or faulty and possibly categorized by a type of
fault (Jiang, Chang, & Sheng, 2019), or it can be viewed as a
prognostics problem where a condition or Condition Indica-
tor (CI) score is calculated, which forms a basis to predict the
Remaining Useful Life (RUL) such as e.g. is done in (She,
Jia, & Pecht, 2020). Using the latter prediction of the RUL
enables to trigger an alarm when the future RUL is surpassing
some predefined threshold. This work considers methods that
estimate a CI score.

In the literature a variety of CI estimation methods are de-
scribed. The most basic CI methods use engineered features
in the time, frequency and/or time–frequency domains. These
parameters can reflect the state characteristics of the bearing,
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and usually have a steady trend until the failure becomes more
serious (Zhao, Tang, & Tan, 2016). When combined with tra-
ditional machine learning techniques such as support vector
machines the CI properties (to enable a better RUL predic-
tion) can be improved (Benkedjouh, Medjaher, Zerhouni, &
Rechak, 2013). Traditional machine learning requires man-
ual engineering to preprocess the measured signals, which is
a tedious and time-consuming process. Deep Learning (DL)
can (partly) automate the signal preprocessing and thereby re-
duce the amount of manual labour. DL was already success-
fully applied to estimate CI scores. In (Wu, Feng, Wu, Jiang,
& Wang, 2019) a multi-scale Convolutional Neural Network
(CNN) was used to estimate the CI that was assumed to have
a specific curvature over time. In (Su, Li, & Wen, 2020) a
variational Auto-Encoder (AE) was learned to extract features
from time-series that are suited as an input to a time-window
sequence neural network to perform RUL prediction. The
combination of a sparse AE and a self-organizing map was
used to create a CI in (She et al., 2020), a state space model
was then used to perform RUL prediction. A two-step com-
bination of DL and traditional machine learning was used in
(Mao, Ding, Tian, & Liang, 2020), where a VGG-16 model
was first adapted as deep feature extractor, and then a SVDD
model used these features to estimate a CI.

This work also adopts a deep learning approach to automat-
ically generate features using an AE but different to the pre-
viously mentioned papers. The latent features are learned
by optimizing a one-class Support Vector Data Description
(SVDD) objective. A one-class method aims to differentiate
between normal and all abnormal behavior. In this formula-
tion of the problem, a single CI can be computed from the
deviation from normal behavior described in the latent space
defined by the AE. Therefore, it has the potential to detect
early faults and track performance degradation. The combi-
nation of AE and SVDD, termed Deep SVDD (DSVDD), is
described in (Ruff et al., 2018). In this work DSVDD is eval-
uated for the purpose of CI estimation. Furthermore, in (Ruff
et al., 2019) a modified DSVDD objective enables to include
examples of faulty behavior, which can boost performance.

A distributional shift between the training and test data might
lead to a degradation of the model performance (Wen et al.,
2021). In the literature this problem is handled using domain
adaptation, or more generally Transfer Learning (TL) (Kouw,
2018; Pan & Yang, 2010). The simplest method to per-
form deep TL is by fine-tuning a previously trained network
(Razavian, Azizpour, Sullivan, & Carlsson, 2014; Yosinski,
Clune, Bengio, & Lipson, 2014). Another method commonly
found in the literature is a Domain Adversarial Neural Net-
work (DANN), which employs both a domain classifier to
discriminate between a source and target domain, and a la-
bel predictor to predict the correct labels for data from the
source domain. When the domain classifier can no longer
discriminate between the source and target, the features are

considered joint for both target and source domain (Ganin et
al., 2016; Liu & Gryllias, 2020).

A comparison between three classical TL methods and two
CNN based TL methods for the construction of a CI was
made in (Jiaxian, Wentao, & Yuejian, 2020). It was con-
cluded that a CNN might not benefit from data from different
working conditions when constructing a CI and that the use
of TL showed a clear benefit with regards to the CI. As men-
tioned earlier, in (Mao et al., 2020) the authors fine-tuned a
VGG-16 model using normal and degradation state data from
a set of bearings to adapt the model objective from image
classification to CI estimation. In this study we will eval-
uate different strategies to fine-tune a given DSVDD model
based on data acquired during normal operation in the target
domain. This situation links a practical scenario where multi-
ple assets are already present and a new asset is acquired, for
which a model should then be made.

To evaluate CI estimation methods a novel and unique run-to-
failure bearing dataset consisting of multiple test rig setups
and multiple runs per setup is used. Compared to publicly
available life time test datasets, IMS (Qiu, Lee, Lin, & Yu,
2006) and PRONOSTIA (Nectoux et al., 2012) it is much
larger, which is beneficial when using DL methods that typi-
cally require a relatively large amount of data. The considered
data set contains a total of 70 run-to-failure tests measured
across 7 different setups, compared to 12 tests across 3 setups
for IMS and 17 tests across 3 setups for PRONOSTIA. Next
to this private data set the same experiments were also carried
out on the publicly available IMS dataset1.

In order to compare DL methods an appropriate metric is
required. When considering the classification of faults for
the purpose of diagnostics, a fault classification is calculated
based on an isolated signal pattern. For prognostics a se-
quence of consecutive realizations should be considered be-
cause degradation is a continuous stochastic process and a
different metric is needed that describes the behavior of the
CI that slowly moves from a normal to faulty state. For the
latter, (Kim et al., 2016) used the Spearman’s ρ to evaluate a
CI score, which was adopted in this work with regards to the
linearity between the CI score and the time (i.e. RUL). As
results obtained on the IMS dataset in (Kim et al., 2016) will
be used in this work for the creation of a ground truth, it was
opted to use the same evaluation metric.

The rest of the paper is organised as follows. In Section 2 a
more in-depth explanation of the methods that are employed
is given. More details about the different fine-tuning strate-
gies for DSVDD are given in Section 3. Section 4 discusses
the employed datasets. The experimental setup that includes
preprocessing, evaluation metrics and the architecture of the
models is explained in Section 5. Section 6 presents and dis-

1https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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cusses the results of this work. Finally, conclusions and future
work are given in Section 7.

2. METHODS

Before briefly reviewing the DSVDD method, first the AE
modelling technique is concisely revisited as this method is
typically used to initialise the DSVDD learning cycle.

2.1. Convolutional Auto-encoder

A CAE is used to find a compact latent representation z ∈
RD′

of input signals X ∈ RD×T with D′ << D using an
encoder function E without loss of a significant amount of
information. Thus, given z, a decoder D calculates a recon-
struction X̂, which should resemble X as closely as possible.
When defining the latent representation specifically for data
that relates to normal asset operation it is expected that in case
data is measured during abnormal asset operation the recon-
struction process is less accurate. This creates an opportunity
to detect anomalous behavior based on the reconstruction er-
ror, termed residual, or by observing differences in the latent
representation. For example, when assuming (which might
be oversimplifying the problem) that all data that is measured
during the first use of an asset can be considered as normal
data, the encoder and decoder functions can be learned in an
one-class manner. Formally, this is defined as:

z = E(X|θE), (1)

X̂ = D(z|θD), (2)

where θE and θD respectively are the parameters of the en-
coder E and decoder D models. During learning these param-
eters are determined using the following objective:

min
θE ,θD

1

N
ΣN

i=1||Xi − X̂i||2, (3)

where N is the number of healthy training samples and the
subscripts of X denote a specific sample. This objective min-
imizes the mean of the squared reconstruction errors. The
latter being the differences between the inputs X and recon-
structions X̂. To calculate the CI associated with this algo-
rithm the following equation is used:

CIAE(X) = ||X− X̂||2. (4)

2.2. Deep support vector data description

In AE abnormal situations are detected using the reconstruc-
tion error (which involves evaluating E and D). However, it
is expected that deviant behavior already can be observed in
the latent space.

Consider the DSVDD method (Ruff et al., 2019) where the
parameters θE from E(Xi|θE) are refined such that data sam-

ples related to normal operation are brought close to a center
c while letting data samples acquired during abnormal opera-
tion lie further apart from c.

Assume a set of Nn samples that are collected early in the
lifetime of the asset where it is expected that it operates nor-
mally. Furthermore, assume a set of Nf samples collected
when a (similar) asset had faulty behavior. Together, a data
set of N = Nn + Nf samples {(xi, yi)}Mi=1 are provided,
with Xi ∈ RD×T , and yi ∈ {−1, 1} with yi = −1 refer-
ring to a normal sample and yi = 1 to a faulty sample. The
generalised DSVDD objective can then be written as:

min
θE

η
1+yi

2 ΣN
i=1(||E(Xi|θE)− c||2)−yi . (5)

As in (Ruff et al., 2019) using this objective function a sample
of normal behavior will be mapped close to the center while
a faulty sample will be mapped further away from the center
due to the inverse in the function. Note that this objective
can also be used when only samples that link to normal asset
behavior are available, which makes it different from a binary
classification objective. The hyper-parameter η can be used
to balance the impact of the normal and faulty examples in the
objective as the sizes of both sets (Nn, Nf ) can differ much.

The encoder E notation from Section 2.1 was reused since
typically an AE model structure is used in DSVDD with the
weights initialised with values that were pretrained using an
AE loss function (prior to and decoupled from the DSVDD
training cycle). The encoder weights are then further refined
using the equation (5). The center c (in the latent space) is set
by calculating the mean latent representation (derived by the
encoder) of (a subset of) the normal data. This c is kept fixed
during further training.

As discussed in detail in (Ruff et al., 2018), some impor-
tant restrictions apply to deep DSVDD to obtain non-trivial
solutions: (a) The center should not be initialized as all 0.
This could lead to the model converging to a trivial all-zero
weights solution. (b) The network should not have learnable
bias terms. The bias terms could lead to the model learning
a constant mapping to the center. (c) The network should not
have bounded activation functions. These functions could be
used as bias terms when the network learns to saturate them,
leading to a constant mapping.

As with the AE, an equation similar to the learning objective
is used to calculate the CI for DSVDD:

CIDSVDD(X) = ||E(X|θE)− c||2. (6)

3. ADAPTIVE DSVDD

The data (source domain) used to train some generic DSVDD
model can have a distributional shift compared to the data
measured on the asset under test (target domain). Such mis-
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match causes suboptimal performance of the DSVDD model.
Adapting the SVDD model towards the target asset is ex-
pected to boost performance. As was argued in the intro-
duction fine-tuning methods are chosen for this purpose. In
this work two models are considered: (a) a generic model
trained on data that include samples recorded in both normal
and faulty conditions from a set of different assets (from the
same type) and (b) a run-specific model, which is the generic
model that is fine-tuned to the target asset (using only data
recorded during normal asset operation) such as is also done
in (Mao et al., 2020). Bearing in mind computational effi-
ciency which can be important when DSVDD is deployed
on computing hardware with limited processing capabilities,
for DSVDD specifically, two additional adaptation strategies
are considered: (a) fine-tuning of only the final layer of the
generic model instead of the full model as was e.g. done in
(Li, Jiang, Zhang, & Shu, 2021); (b) adapting the center c to
be the mean of the target latent data (z), which is expected
to be normal (target asset is expected to behave normal when
the monitoring system is setup). Using the latter the target
c is determined by calculating the mean of the latent repre-
sentation of the target data without needing any retraining of
model parameters (using back propagation).

4. DATASETS

As mentioned earlier two datasets will be used in this study:
1) the publicly available IMS dataset, 2) a novel and unique
run-to-failure bearing dataset.

4.1. IMS dataset

The IMS dataset (Qiu et al., 2006) consists of data collected
from three run-to-failure experiments, without any acceler-
ation. The setup consisted of four double row bearings, as
shown in Figure 1, with one accelerometer for each bearing
for datasets 2 and 3 and two for dataset 1.

Figure 1. Example of a bearing test rig setup (Qiu et al.,
2006).

During the experiments the rotation speed of the shaft was
fixed at 2000 RPM and a radial load of 6000 lbs was applied.

For each experiment 1 second of data was collected every
10 minutes at a reported sampling rate of 20 kHz, however
each file consists of 20480 points and (Gousseau, Antoni, Gi-
rardin, & Griffaton, 2016) believes the actual sampling rate to
be 20.48 kHz. Each test was carried out until the amount of
metal debris on a magnetic plug attached to the test bearings
exceeded a set threshold. This dataset does not come with
a readily available ground truth with regards to when a fault
exactly happened. However, other algorithms have been used
to estimate this fault point (Hasani, Wang, & Grosu, 2017),
which we will call the cutoff point pf , and hence can be used
to create a ground truth, a summary is provided in Table 1.
Do note that there is a noticeable difference in the estimated
pf between each algorithm, indicating a non-trivial problem.
In this work it was opted to use the pf based on the MAS-

Table 1. Listing of the faulty bearings in the IMS dataset
and their respective pf . S1B3: Set 1 Bearing 3, S1B4: Set 1
Bearing 4, S2B1: Set 2 Bearing 1, S3B3: Set 3 Bearing 3.

Algorithm S1B3 S1B4 S2B1 S3B3
AEC 2027 1641 547 2367

MAS-Kurtosis 1910 1650 710 N/A
HMM-DPCA 2120 1760 539 N/A

AEC: auto-encoder-correlation-based prognostic algorithm
MAS-Kurtosis: moving average spectral kurtosis
HMM-DPCA: hidden Markov model with dynamic PCA

Kurtosis. Although this algorithm did not provide a pf for
bearing 3 of the third subset, other works have discussed dif-
ficulties with this specific experiment (Hasani et al., 2017;
Gousseau et al., 2016), hence it was opted to not use data
from this specific experiment. Additionally only the experi-
ments where a fault happened are included in this work. The
data after pf is then considered as faulty for our experiments
and the first 20% of the healthy data is considered as healthy,
we will this the healthy cutoff point ph.

4.2. Private dataset

Next to the IMS data set also a novel data set, collected by
Flanders Make, that consists out of measured acceleration
signals during accelerated life time tests was used. In Figure 2
a bearing test rig setup, built by Flanders Make, is shown. An
accelerometer was attached to the bearing housing to measure
the accelerations with a sampling frequency of 50 kHz. Dur-
ing a life time test a high radial load of 9 kN was applied and
the shaft of the setup was set to rotate at 2000 rpm. The test
was stopped when the peak vibrations were at least 20g. A
fleet of 7 bearing test rig setups was used and a total of 70 life
time tests were performed, with for each test rig, 7 “faulty”
runs with a small initial indent in the outer race of the bearing
and 3 “healthy” runs with a healthy bearing. The former ran
until the stopping condition was met and the latter ran for 2
hours. However, due to different stopping conditions 41 runs
were retained. From these, 7 already had abnormal opera-
tion from (almost) the beginning of the measurement making
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Figure 2. Example of a bearing test rig setup.

them unusable to tune run-specific models, which need sam-
ples that represent normal operation. In order to have a fair
comparison between generic and run-specific models these 7
runs were discarded as well.
As no exact ground truth was provided, a run was manually
segmented on the time axis into three regions by visually in-
specting the time-frequency representation of the data The
cutoff point ph was chosen such that a stable and healthy be-
havior between the start and ph is observed, the initial indent
is not seen as faulty in this case. In the experiments ph is
set to 1000s (0.27h) unless the length of the measurement is
less than 1.83h. In that case ph is set to a smaller value such
that from ph until the end of the measurement 1.56h of data
is available. In this way for each run a CI can be calculated
for at least 1.56h of data, which translates to approximately
2 weeks of non-accelerated time. The second cutoff point pf
was chosen to have in between pf and the end data that is
clearly different from data before ph. Between ph and pf the
condition of the test rig is considered undefined.

5. EXPERIMENTAL SETUP

5.1. Preprocessing

Similar to (Jiang et al., 2019; Lee et al., 2021), in this work
the acceleration signals are first transformed to log mel spec-
tra before inputting them to a DL model. However, in this
paper there is no further processing to Mel Frequency Cep-
stral Coefficients (MFCC) since log mel spectra enable DL
methods to extract richer features compared to when MFCCs
are used. From the raw acceleration signals the log mel spec-
tra are extracted, using a window size of 1s and a hop size of
1s for both datasets. A total of 64 and 512 mel bands were
extracted for the IMS and private dataset respectively, which
were then log scaled. Finally, the log mel spectra of 4, for
the IMS dataset, and 8, for the private dataset, consecutive
seconds were stacked together to create a frame, with shape
(64,4) and (512,8) respectively, that also contains some tem-
poral information, these seconds will receive the same CIs.

The exact configuration of the preprocessing was determined
during preliminary experiments. After this extraction each
run is standardized such that the data prior to ph has zero
mean and unit variance. As a result the data from different
runs are expected to be more similar to each other.

5.2. Performance Metrics

As mentioned earlier, (Kim et al., 2016) evaluated the corre-
lation of the CI and the time using the Spearman’s ρ (Kokoska
& Zwillinger, 1999). The formula used to calculate the Spear-
man’s correlation is shown in Equation 7,

ρ =
cov(Ck, Tk)

σCk
σTk

(7)

with Ck and Tk being the rank of the kth observation in C
and T , after both have been ranked from smallest to largest,
cov and σ being the covariance and the standard deviations of
the rank variables respectively.

This evaluation is performed using the undefined segment of
a run, between ph and pf . The CI prior to ph is omitted since
the run-specific models use this data for training and the CI
after pf can be dropped since the behavior of the CI after the
fault is less important than prior to the fault.

In addition to this metric, we also evaluated the diagnostic
ability of the CI, i.e. to use it to discriminate between healthy
and faulty data. For this evaluation the Area Under the Re-
ceiver Operating Characteristic (AUROC)2 was used. We cal-
culated the AUROC for the faulty runs and assumed the data
before the cutoff ph to be healthy and all data after the cut-
off pf was considered faulty. As the data before ph was also
used during training for the adaptation strategies, this metric
will only be calculated for the generic models. To evaluate
the computational complexity the amount of FLoating OPer-
ations (FLOPs), calculated by Tensorflow, will be examined.

5.3. Model architectures and learning parameters

DSVDD was compared to: a) a kurtosis baseline and b) an
AE model that is trained using an one-class learning approach
using only examples that are considered healthy.

Kurtosis was chosen since pf for the IMS dataset is based on
the MAS-kurtosis, however as this algorithm used data from
specific frequencies based on prior knowledge, we opted for
the standard kurtosis as the aim of this work is to be fully
data driven. Equation 8 was used to calculate the kurtosis, per
second, on the raw vibration data, using the implementation
of scipy3,

2https://scikit-learn.org/stable/modules/generated
/sklearn.metrics.roc auc score.html

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html
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Kurtosis =
1
NΣN

i=1(xi − µ)4

σ4
(8)

with xi being the various samples of the raw vibration data,
µ the average of this data and σ the standard deviation.

To allow for a comparison, the architectures of all models
were kept as similar as possible. All models were trained
with the Adam optimizer (Kingma & Ba, 2014). When build-
ing generic models 100 epochs were used and to learn run-
specific models an additional 100 epochs were used. The
learning rate was set to 1e−3 for the generic models. For the
run-specific models the learning rate was set to 1e−4 when
they were learned by refining a generic model. The batch
size was set to 8 for the IMS dataset and to 64 for our pri-
vate dataset, however this was lowered to 4 when training a
run-specific model without added faulty data. If a model did
not improve, which we considered as the validation loss low-
ering by 1%, for 10 consecutive epoch the learning rate was
halved and training was stopped early if it did not improve for
15 consecutive epochs. L2 weight regularisation was applied
with a factor (λ) of 5e−3 and 5e−6 for the IMS and private
dataset respectively.

First we will discuss the architectures for the private dataset,
as the IMS dataset uses the same general structure, but a
smaller version. An important note here is that all models
use a fixed random initialization.

The architecture of the Auto Encoder (AE) used in this study
consists of 3 convolutional layers with 32, 32, 16 filters re-
spectively followed by a FC layer with 8 neurons as the en-
coder and a FC layer with 1024 neurons followed by 3 de-
convolutional layers with 16, 32, 32 filters and a final decon-
volutional layer with a single filter as the output layer in the
decoder. A batch normalization layer follows all the convo-
lutional layers, except for the final one. All layers use leaky
ReLu activation functions, except for the final layers in the
encoder and decoder which use linear activation functions.
The filters are all of size (3,3) and move with a stride of 2 in
both directions, except in the final layer a stride of 1 is used.
To make a more direct comparison with DSVDD (where bias
terms need to be deactivated) the bias terms in all layers were
removed. For the batch normalization layers this means the β
term has been turned off. This model has 47,392 parameters.

The Deep Support Vector Data Description (DSVDD) model
used the same architecture as the AE. This AE model was
pretrained for 50 epochs. Then the decoder part was removed
and an additional FC layer with 16 neurons was added. The
DSVDD objective was then used to fine-tune the encoder net-
work. When assessing models with different amount of labels
the fine-tuning cycle always starts from the same pretrained
encoder. For the generic model η was experimentally deter-
mined and setting it to 0.1 attained the best results. For the

run-specific model η was set to 0.1 in order to place more im-
portance on the healthy data, since this data is from the run
itself. Since DSVDD does not use the decoder of the AE and
adds a single layer, this model has 22,672 parameters.

As mentioned previously, the IMS dataset uses smaller ver-
sions of these architectures. Specifically this is implemented
by removing the first layer of the encoder and the second to
last layer of the decoder and additionally the neurons in the
convolutional layers are halved. These adjustments combined
with the reduced input features result in the AE model having
7,408 parameters, the DSVDD 3,544.

6. EXPERIMENTS

As explained earlier the use of DSVDD for the purpose of
estimating CI scores is studied. For this purpose two datasets
were used and two sets of experiments were carried out on
each dataset. First the results on the public IMS dataset will
be discussed and later the results on the private dataset. The
first set of experiments studies the models’ ability to gen-
eralize by evaluating them in a leave-one-run out manner.
The second set of experiments evaluates different adaptation
strategies to refine the DSVDD model, and hence build var-
ious run-specific DSVDD models, to cope with the distribu-
tional shift of data that is present between runs.

6.1. IMS dataset

As mentioned in Section 4.1, this work only included the ex-
periments of the IMS dataset that included a fault. This leads
to a set of 3 experiments, which were split into 3 folds using
a leave-one-run-out scheme for the generic models. For the
run-specific models, as discussed in Section 3 three adapta-
tion strategies for DSVDD are considered, the generic model
trained in the 3-fold CV was adapted to a run-specific model
using the data prior to ph of the hold out set as normal data
and the faulty data of the training 2 runs. The run-specific
model was then validated on the remaining samples of the
hold-out set. Note that data from both accelerometers in the
first set of experiments was used, but was seen as a single set
for the creation of the folds.

Prior to the calculation of the metrics the estimated CI scores
were smoothed using a running median of 21 lags.

The prognostic performance of the models in terms of ρ, as
introduced in Section 5.2, in function of the percentage of
faulty data used during training is shown in Figure 3 for both
the generic and run-specific models as well as the kurtosis
baseline and the exact values can be found in Table 3.

It can be seen that the results show a high standard devia-
tion, however this is due to the nature of the result calcula-
tion. Each result shows the mean and standard deviation of a
metric on multiple runs, 5 for the IMS dataset and 34 for the
private dataset, and some runs show less complex behavior
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while others show more complex behavior, resulting in larger
differences between the metrics for these runs.

Figure 3. The mean spearman’s ρ for generic models, the
kurtosis baseline and the various adaptation strategies for
DSVDD in function of the amounts of added faulty data for
the IMS dataset.

First the results using the generic models will be discussed.
It can be seen that AE (Generic AE) does outperform
DSVDD (Generic DSVDD), however do note that AE uti-
lizes a decoder (which gives additional modeling flexibility)
in combination with an encoder, while DSVDD only uti-
lizes the latter, which roughly halves the model complex-
ity (and hence the modeling flexibility). The kurtosis base-
line (Kurtosis) also outperforms DSVDD, which is unex-
pected. This could be due to the small amount of training data
not leading to a good training optimum for this model.

Figure 4. The AUROC comparison for the generic AE and
DSVDD models and a kurtosis baseline for the IMS dataset
in comparison with the amount of added faulty data.

When looking at the CI evaluation it can be seen that the
DSVDD model does not improve much when more faulty
data is added, however when looking at the diagnostic be-

havior, as seen in Table 2 and Figure 4, it can be seen that
DSVDD does improve significantly with more faulty data,
approaching a (near) perfect AUROC, and it outperforms the
kurtosis baseline with regards to diagnostics. The AE showed
perfect diagnostic behavior.

Table 2. The AUROC comparison for the generic AE and
DSVDD models and a kurtosis benchmark for the IMS
dataset in comparison with the amount of added faulty data.

0% 50% 100%
AE 1.000 ± 0.000
DSVDD 0.772 ± 0.312 0.849 ± 0.291 0.957 ± 0.087
Kurtosis 0.644 ± 0.174

Second the results for the run-specific DSVDD models will
be discussed. The generic model (Generic DSVDD) is
compared to a run-specific model that is either build by (a)
only adapting the center (Center), (b) adapting the weights
of the final layer of the model (Final-only), and (c) adapt-
ing all model parameters (Full). As a reference a model
was also learned from scratch (Scratch), which is similar
to the experiment where all model parameters are adapted ex-
cept that the model weights are randomly initialised (hence,
there is no adaptation of a generic model that was previously
learned).

Table 3. The mean spearman’s ρ with standard deviation for
generic models, the kurtosis baseline and the various adap-
tation strategies for DSVDD in function of the amounts of
added faulty data for the IMS dataset.

0% 50% 100%
Kurtosis 0.290 ± 0.319
AE 0.484 ± 0.191
DSVDD 0.227 ± 0.446 0.251 ± 0.354 0.263 ± 0.572
Center 0.300 ± 0.449 0.513 ± 0.326 0.791 ± 0.154
Final-only 0.574 ± 0.116 0.614 ± 0.235 0.699 ± 0.203
Full 0.565 ± 0.249 0.682 ± 0.232 0.726 ± 0.212
Scratch 0.629 ± 0.249 0.635 ± 0.222 0.679 ± 0.271

As was expected, all adaptation strategies outperform the
generic model. Final-only, full and scratch performed the
best. However, the center adjustment as used by DSVDD
already shows a significant increase in performance, even
surpassing the other strategies when using all data, in com-
parison with the generic model. This performance increase
might be due to the test run mainly having a mismatched
mean in the latent space while the overall shape of the la-
tent data distribution is similar to that of the training data.
When the center is then mapped to the center of the latent
distribution of the target data the performance is improved
significantly. The increasing trend of this boost could be due
to the model learning the distribution of other fault types and
therefore learning to shape the latent space in a way that is
more suitable to an unseen fault type. In contrast to this the
final-only scheme adjusts the model to map the test run onto
the center. While this does obtain a better performance, the
cost of adapting the model in this way is significantly higher
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compared to only adjusting the center, which can be done
during run-time. Additionally, it can be seen that training
the model from scratch shows a slight improvement when
no faulty data is used, this might be due to the models that
adapt the generic model already having learned features on
data from other runs, whereas the model that is trained from
scratch has only learned features for the specific run.

It can also be seen that adding faulty data does, generally,
improves the model, with the best performance being attained
when using all the faulty data. This improvement is possibly
due to the dataset containing multiple fault types.

Figure 5. The FLOPs (in base 10 log) needed, per input sam-
ple, to adapt the generic DSVDD model for the IMS dataset
for each adaptation strategy.

An important aspect to consider when creating these run-
specific models is the cost associated with each adaptation
strategy. The amount of FLOPs needed, per input sample,
to adapt the generic DSVDD model is shown in Figure 5. It
should be noted that the lack of necessity for DL training for
the center adjustment is not taken into account, which would
further increase the difference in the computational cost be-
tween these adaptation strategies. It was mentioned earlier
that the cost of adapting the model is significantly higher than
only adjusting the center, this is shown here, with the center
adjustment needing only 16 FLOPS, the amount of values in
the latent representation, and adapting the full model needing
roughly 13.8 million FLOPs per input.

6.2. Private dataset

As explained in Section 4.2, a total of 34 faulty runs were
combined with the 21 healthy runs to form a total of 55 runs,
these were then split into 55 folds using a leave-one-run-out
scheme to train the generic models. In each realisation 54
runs were used for training and validation by randomly sam-
pling 75% and 25% from these runs for training and valida-
tion respectively and the hold out run served as an indepen-
dent test sample. Similar to 6.1, for each iteration in the 55-
fold CV a generic model is adapted to a run-specific model
using the first 1000s of the hold out set of the fold as normal

data and the faulty data of the training 54 folds. The run-
specific model is then validated on the remaining samples of
the hold-out set.

As was done for the IMS dataset, the estimated CI scores
were smoothed using a running median of 21 lags.

For this dataset the achieved AUROC scores were (near) per-
fect for both AE and DSVDD with no significant differences,
hence these results were not further discussed.

Similar to 6.1, the prognostic performance of both the generic
and run specific models as well as the kurtosis baseline in
terms of ρ in function of the percentage of faulty data that
was used during training is shown in Figure 6 and the exact
values can be found in Table 4. Additionally, the performance
based on the Ball Pass Frequency Inner (BPFI) is also pro-
vided. This metric calculates the envelope spectrum and uses
the amplitude for the BPFI frequency as a HI. This could be
calculated as we had detailed knowledge about the bearings.

Figure 6. The mean spearman’s ρ for the kurtosis baseline,
the generic AE and DSVDD models and various adaptation
strategies for DSVDD for the private dataset in comparison
with the amount of added faulty data.

Again the results for the generic models will be discussed
first. AE does outperform DSVDD again when up to 60%
of faulty data was added, however, different from the results
on the IMS dataset, DSVDD performs better than AE when
80% or more faulty data is used. It is observed that when
the number of faulty examples is increased the ρ increases as
well, this was less noticeable for the IMS dataset. The kurto-
sis baseline also does not outperform DSVDD, in comparison
to the IMS dataset, likely due to the increased amount of data
allowing the models to find better optima and the kurtosis also
performs worse in general.

The results for the run-specific results will be discussed sec-
ond again. In line with the results on the IMS dataset, all
adaptation strategies outperform the generic model and the
final-only and full strategies performed the best, with scratch
only performing slightly worse. However it can be seen that,
while all the strategies benefit from the added faulty data,
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Table 4. The mean spearman’s ρ and standard deviation for the kurtosis baseline, the generic AE and DSVDD models and
various adaptation strategies for DSVDD for the private dataset in comparison with the amount of added faulty data.

0% 20% 40% 60% 80% 100%
Kurtosis 0.071 ± 0.344
BPFI 0.096 ± 0.244
AE 0.287 ± 0.485
Generic 0.089 ± 0.489 0.158 ± 0.485 0.144 ± 0.446 0.192 ± 0.394 0.359 ± 0.489 0.361 ± 0.497
Center 0.537 ± 0.317 0.502 ± 0.376 0.526 ± 0.369 0.589 ± 0.259 0.575 ± 0.345 0.568 ± 0.339
Final-only 0.541 ± 0.376 0.761 ± 0.161 0.702 ± 0.230 0.727 ± 0.221 0.777 ± 0.166 0.789 ± 0.183
Full 0.467 ± 0.344 0.718 ± 0.196 0.790 ± 0.134 0.722 ± 0.255 0.795 ± 0.149 0.803 ± 0.133
Scratch 0.544 ± 0.321 0.740 ± 0.241 0.688 ± 0.280 0.703 ± 0.257 0.715 ± 0.214 0.716 ± 0.247

most of the performance is gained when adding the first 20%
to 40%, in comparison to the IMS dataset, where the best per-
formance was attained when using all available data. This
could be due to only one fault type being present in this
dataset, making this amount of data is probably already suffi-
cient to adapt the algorithms ability to provide a good CI, with
additional data only providing a slight further refinement.

Figure 7. The FLOPs (in base 10 log) needed, per input sam-
ple, to adapt the generic DSVDD model for each adaptation
strategy.
The amount of FLOPs needed for each adaptation strategy is
shown in Figure 7, with the general trend being very similar to
the IMS dataset. As the model used for this dataset is larger,
the difference between adjusting the center, which needs 16
FLOPs, and training the model from scratch, needing roughly
90 million FLOPs, is much larger.

7. CONCLUSION AND FUTURE WORK

In this work we evaluated and compared a kurtosis basline
and AE and DSVDD models that take log mel spectra as
their input for the purpose of CI estimation for bearing fault
prediction on a custom dataset, that includes accelerometer
data, and the publicly available IMS dataset. Apart from this
comparison it was also investigated to what extent added la-
beled faulty data improves the model performance and differ-
ent adaptation strategies for DSVDD were evaluated in terms
of performance increase and computational cost.

For the generic models, AE does outperform DSVDD, likely

due to the increased complexity of the model, however adding
faulty data lowers this difference and even causes DSVDD to
outperform AE on the private dataset. However, the perfor-
mance of DSVDD already significantly improves when the
center is adapted to the target data, which can be done at
nearly no cost. When more computational power is avail-
able, the diagnostic performance can be further improved by
adapting the parameters of the final layer of the DSVDD
model. Adapting all model parameters did only give a rel-
atively small improvement. This implies that when there is
a certain amount of faulty data available DSVDD is a bet-
ter choice than AE, however if faulty data is scarce DSVDD
either needs to be adapted or AE provides a better alternative.

It also indicated that, depending on whether there are different
fault types in the dataset, the amount of faulty data that attains
the best performance changes. This is less noticeable for the
generic model, but becomes more clear for the run-specific
models. When there are more types, as is in the IMS dataset,
using all faulty data performs the best. However, when there
is only one, as is in the private dataset, adapting the model
with only 20% to 40% already attains the best performance.

In future research we will study the inclusion of multi-modal
measurements and modified versions of the DSVDD algo-
rithm that can cope with dynamic conditions that can be
present in practice such as a changing rpm and/or load.
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