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ABSTRACT 

Health and usage monitoring systems (aka “HUMS”) have 

typically not been associated with CFR Title 14 type 27 

normal category rotorcraft (weighing less than 7000 pounds, 

with a seating capacity of 9 or less) due in part to the cost of 

such systems relative to the asset value. This paper describes 

performance improvements to HUMS bearing diagnostics 

methodologies to enhance functionality and improve the 

business case for HUMS. From a system perspective, this 

implementation allowed the detection of a real-world 

turboshaft bearing fault prior to a catastrophic engine failure. 

The system requirements used vibration data that was 

resampled to control for changes in shaft rate to reduce 

smearing of the spectrum. A spectral estimation algorithm is 

then performed to improve the measured energy associated 

with the bearing defect. Bearing energy was calculated using 

the envelope analysis, where a novel approach is taken to 

correctly select the best window. Finally, a process for 

thresholding and alerting was implemented, the results being 

that the aircraft was grounded at the appropriate time and a 

repair was effectuated prior to engine failure. 

1. INTRODUCTION 

HUMS (health and usage monitoring systems) have typically 

been implemented on larger type 29 category transport 

helicopters. While the benefits of HUMS for enhanced safety, 

improved availability, and reduction in operating costs is well 

documented, there have been relatively few implementations 

of HUMS in the type 27 market. This lack of market 

penetration can be explained by the relatively high cost and 

weight of most HUMS relative to the asset value of the 

aircraft. Hence, given the lack of a HUMS regulatory 

mandate, the operator is left with a business decision to install 

HUMS based on a return on investment. For these operators, 

implementation of HUMS will likely be based on the value 

the HUMS brings to their operation.  

This suggests that HUMS must be explicitly designed to 

deliver quantifiable returns on investment. HUMS can do this 

via Rotor Track and Balance (RTB), Flight Data 

Monitoring/Operational Exceedance Monitoring, Engine 

Performance Monitoring, and Drivetrain Monitoring/ 

Prognostics.  

While most of these functions directly benefit by reducing 

maintenance or improving safety through the support of a 

Safety Management System, Drivetrain Monitoring is an 

investment. In the rare event that a propagating drivetrain 

occurs, Condition Monitoring (CM) and prognostics allow 

the operator to plan when maintenance is carried out and 

replace components prior to them, reducing the 

reliability/safety of the aircraft.   

Condition monitoring uses vibration sensors and 

configuration representing the drivetrain of the helicopter to 

calculate condition indicators (CIs). These CIs are used to 

infer the current health of the component and, with a health 

threshold, estimate the remaining useful life (RUL) of the 

component. The RUL (e.g., prognostics) allows the operator 

to better manage the asset by scheduling maintenance 

opportunistically. The goal, along with increased asset safety, 

is improved availability and more opportunities for revenue 

generation.   

Along with shafts and gears, the drivetrain has bearings that 

can degrade over time. While shaft/gear fault detection is 

usually based on synchronous analysis, bearings are 

asynchronous because their motion depends on non-Hertzian 

contact and geometry. Additionally, due to the nature of 

bearing faults (e.g., measuring the effect of an impact-

inducing resonance in the bearing itself), successful fault 

detection requires careful consideration of parameter inputs 

necessary (e.g., envelope window) to perform the analysis.  

On Oct 31st, 2020, a lightweight HUMS-equipped Bell 

407GXi helicopter generated an alert on the M250 engine 

power turbine shaft. This was the third operation of the day, 
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and after the automated download, the system reported a high 

2/Rev. An alert was sent to both HUMS monitoring personnel 

and the pilot. This alert was not a surprise: on Aug 12th of 

that year (about 100 flight hours prior), the HUMS had 

identified damage on the No. 5 bearing. The high 2/Rev 

resulted from wear/excessive clearance in the No. 5 bearing. 

In addition to the HUMS text message alert, the pilot reported 

a flickering engine oil filter bypass flight. After the alert, the 

pilot checked the magnetic chip detectors and found heavy 

deposits of fine metallic "fuzz” (see figure 8). An inspection 

of the oil filter revealed more metal debris. The alert and 

findings were reported to Bell Flight, and the aircraft was 

pulled from service to have the engine replaced. 

For a bearing fault to be detected, the design of the signal 

processing techniques must be capable of extracting the 

bearing fault feature. To do this effectively, it must: 

• Determine the bearing resonance, window bandwidth, 

acquisition sample rate, and spectrum resolution. 

• Determine the component health from the measured 

condition indicators, and from the current state, 

determine the remaining useful life.  

 

The following will focus on the processes for determining 

bearing fault frequencies and the analysis performed to 

quantify bearing damage as a condition indicator. 

Thresholding and remaining useful life calculation have been 

discussed in previous papers (Bechhoefer, Dube 2020).  

 

 

Figure 1. Prognostics of a No. 5 Bearing Fault. 

2. BEARING ANALYSIS CONSIDERATIONS 

The Rolls Royce M250 engine is a complex analysis 

environment. The power turbine section comprises five 

shafts, six gears, and 13 bearings. The RPM range of the 

monitored shafts is 73 to 536 Hz, with gear mesh frequencies 

from 3900 to 18800 Hz and bearing fault frequencies ranging 

from 30 to 5800 Hz. When shaft and gear harmonics are 

added, this results in a busy vibratory signal, making bearing 

fault detection difficult. While calculating the bearing rates is 

well established, it is a complex problem in practice.   

Bearing Envelope Analysis (BEA) is based on the 

demodulation of high-frequency resonance associated with 

bearing element impacts. For rolling element bearings, when 

the rolling elements strike a local fault on the inner or outer 

race, or a fault on a rolling element strikes the inner or outer 

race, an impact is produced. These impacts modulate a signal 

at the associated bearing pass frequencies, such as that 

associated with the Cage (FTF, fundamental train frequency), 

𝐹𝑇𝐹 =  
𝑆

2
(1 − 𝐵𝑑

𝐷⁄ 𝑐𝑜𝑠(𝜙))                 (1) 

or the Ball Pass Frequency Inner Race (BPFI), 

𝐵𝑃𝐹𝐼 =  
𝑁𝑏×𝑆

2
(1 + 𝐵𝑑

𝐷⁄ 𝑐𝑜𝑠(𝜙))                  (2) 

or the Ball Pass Frequency Outer Race (BPFO),  

𝐵𝑃𝐹𝑂 =  
𝑁𝑏×𝑆

2
(1 − 𝐵𝑑

𝐷⁄ 𝑐𝑜𝑠(𝜙))                 (3) 

and the Ball Pass Spin Frequency (BSF),  

𝐵𝑆𝐹 =  
𝐷×𝑆

𝐵𝑑
(1 − (𝐵𝑑

𝐷⁄ )
2

𝑐𝑜𝑠(𝜙)2)               (4) 

Where: 

  S is the shaft frequency, 

 Bd is the ball or roller element diameter 

 Nb is the number of balls or rollers 

  D is the pitch diameter and  

   is the contact angle. 

Note that the BSF is usually constructed at half of the rate 

(divided by two), but because a spall or damage to the roller 

hits both the outer and inner race, the observed frequency is 

2x, or as given in eq 4. Be aware that these rates are not exact 

due to non-Hertzian contact and because of the change in 

geometry under thrust (Hamrock, Dowson 1987). This is 

important as the No. 5 bearing is a thrust bearing.  

From Hamrock., it is seen that for rigidly mounted bearings 

incapable of radial deformation, the contract angle  due to 

a thrust load, can be written as: 

𝛽 = 𝑐𝑜𝑠−1 (𝐷 − 𝑃𝑑 2⁄
𝐷 + 𝛿

⁄ )               (5) 

Where Pd is the diametral clearance, and  is total elastic 

deformation or wear, then: 

cos(𝛽𝑓) = 𝐷 − 𝑃𝑑 2⁄
𝐷⁄                           (6) 

Given a manufacturer contract angle f of 14.7 degrees, the 

Pd is calculated as 0.0183. Rearranging terms give: 

𝛿 = 𝑐𝑜𝑠−1 (
𝑐𝑜𝑠(𝛽𝑓)

𝑐𝑜𝑠(𝛽)
⁄ )                 (7) 

The thrust loads axial deflection, t, given in 7, is then: 

𝛿𝑡 = (𝐷 + 𝛿)𝑠𝑖𝑛(𝛽) − 𝐷𝑠𝑖𝑛(𝛽𝑓)                  (8) 

and finally: 

𝛿𝑡 =
𝐷 𝑠𝑖𝑛(𝛽 − 𝛽𝑓)

𝑐𝑜𝑠(𝛽)
⁄               (9) 

Given that the No. 5 bearing is under thrust, one can 

hypothesize that the turbine axial load will cause a 

displacement t, which is both changing the contact angle of 

the bearing from f to  and the pitch diameter from D to 

D+t. This change in contact angle and apparent pitch 

diameter increases the observed frequency.  
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This model helps explain that the fault frequency is 6% 

higher than expected for the calculated fault rates.  

Further, in many real-world bearing faults, it is typical to see 

a 0.5 to 1% slip due to the non-Hertzian contact. This slip 

usually does not change as a fault propagates. However, for 

the No. 5 bearing, it was observed that the slip increases non-

linearly with damage (Figure 10). The calculated BPFI rate 

(eq 2) is 7.05 orders. When fault propagation began, it was 

initially seen that the fault frequency was 7.22 orders or 3.0% 

high. However, as the damage propagated, the slip increased, 

and the fault frequency dropped to 6.66 orders or 5.6% low.  

To capture these faults on thrust bearings, the HUMS system 

should be designed to search the peak energy between 4% 

above and 5% below the calculated fault feature rate. 

2.1. Improvements to Spectral Estimation: Resampling  

As the fuel control system on the M250 engine has finite 

bandwidth, the RPM of the power turbine varies slightly over 

time. In general, this can vary as much as half a percent. 

Figure 2 shows the power turbine shaft rate change over a 2-

second acquisition. 

 

Figure 2. Power Turbine Shaft Rate vs. Time 

It is not unusual to see a change in RPM of 0.5%. Consider 

that for this application, the minimum bandwidth needed to 

capture the fault feature (No. 5 inner race rate is 5.8kHz) is 6 

kHz, then the spectral bin width is, say, 1.5 Hz. Given a 

change in shaft speed of 0.25%, the spectral energy would be 

spread over ten bins: 5800 *0.0025 / 1.5 = 10. This suggests 

that when the spectrum is calculated, the measured energy is 

smeared over 9 to 10 bins and underestimates the energy 

associated with the bearing fault by up to 60%.  

This change in shaft rate violates the stationarity required for 

spectral analysis. Implementing a resampling algorithm can 

control this and reduce spectral smearing. The model for 

vibration in a shaft in a gearbox was given by McFadden, 

1987 as: 

𝑥(𝑡) =  ∑ 𝑋𝑖 × (1 + 𝑎𝑖(𝑡)) × 𝑐𝑜𝑠(2𝜋𝑖 𝐹𝑀(𝑡) + Φ𝑖) + 𝑏
𝑘

𝑖=1
(𝑡) 

  (10) 

Where: 

• Xi is the amplitude of the kth mesh harmonic 

• FM(t) is the average frequency of interest 

• ai(t) is the amplitude modulation function of the ith 

feature harmonic. 

• i is the initial phase of harmonic k, and 

• b(t) is additive background noise. 

The measured frequency is a function of the shaft rotational 

speed: FM = Bf(t), where B is the bearing fault feature rate, 

and f(t) is the shaft speed as a function of time. As noted, 

because of the finite bandwidth of the feedback control, there 

is some wonder in the turbine power shaft speed. This change 

in speed will result in the smearing of amplitude energy in the 

frequency domain.  

Suppose a tachometer signal is present (such as a key phasor), 

and the ratio from the key phasor to the shaft under analysis 

is known. In that case, the vibration data can be resampled so 

that the number of data points between one revolution and the 

next is the same. In the case of time-synchronous averaging 

(TSA), the ensemble of (eq 10) is calculated by summing 

each revolution resampled data, then dividing by the number 

of revolutions during the acquisition. 

Since the radix-2 FFT is most used, the number of data points 

in one shaft revolution (rn) are interpolated into m number of 

data points, such that: 

• For all shaft revolutions n, m is larger than r, and 

• m = 2ceiling (log2 (r)) (again assuming Radix 2 FFT) 

However, this is not the case for an asynchronous resample 

algorithm. Since bearing envelop analysis will be done on the 

resampled signal, a radix-2 length is unnecessary. Instead, the 

largest time between key phasor zero crossing is used 

(corresponds to the lowest shaft rate during an acquisition) to 

calculate the resample data length, l. Then, for each 

revolution, the current set of data points over one revolution 

are resampled to length l. 

For example, say the sample rate was 1000 samples per 

second, and the lowest shaft rate was 10 Hz for a .5 second 

acquisition. The resample length, l, is set to 100. The number 

of data points between each key phasor (for example) is 87, 

92, 100, 95, 89, and 37. For each shaft revolution, the data is 

resampled to length l.:  

Rev 1: 87 resamples to 100.  

Rev 2: 92 resamples to 100,  

Rev 3: 100 resamples to100,  

Rev 4: 95 resamples to 100,  

Rev 5: 89 resamples to 100.  

Note that for half of a second of data, there are 500 data 

points: the remaining 37 data were in the next incomplete 

revolution, so the last 37 data points are dropped.  
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Because of interpolation, the sample rate for each revolution 

is now changed. An apparent sample rate is needed to 

determine the frequency associated with an FFT bin. The 

apparent sample rate is the original sample rate ✕ length of 

the resampled data/length of the original data: 1000 ✕ 

500/463, or 1082. 

For shaft and gear analysis, existing TSA algorithms control 

for changes in shaft speed. For a bearing, the TSA is 

inappropriate for three reasons: Frist, bearings are quasi-

stationary – there is always some slippage such that even with 

the correct geometry, the rates are not exact. This will make 

the bearing component non-synchronous with the TSA 

algorithm and may separate the bearing signal out of the TSA. 

Second, a bearing has rates for each component: cage, ball, 

inner and outer race. This would require the TSA to be run 

four separate times for each bearing. While this may not be a 

problem for offline analysis, it may exceed the resources of 

an online analysis system. Consider that any given shaft is 

supported by 2 to 3 bearings, which would require 8 to 12 

TSA analyses.  

Finally, in evaluating bearing health, it is essential to see the 

relationship between the shaft, cage, ball, inner and outer race 

fault features. For example, an inner race fault is modulated 

by shaft (e.g., sidebands that are spaced at one order from the 

inner race fault) can be used to validate the fault. That is, it 

would be expected to find sidebands on inner race or ball 

faults because they should be modulated by the load. The 

TSA cannot capture that because the other components in the 

bearing would be asynchronous to it for any given 

component. 

2.2. Improvements to Spectral Estimation: FFT 

While not obvious, the spectrum is exact only for integer 

value frequencies. This means that the spectrum peak does 

not represent the total energy at that frequency for arbitrary 

signals. For length n sampled sinusoid signals, such as used 

in the FFT, orthogonality only holds for harmonics of the 

sample rate divided by n, or specifically, for these 

frequencies: 

 𝑓𝑘 = 𝑘
𝑓𝑠

𝑁⁄ ,   𝑘 =  0,1,2, … , 𝑁 − 1.          (11) 

Because of this, the FFT is defined only for frequencies that 

are exact integers of the sample rate (fs), i.e., k = 2kfs/N. 

For frequencies that are not exact integers of the sample rate, 

it can be shown that the FFT acts as a digital filter, where the 

frequency response for some unknown frequency, k, is:  

|𝑋(𝜔𝑥)| =  |
𝑠𝑖𝑛{(𝜔𝑥 − 𝜔𝑘) 𝑁𝑇 2⁄ }

𝑠𝑖𝑛{(𝜔𝑥 − 𝜔𝑘) 𝑇 2⁄ }⁄ | (12) 

Which causes spectral leakage and error in estimating the 

amplitude for frequency k. Note that spectral leakage is not 

minimized by increasing the length of the FFT.  

The HUMS should implement spectral interpolation to 

accurately measure the bearing energies of a fault. 

Interpolation can allow for an estimate of the maximum 

energy value and the frequency at which it occurs to be by 

assuming a continuous function or distribution. A polynomial 

quadratic, which is a smoothing function, can be used to 

interpolate the maximum energy through a triplet of points. 

A polynomial quadratic has a general formula that can be 

expressed as: 

𝑦(𝑥) = 𝑎(𝑥 − 𝑝)2 + 𝑏      (13) 

Where a is the curvature and depends in this context on the 

window used in the FFT; p is the center point and gives the 

interpolated peak location, and b is the amplitude that here 

equals the peak amplitude of the FFT spectrum. The three 

samples nearest the peak can be defined as: 

𝑦(−1) = 𝛼, 𝑦(0) =  𝛽, and 𝑦(1) = 𝜆, 

Where the bins about those three peaks are defined at [-1 0 

1].  Substituting the bin values for x and simplifying results 

in the following expressions for , , and : 

𝛼 = 𝑎𝑝2 + 2𝑎𝑝 + 𝑎 + 𝑏          (14) 

𝛽 = 𝑎𝑝2 + 𝑏               (15) 

𝜆 =  𝑎𝑝2 − 2𝑎𝑝 + 𝑎 + 𝑏             (16) 

By combining equations, substituting, and rearranging terms, 

the following relations can be derived: 

𝛼 − 𝜆 = 4𝑎𝑝                   (17) 

𝑝 =  𝛼 − 𝜆
4𝑎⁄                   (18) 

𝛼 = 𝑎𝑝2 + (𝛼 − 𝜆
2⁄ ) + 𝑎 + (𝛽 − 𝑎𝑝2)        (19) 

𝑎 = 1
2⁄ (𝛼 − 2𝛽 + 𝜆)                        (20) 

Then, the interpolated peak location, p, in bins, can be 

expressed as: 

𝑝 = 1
2⁄

𝛼−𝜆

𝛼−2𝛽+𝜆
           (21) 

If k is the index of the maximum spectral value, then the 

interpolated frequency (frq) would be determined as follows:  

𝑓𝑟𝑞 = (𝑘 + 𝑝) 𝑆𝑅
𝑤𝑖𝑛𝑑𝑜𝑤 𝑙𝑒𝑛𝑔𝑡ℎ⁄         (22) 

The interpolated magnitude (mag) is determined from the 

following: 

𝑚𝑎𝑔 =  𝑦(𝑥) = 𝛽 − 1
4⁄ (𝛼 − 𝜆)𝑝             (23) 

In the example data from figure 3., the three points at 157.346 

Hz, 158.776 Hz, and 160.21 Hz, with energies of 0.2895 G, 

0.9447 G, and 0.7184 G, respectively, are used to interpolate 

the maximum energy. 
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Figure 3. Polynomial Estimation of 0.971 Gs and a 

Frequency of 159.12 Hz. 

 

These three points serve as the points through which the 

polynomial is fitted and are used to find values for , , and 

 for the data. With no further transformation of this data, the 

above interpolation technique has a peak value of 0.9708 G 

with a frequency of 159.1246 Hz. 

This interpolation minimizes the error of spectral estimation, 

reducing the maximum error of the FFT spectrum from 

14.16% to 0.06%, while the mean magnitude error is reduced 

from 5% to 0.0009%. Combining the resampling algorithm 

with spectral interpolation helps ensure the most accurate 

measurement of the spectral energy associated with a bearing 

fault. 

2.3. Bearing Envelope Analysis: Window Selection 

The bearing fault phenomenology has been modeled 

extensively (example: McFadden 84). Typically, it is 

described as a Dirac or impulse at the bearing fault feature 

rate (FTF, BPFI, BFPO, or BSF), convolved with the resonate 

mode of the bearing structure. This can be thought of as an 

amplitude modulation of the bearing rate (a) with the high-

frequency carrier signal (resonant frequency (b)).  

Often it is not easy to distinguish the exact frequency of the 

resonance. The resonance frequency is critical in the ability 

of the envelope analysis to extract a fault feature. 

Demodulation techniques typically do not need to know the 

exact frequency, but it must be close. With the resonance 

frequency, the vibration signal is then convolved with that 

frequency, made analytic, low pass filtered, and enveloped 

(e.g., take the absolute value of the analytic signal). 

The envelope can be formed by taking the FFT (fast Fourier 

transform) of the time domain signal and calculate the 

frequency of each bin (e.g., sample rate/length of time series). 

It is necessary to calculate the “window” indexes (e.g., the 

range of frequencies in which the bearing is resonating, say 

18 to 25 kHz). The Fourier coefficients from the desired 

window are then copied into the baseband (e.g., 0 to 7 kHz) 

indexes (this is a Heterodyne operation). Then zeros are 

written into the remaining Fourier coefficients (Fourier 

filtering and Hilbert transform, recalling that the Hilbert 

transform is defined at the real frequency of the Fourier 

domain, Randall, 2011). Finally, take the absolute value of 

inverse FFT Fourier coefficients. See appendix for example 

Matlab© code.  

A successful bearing analysis is a function of determining the 

resonance of the bearing structure. Bearing components have 

several vibration modes, which will correspondingly 

generate resonance at various frequencies throughout the 

spectrum. The frequency range selection used to demodulate 

the bearing rate signal (e.g., the window center frequency) 

should consider some issues. 

In particular, the M250 engine gearbox spectrum contains 

many high frequencies from shaft and gear harmonics, which 

would prevent analysis at lower bearing envelope 

frequencies. It is essential to ensure that the other rotating 

sources do not mask the demodulated bearing frequencies, 

such as shaft and gear mesh, present at FTF, BPFO, BPFI, 

and BSF rates. Be aware that shaft order amplitudes of 0.1 

G's and gear mesh amplitudes of 10s of G's are typical. 

Damaged bearing amplitudes are 0.01 G's and can be easily 

concealed by these other sources. 

Several techniques have been suggested to identify an 

appropriate envelope window. Spectral Kurtosis (McFadden, 

1984, Randal, 2011) has been reported as a powerful method 

for determining the best window.  

Kurtosis is a non-dimensional quantity that measures the 

relative “peaked-ness" of a distribution relative to the 

Gaussian distribution. Spectral kurtosis (SK) is a statistical 

parameter indicating how the impulsiveness of a signal varies 

with frequency. Faults associated with rolling element 

bearings give rise to short impulses. The SK will be 

significant in frequency bands where the fault signal is 

dominant and small where stationary signals dominate the 

spectrum. Antoni, Randall 2006, developed the kurtogram, 

which is a map indicating the optimum center frequency and 

bandwidth combination (Figure 4). 

While spectral kurtosis works well in a simple gearbox 

system, it can return poor results in complex gearboxes. The 

kurtogram in figure 4 has a maximum kurtosis at a center 

frequency of 41.5 kHz, with a bandwidth of 200 Hz. Using 

the envelop window would entirely miss the bearing fault. 

The next best window has a center frequency of 35.2 kHz, 

with a bandwidth of 23.4kHz. This would capture the bearing 

fault, but the spectrum bin width is too large to enable a 

specific bearing classification and may not allow detection 

because of signal contamination. From figure 5, it is seen that 

there is broad spectral content from DC to 50 kHz, with gear 

mesh present at up to 18.8 kHz (Power Turbine Input Pinion) 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

6 

and spectral content at 41.5 kHz, as seen in both figures 5 and 

6. This is generated by the compressor itself (flow tones) and 

is not a bearing. Hence, something other than spectral 

kurtosis is needed to inform the bearing envelop window 

frequencies. 

 

Figure 4. Fast Kurtogram from the M250 engine. 

Lord Rayleigh (1894) equated kinetic energy at the mean 

position of a beam to strain energy at the maximum 

displacement on a ring with equal nodal configuration. When 

evaluated, this equation seemed to underestimate the natural 

frequency of the bearing when tested. Timoshenko (1940.) 

further developed the concept of Rayleigh. Timoshenko 

teaches that for a ring with uniform mass, the exact shape of 

the mode of vibration consists of a curve which is a sinusoid 

on the developed circumference of the ring.  

The natural frequencies are then: 

𝜔𝑠 = 𝑛(𝑛2 − 1) √𝑛2 + 1 ⁄   √𝐸𝐼 𝜇𝑅4⁄        (24) 

where:  

 is the mass per unit length, 

EI is the bending stiffness (Youngs Modulus x Inertia) 

R is the radius. 

Taking measurements from the bearing for diameters of the 

inner and outer race, the width of the bearing, density of steel, 

and the natural frequencies for the second through fifth 

modes are:  

• 6.1, 17.2, 32.9, and 53.2 kHz. 

Note that the analysis requires a bandwidth of at least 6 kHz 

for this application to capture the inner race. As we wish to 

try and avoid gear mesh frequencies and that the 

accelerometer itself is bandwidth limited to about 43 kHz, 

analysis was performed with two configurations: 17 to 23 

kHz and 32 to 38 kHz.  

 

Figure 5. Raw Spectrum from the M250 Engine. 

As can be seen, using the 17 to 23kHz window (Figures 6 and 

7), the environment is quite complex. Note that the BPFI is 

3% high early in the fault propagation, and one month later, 

the BPFI rate has dropped to just under the calculated 7.05 

value (figure 6, 7).  

 

Figure 6. Initiation of the bearing fault. 

It is interesting to note that the harmonics of the turbine (e.g., 

1/Rev impact, perhaps indicating some mechanical 

looseness) is always present. It was found that the 6.2 order 

peak (which may be an interaction with the 5th turbine shaft 

harmonics and the 31-tooth turbine wheel) was synchronous 

to the turbine shaft and always present.   

3. USER ALERTS AND DISPLAY 

In general, helicopters have inspections every 50 hours of 

flight time, with heavier maintenance conducted at 100 and 

300 hours. Aircraft also have annual inspections. Typically, 

the number of hours flown per month is dependent on the 

operator's mission, and it is not surprising to see fleets 

average 300 to 500 hours per annum. Of course, for operators 
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conducting aerial inspections (inventorying power poles and 

examining power lines for encroachment) or other seasonal 

missions (firefighting, by dropping water, or delivering 

man/material to a fire), these aircraft can fly as much as 25 to 

40 hours per week. 

 

Figure 7. Bearing fault one month after fault initiation. 

An accurate remaining useful life (RUL) calculation is 

essential to support and supplement the already established 

maintenance practices. HUMS with an RUL capability 

allows the fleet operation manager to order parts and schedule 

the right personnel to perform maintenance. This turns an 

intrusive unscheduled maintenance action into scheduled 

maintenance with adequate preparation. 

For the normal category helicopter market (part 27) or cases 

where the aircraft has no extended overwater/over hazardous 

terrain flights, HUMS provides logistic support to improve 

availability (e.g., allowing the generation of more revenue 

flights) more so than a safety of flight requirement. Having 

been type certificated and adequately maintained, these 

aircraft are inherently safe. In most cases, the worst possible 

outcome for the bearing fault in figure 1 would be that the 

pilot sees a chip light annunciation (indicating metal debris 

in the gearbox) and is forced to land. As noted, a goal of 

HUMS is to generate a maintenance action before a chip 

light. This maintenance is done opportunistically while the 

aircraft is already down for some required scheduled 

inspection. 

Using a fracture mechanics model, a prognostic requires four 

inputs to calculate an RUL.  

• An estimate of the current component health. 

• An estimate of when it is appropriate to do 
maintenance, e.g., the threshold. 

• An estimate of the future component load. 

• A component degradation process model takes the 
current component health and the estimated future 
load and calculates the time/cycles to when it is 
appropriate to do maintenance. 

The HUMS calculates condition indicators (CI) representative 
of bearing health. Ideally, these condition indicators are also 
proportional to the extent of the component damage. This 
allows HUMS to provide a virtual inspection of the drivetrain 
components. 

The estimate of when it is appropriate to do maintenance is a 
threshold-setting problem. A hypothesis testing approach has 
been adopted for this paper (Bechhoefer et al, 2011). In this 
paradigm, the measured set of condition indicators provides 
evidence that the component is no longer “good ."The CIs are 
used to reject the Null Hypothesis that the component is 
nominal. If the component is not nominal, it is appropriate to 
perform maintenance. 

In a hypothesis test, it is observed that all condition indicators 

(CIs) have a PDF. Any operation on the CI to define a health 

index (HI) is then a function of distributions. The HI function 

in the application is the weighted norm of n CIs (e.g., the 

normalized energy of n CIs), where the weights are 

determined by the Jacobian (the inverse covariance): 

                       𝐻𝐼 =  0.35
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙⁄ √𝒀𝑇𝒀                   () 

Where Y is the whitened, normalized array of CIs, and critical 
is the critical value of the test. The critical value is calculated 
from the inverse cumulative distribution function (ICDF) for 
a given probability of false alarm in a hypothesis test. For Eq. 

25, the ICDF is the Nakagami where  is the number of CIs 

in the array and = n, and  = /(2-/2)*2. 

A normalized HI > 0.35 for a component indicates that the 

Null Hypothesis is rejected. That is, the component is no 

longer nominal. Note; however that maintenance is not 

recommended until the HI > 1. These threshold values have 

been tested on numerous helicopters, wind turbines, and 

seeded fault testing on 60+ gearboxes. The level of damage 

for an HI of 1.00 is typically moderate visible damage 

3.1. RUL Calculation using the Linear Elastic Model 

RUL is taken as the time when it is appropriate to do 

maintenance (moderate visible damage) and not the time until 

the component fails. Maintenance is a process of restoring the 

equipment to the original design reliability for aviation 

applications. Worn or damaged parts have reduced reliability, 

and maintenance repairs or replacing those parts restore the 

system's design reliability. The concept that an HI exceeding 

1 triggers a maintenance event is complementary to existing 

maintenance practices as it is designed to restore the system 

to the manufactures design requirements. 

For an example of a critical system, the design reliability is 

typical "six-nines" (e.g., the probability of failure of the part 

under design loads is less than 10−6  per hour). For the 

damaged part, the reliability may be reduced to three-nines or 

a probability of failure of 10−3. Thus, the appropriateness of 

repairing the faulty component can be seen as an action to 
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restore the designed reliability of the system. From a 

maintainer perspective, then: 

• HI reflects the current components damage, where the 
probability of exceeding an HI of 0.35 is the PFA. 

• A warning (yellow) alert is generated when the HI is 
greater than or equal to 0.75. Therefore, maintenance 
should be planned by estimating the RUL until the HI is 
1.0. 

• An alarm (red) alert is generated when the HI is greater 
than or equal to 1.0. The propagation rate becomes 
unpredictable, and continued operations could cause 
collateral damage. 

This threshold setting model ensures that the probability of a 
false alarm is exceedingly small when the HI reaches 1. 
However, from numerous installations and seeded fault tests 
in practice, a bearing at HI 1 has easily seen physical damage.  

A component with an HI value does not define the probability 

of failure for the component, nor does it indicate that the 

component may fail when the HI reaches 1.0. Instead, 

defining maintenance at an HI of 1 initiates a proactive policy 

to change operator behavior. The desire is to reduce the cost 

and time associated with component failure by performing 

maintenance prior to generating collateral or cascading faults. 

For example, by performing maintenance on a bearing before 

the bearing sheds extensive material, costly gearbox 

replacement can be avoided, and the reliability of the gearbox 

can be restored to its design requirements. 

As such: RUL is defined as the time from the current HI until 

the HI is greater than or equal to 1. 

For many materials, such as steel used in gears and bearings, 

which are subject to tensile loading cycle, the fatigue crack 

growth is Mode 1 and can be expressed as: 

𝑑𝑎

𝑑𝑁
 =  𝐷 (2𝜎(𝜋)

1
2⁄ 𝛼)

𝑚
𝑎

𝑚
2⁄             (26) 

Where:  

• da/dN is the rate of change in the half crack length 
per cycle, where crack length is a 

• D is a material constant 

• m is the crack growth exponent for steel is 4. 

•  s strain (e.g., torque would be a surrogate)  

•  is a shape factor  

Inverting and integrating gives N, the number of cycles gives. 

For constant shaft rate machines, such as a helicopter, N is 

the RUL. Using the HI as a surrogate for crack length, then it 

can be shown that an estimate for RUL is:  

𝑅𝑈𝐿 =  −𝑑𝑡
𝐻𝐼⁄ × 𝐻𝐼0 × 𝑙𝑛 (1

𝐻𝐼0
⁄ )             (27) 

For more details (Bechhoefer, Dube, 2020). 

4. DISCUSSION 

The No. 5 bearing fault was identified, with an RUL of 

approximately 120 flight hours in mid-August of 2020. The 

HUMS sent a notification to both the aircraft operator and the 

HUMS manufacturer. The bearing was put on a watch list. 

Based on the aircraft usage, it was estimated that the bearing 

HI would be in alarm in early November of 2020. Over the 

next 120 hours, with each download, the status of the bearing 

was updated. On Oct 31 of 2020, the HUMS alerted that there 

was an increase in the 2/Rev of the power turbine shaft. This 

suggested increased mechanical looseness. The No. 5 

Bearing HI was 1.2. There were no other secondary 

indications of fault. At this point, the operator inspected the 

upper and lower engine chip detectors (figure 8). 

  

Figure 8. Upper and Lower M250 Chip detectors. 

It was clear that there was metal due to some mechanical 

failure, and the engine was pulled from service. A teardown 

analysis indicated both ball, inner and outer race damage 

(figure 9). 

 
Figure 9. No. 5 Bearing outer race damage. 
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A damaged No. 5 bearing has been known to result in engine 

shutdown in flight. This can be a dangerous event and lead to 

loss of life and the asset. The ability to notify the operator of 

the bearing damage and alert prior to a “chips light” reduced 

the risk of mishap and facilitated the operator's ability to 

better manage part replacement. Both the engine and aircraft 

manufacturer had been notified three months prior to the 

engine being pulled from service. HUMS provided 

information that potentially saved both the pilot and the asset.  

Bearing failures in aviation applications are rare.  The design 

of a system that periodically captures raw data provides 

opportunities for continued learning and system maturation. 

Two things were learned from this successful bearing fault 

that could be improved. Initially, only one envelop analysis 

was performed using a window of 17 to 23 kHz. While 

bearing trend data for the ball and outer race were observed, 

no trend data was observed on the inner race. This is 

somewhat puzzling given the amount of metal discovered on 

the chip detector and teardown. Subsequently, a second 

envelop analysis was added at the higher 32 to 38 kHz was 

added to the fleet, and features consistent with inner race 

faults were detected. That is, it was later seen that the inner 

race feature was present at the 32 to 38 kHz envelope 

window. 

Second, in observing many bearing faults, it is rarely seen 

that the bearing slip from non-Hertzian contact increase with 

damage. Typically, the HUMS collects data once every three 

minutes, with raw data once per flight. In the case of the Rolls 

Royce M250 engine No. 5 bearing, from the period starting 

in June until the engine was removed from service, raw 

vibration data was collected 53 times. This allowed for more 

in-depth analysis and allowed for the slip to be calculated 

over the degradation period (figure 10). 

 

Figure 10. Change of bearing fault frequency over time. 

Note: that the x-axis is in under of orders. An order is the ratio 

of the fault frequency to the shaft rate. This display enhances 

analysis for asynchronous components such as bearing, as the 

fault frequency will not be an integer order value.  

The slip in bearing fault frequency can be seen in that the ball 

spin frequency decreased for 7.2 to 6.5 orders or a change of 

–8%. This caused some confusion with the No. 6 bearing on 

the engine. The No. 6 bearing has a ball spin frequency of 

6.55, which was confounded with the No. 5 bearing data. The 

analysis algorithm detected energy at 6.5 order, generated by 

the No. 5 bearing, and applied it to the No 6. bearing health. 

As the bearing fault frequency dropped below the frequency 

limit applied for the No. 5 bearing, the health trend of the No. 

5 bearing decreased, while the No. 6 bearing health increased. 

Subsequently, the search range for No. 5 bearing was 

increased to account for this condition.  

5. CONCLUSION 

The development of a HUMS for normal category helicopters 

requires a value-based approach. The system design must 

ensure that the operator/maintainer will receive a return on 

investment, and the system must be shown to work. The 

Foresight HUMS demonstrated the ability to detect and 

recommend replacing a No. 5 bearing on the engine long 

before the fault affected the reliability of the aircraft. The 

customer and airframe manufacturer were notified of the fault 

three months prior This allowed activation of logistics 

support such that when it was recommended that the aircraft 

be pulled from service, replacement parts were available.  

To achieve this level of performance in this complex 

environment, the system's design required several 

innovations to extract the fault feature and alert the customer. 

Those design features included: 

• A method of system configuration to account for the 

excursions in the observed bearing fault features due to 

changes in the bearing dynamics from thrust and non-

Hertzian contract. 

• Resampling of the vibratory data to account for changes 

in operating RPM to reduce spectral smearing of the 

data. 

• An improved method of spectral estimation to measure 

the envelope spectrum more accurately. 

• A model-based method is needed to determine the best 

window frequencies for the bearing envelope analysis.  

• Thresholding and reporting of remaining useful life 

(RUL) to allow the operator to better manage their fleet. 

These system-level features allow HUMS to function better. 

The ability for HUMS to provide value to a customer 

improves the likelihood of adoption in normal category (type 

27) rotorcraft.   
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APPENDIX 

Matlab® example for Envelope Analysis. 

function [env,dty] = envelope( data, dt, lowf, 

highf) 

%Inputs: 

% data: vector, time domain 

% dt  :sampling time interval 

%lowf: low frequency limit of bandpass filter 

%highD:high frequency limit of bandpass filter 

%Outputs: 

% env       :Envelope of data 

% dty       :decimated sample rate 

n = length(data); 

dfq = 1/dt/n; %freq per bin 

idxLow = floor(lowf/dfq);%get the bin low 

idxHi = ceil(highf/dfq); %get the bin high 

D = fft(data); 

idx = idxHi-idxLow + 1; 

  

D(1:idx) = 2*D(idxLow:idxHi); % this is the 

definition of the  

D(idx+1:end) = 0;% Hilbert + low pass filter 

data = abs(ifft(D)); % The Envelop 

bw = highf - lowf; 

r = fix(1/(bw*2*dt)); % Decimation rate 

env =  data(1:r:n);   % Decimate 

dty = dt*r;% New sample rate after decimation 

 


	1. Introduction
	2. bearing analysis considerations
	2.1. Improvements to Spectral Estimation: Resampling
	2.2. Improvements to Spectral Estimation: FFT
	2.3. Bearing Envelope Analysis: Window Selection

	3. User Alerts and Display
	3.1. RUL Calculation using the Linear Elastic Model

	4. discussion
	5. Conclusion

