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ABSTRACT

Vibration signals measured on rotating machinery typically
exhibit cyclostationarity due to the inherent nature of real-
world rotating vibration sources. Hence, the development of
signal processing tools devoted to investigating or exploit-
ing this cyclostationarity for condition monitoring purposes
of gears and bearings has seen a significant increase in re-
search interest. One of the main approaches to analyze a vi-
bration signal’s cyclostationary behavior is the cyclic spectral
correlation and its normalized derivative, the cyclic spectral
coherence. Even though these two methods are closely re-
lated, they do offer different statistical insights which may
influence the fault detection and trending capabilities of these
tools. The aim of this work is to investigate the performance
of these two methods with regard to the accuracy of tracking
mechanical degradation over time. The normalization of the
spectral coherence, which makes it independent of the signal
power spectrum, improves the interpretability of the result-
ing coherence spectrum but it may lead to suppress or equal-
ize fault-related frequency bands relative to other frequency
bands and it may skew the coherence spectrum amplitudes
of fault harmonics in different operating regimes for complex
machinery. Tracking the evolution of a second-order cyclo-
stationary component over time might thus be hindered by
this normalization, which can lead to issues when combining
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such a tool with a data-driven machine learning technique that
employs the operating conditions for making the cyclosta-
tionary indicators operating condition independent. Instead,
using the cyclic spectral correlation, which is not normalized,
may provide a more accurate depiction of the degradation
process. This paper investigates whether there is any sig-
nificant benefit to using the cyclic spectral correlation over
the cyclic spectral coherence for monitoring complex rotat-
ing machinery and if so, when it makes sense to prefer one
over the other. To answer these questions, both simulated and
experimental vibration data is examined in order to highlight
the differences between the two concepts.

1. INTRODUCTION

Vibration-based health monitoring tools have been developed
over decades in order to track patterns related to a faulty com-
ponent, to distinguish signals measured on a healthy machine
from a damaged one. Tracking the statistical properties of
vibration signals or investigating their spectral components
in the frequency domain are two common methods utilized
to assess machine health conditions. An exhaustive review
of vibration-based condition monitoring techniques can be
found in (Randall, 2021). Nowadays, cyclostationarity which
is inherently embedded in vibration signals measured on ro-
tating machines is often exploited for fault detection pur-
poses. While cyclostationarity is a broad term in the sig-
nal processing domain, second-order cyclostationarity is the
main order of interest in vibration-based condition monitor-
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ing of rotating machinery. In an early study, several examples
of signal processing techniques on second-order cyclostation-
ary vibrations signals are demonstrated in detail (McCormick
& Nandi, 1998).

Second-order cyclostationary signals exhibit periodic second-
order statistics, in other words, they have periodic autocorre-
lation functions. An example of a second-order cyclostation-
ary signal is the vibration emitted by a rolling element bear-
ing fault with a crack on one of its races. Such a bearing fault
generates impulses which are convolved with the resonance
frequency of the structure. The repetition frequency of the
pulses forms the envelope of the signal, hence, the fault de-
tection can be made by investigating the envelope spectrum
(McFadden & Smith, 1984). While the envelope spectrum,
by definition, is obtained from the Fourier transform of the
envelope of the signal which is estimated from its analytic
signal, the spectral correlation offers another solution to es-
timate the envelope spectrum of the signal (Randall, Antoni,
& Chobsaard, 2001). It is called the enhanced envelope spec-
trum (EES) and its estimation is explained in the following
section. Methods based on spectral correlation are impor-
tant not only as they provide an estimation of the envelope
spectrum, but also because they provide frequency bands that
contain the carrier frequencies.

An early comprehensive study stating that the second-order
statistics in a time-series can be extracted using spectral cor-
relation function is introduced by Gardner (Gardner, 1986).
It is mentioned that signals with second-order statistics are
prevalent in several mechanical systems as well as in nature,
and, furthermore, a second-order periodic phenomenon only
exists if the correlation between the spectral content is re-
peated for every cyclic frequency «. Gardner also proposed
the definition of spectral coherence derived from the spectral
correlation function as the strength of the second-order peri-
odicity. The utilization of spectral correlation, nevertheless,
did not become very popular until two decades ago. Randall
et al. studied the application of spectral correlation density
maps to the diagnosis of bearing fault on experimental vibra-
tion signals (Randall et al., 2001). It is postulated that the 2D
cyclic spectral correlation density maps provide information
on the bearing fault frequency in the discrete cyclic frequency
« domain. Randall et al. also proposed the abovementioned
enhanced envelope spectra that are estimated by integrating
the cyclic spectral correlation density maps over the contin-
uous carrier frequency f domain. It is also claimed in the
same study that cyclic spectral correlation density maps help
to decide on the best band-pass filter frequencies to reveal the
modulation embedded in the vibration signals measured on
complex machines.

Several ways of estimating the cyclic spectrum are studied
and compared extensively by Antoni (Antoni, 2007) and the
outcome stresses that while cyclic spectral analysis provides

more insight into the vibration signals, it is not strictly more
difficult to perform than conventional spectral analysis. The
drawback in the use of the cyclic spectrum is that it re-
quires the estimation of discrete modulation frequency « to
an unknown upper limit, which is computationally expen-
sive (Randall et al., 2001). In order to tackle this, a fast
algorithm is proposed to estimate the cyclic spectral corre-
lation or coherence maps employing the short-time Fourier
transform (Antoni, Xin, & Hamzaoui, 2017). The diagnos-
tic performance of spectral correlation density and spectral
coherence maps is compared in (Antoni, 2009). It is shown
that weak second-order cyclostationary signatures masked by
strong first-order cyclostationary spectral components can be
enhanced in coherence maps thanks to the normalization. Key
aspects in the literature regarding the drawbacks and benefits
of using spectral correlation-based vibration signal analysis
for vibration-based health monitoring are briefly mentioned.

An emerging aspect in prognostics and health monitoring is
also the remaining useful life (RUL) prediction, which re-
quires robust tools to trend the health status of the machine or
its distinct components. Given that the leading cause of the
rotating machine failure is bearing faults (Graney & Starry,
2012), tracking the bearing fault degradation becomes criti-
cal in the evaluation of the RUL. A review of the framework
extending from the development of the health indicators to
inference of the RUL of the machine is made by Want et al.
(Wang, Tsui, & Miao, 2018). However, it seems that there is a
gap in the literature regarding a comparative study of the per-
formance of cyclic spectral correlation map based-indicators.
Within this context, two strong tools extensively utilized for
bearing fault detection, namely cyclic spectral correlation and
cyclic spectral coherence, are compared with regard to the
accuracy of trending mechanical degradation of a roller bear-
ing fault. Lately in the literature, cyclic spectral coherence
metrics are prevalently used due to the normalization which
makes the coherence spectrum bounded and improves its in-
terpretability. Nonetheless, the normalization may mask the
fault-related frequency bands relative to other frequencies,
which may hinder the trending these bands.

In this paper, we compare the two methods in their ability to
track mechanical degradation of a roller bearing fault. Be-
cause of the normalization and bounds of the cyclic spectral
coherence, it is argued that the amplitudes of the enhanced en-
velope spectrum converge to a maximum value, and therefore
may be less informative to assess the continuous degradation
of a rolling element bearing fault. On the other hand, ampli-
tudes of the EES obtained from the spectral cyclic correlation
map are expected to be ever-increasing to the point where the
point defect transforms into a distributed one. Hence, trend-
ing the amplitudes from the cyclic spectral correlation map
potentially provides more information about the degradation
severity of the fault. This can be particularly important when
this information is used to feed a machine learning algorithm
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to infer the RUL of a mechanical component of a complex
rotating machine.

2. METHODOLOGY

In this section, the mathematical background regarding the
estimation of the cyclic spectral correlation and coherence
maps as well as the EES is given. In addition, the details
of the signal simulations are explained.

2.1. The Estimation of the Cyclic Spectral Maps

For a discrete signal z(t), the autocorrelation function C,,
can be written as (Randall et al., 2001):

Coro(t,7) =E{a(t +7/2)x(t — 7/2)"} €))

where E represents the expected value, 7 is the time shift for
the autocorrelation function, and the asterisk is used to show
the complex conjugate.

By definition, the 2D Fourier transformation of the instan-
taneous autocorrelation function for both ¢ and 7 gives the
spectral correlation. As the signal z(t) is discrete, the spec-
tral correlation is estimated using the discrete Fourier trans-
formation, which is as follows:

@ : 1 r —j2mf
SCor*(N) = Jim R 2, Case PR
m=—AT/2 (2)
m
T—E

where AT is the time span of the discrete Fourier transform,
F is the sampling rate, and f carrier frequency which is
spaced apart by the discrete cyclic frequency « (Gardner,
1986; Antoni, 2009). The cyclic spectral correlation density
SCor defined in Eq. 2 is defined for each o component which
is also the counterpart of 7 in the frequency domain.

Cyclic spectral coherence is also the normalized derivative of
SCor and is defined as:

e SCor*(f)
SCoh™(f) = \/SC’OTO(f + a/2)SCord(f — a/2) 3)

Both SCoh and SCor provide a two-dimensional map of the
carrier and the cyclic frequencies. The cyclic frequencies give
information about the modulations of the signal while the car-
rier frequencies represent the dominant frequency of the mod-
ulated phenomenon. Therefore, in practice, the former corre-
sponds to the theoretical fault frequency and the latter is the
resonance frequency.

As proposed in (Randall et al., 2001), the EES can be ob-

tained by integrating the cyclic spectral correlation or cyclic
spectral coherence maps over the carrier frequencies. The
EES obtained from SCor and SCokh are estimated as fol-
lows:

f2
Cor _ . o
Sei'(@) = Jim > SCor(f)Af &)
f=hn
and
f2
Coh _ : o
Ses'(a) = Jim > SCoh®(f)Af )
f=h
respectively.

2.2. Signal Simulations

In order to track the degradation of a bearing fault in time, the
sum of the EES amplitudes in the vicinity of the theoretical
fault frequency is used. Let SCorind and SCohind rep-
resent the indicators estimated over the enhanced envelope
spectra of SC7 () and SS°" (o), respectively. It must be
noted that the increase of the SCor ind over time is signif-
icantly larger than the SCoh ind, thus, the former is shown
on a logarithmic scale in all the graphs.

Both simulated and experimental vibration signals are exam-
ined to test which of SCor ind and SCoh ind reflect the con-
tinuous degradation of a bearing fault most accurately over
time, particularly for severe fault states. Signals with peri-
odic impulses are generated and convolved with an impulse
response function. White noise is added to vary the signal-to-
noise ratio (SNR) from —20 dB to 30 dB in order to compare
the trend of the indicators at various SNR levels. Figure 1
shows two signals with an SNR of 10 dB and —10 dB.

SNR -10 [dB]
2
0
— )
o
3
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o
g
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0 0.1 0.2 0.3 0.4
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Figure 1. Simulated signals with an SNR of —10 dB and 10
dB in the time domain

The impulse repetition frequency is set to 24 Hz, therefore,
frequency bins in the vicinity of that frequency and its second
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harmonic are tracked over the envelope spectra. Accordingly,
the sum of the amplitudes of the frequency bins correspond-
ing to the first and second harmonics of the 24 Hz are es-
timated for the envelope spectra obtained using both SCor
and SCoh and shown in Fig. 2.

The trends in Fig. 2 depict a significant difference between
the indicators estimated on SCoh and SCor at high SNR
levels. After the SNR level of 16 dB, shown with the dashed
line, the increase of the SCoh ind stagnates and the indicator
tends to converge to a maximum value. This converging trend
may indicate that the degradation of the simulated bearing
fault also slows down. Howeyver, this is not a valid conclusion
because rising SNR levels represent the degradation of the
bearing fault. On the other hand, the indicator estimated on
SCor is ever-increasing even beyond the dashed line, which
provides a better assessment of the degradation of the bearing
fault.
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Figure 2. Evolutions of the indicators estimated on the simu-
lated signals.

To elaborate, a machine learning algorithm trained with such
a dataset may be deceived and not observe the continuous
degradation of the fault at high SNR levels if the inference
of the RUL is made based on SC'oh ind. On the other hand,
the ever-increasing trend of SCor ind reflects the machine
degradation over time as the increasing SNR represents the
further degradation of the bearing fault.

Since the results obtained from the simulated signals sup-
port the stated argument that SCor ind can provide a bet-
ter assessment of the health status of a faulty bearing than
SCoh ind, further investigations are performed on the exper-
imental signals.

3. RESULTS

On the grounds of the results shown in Fig. 2, the claimed ar-
gument is further tested on the vibration signals measured on

an experimental test rig. The datasets are acquired by Flan-
ders Make, yet not publicly available.

3.1. Experimental signals

Each dataset is comprised of one second long signals sampled
at 50 kHz. Run-to-failure tests are initiated with Rockwell-C
indentation of 100 kg in the bearing inner race of the bear-
ing 6205-C-TVH manufactured by FAG and the BPFI order
is estimated as 5.41. Vibration signal acquisitions are made
at the constant rotation speed of 2000 rpm. Three sample sig-
nals displayed in Fig. 3 demonstrate the degradation of the
bearing fault over the entire run-to-failure test. The noisy sig-
nal transforms into a highly impulsive one near the end of the
run-to-failure test. It must be noted that the time signal with
the severe fault shown in Fig. 3 contains 33 distinct peaks,
which is different than the BPFI order. This phenomenon oc-
curs because of the significantly strong applied force to accel-
erate the degradation of the bearing fault. The extreme radial
load leads to strong impulses only in the load zone and noise
outside of it, which repeats at the shaft rotating speed of 33.3
Hz.

Initial Fault

Mid-Severe Fault

-2

Amplitude [-]
LR

Severe Fault

0 0.5 1

Time [s]

Figure 3. Experimental vibration signals in timewave form at
different severity of the bearing faults.

Among 20 datasets investigated for this study, we present
representative datasets. For the sake of brevity, the datasets
are numbered from 1 to 4. For instance, Fig. 3 is gener-
ated using signals chosen from dataset 4. As in the figures
shown for the simulated signals, the sum of amplitudes corre-
sponding to the frequency bins in the vicinity of the theoret-
ical BPFI frequency is estimated over the enhanced envelope
spectra obtained using cyclic spectral correlation and coher-
ence maps. The horizontal axes of Figures 4, 5, 6, and 7
represent the measurement number and early measurements
are not displayed as they contain no information with regard
to the degradation of the fault.

The trend of the indicators estimated for dataset 1 is shown
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in Fig. 4. Both SCor and SCoh indicators demonstrate an
overall increasing trend, except for the late measurements,
where the fault appears to become distributed and the ampli-
tudes around the BPFI frequency drop compared to the early
measurements. Moreover, the SC'oh indicator slightly drops
around measurement 1350 and elevates quickly, which does
not imply any information regarding the degradation of the
fault, as a self-healing of the fault is not expected. Nonethe-
less, a notable aspect of SCorind is its monotonously in-
creasing trend. Over the degradation period of the bear-
ing fault, the SCor ind demonstrates a persistent behaviour.
There are several other datasets which reveal a similar sce-
nario that are not shown for the sake of brevity.

SCor ind

SCoh ind
0.06

SoA SCor [-]
SoA SCoh [-]

0.02

1100 1200 1300 1400

Measurement No [-]
Figure 4. Evolutions of the indicators on dataset 1

Figure 5 demonstrates a different story where the trend of the
SCor indicator provides more information over time for the
degradation of the bearing fault. The trend of the SCor in-
dicator monotonously increases and the trend is smooth over
time. On the other hand, the SC'oh indicator exhibit spurious
increases and decreases which impair the continuous assess-
ment of the degradation of the bearing fault.

The third scenario is shown in Fig. 6. The monotonously in-
creasing trend in SCor ind is observed along with sudden
jumps and flat regions. This behaviour of the indicator over
time does not directly reflect the expected continuous degra-
dation of the bearing fault, given the extreme load and con-
tinuous operation. Likewise, SCohind exhibits steep rises.
On the other hand, a gradual decline in the trend of SCoh ind
is observed just after reaching near its maximum value. This
may be deceptive with regard to the inference of the state of
the bearing fault. Because the decay in the trend of the in-
dicator can be deduced as a self-healing of the fault, despite
that it is unlikely.

The last figure, which in fact is representative of the major-
ity of the investigated datasets, is demonstrated in Fig. 7. In
this case, both indicators follow a similar and increasing trend
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Figure 5. Evolutions of the indicators on dataset 2
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Figure 6. Evolutions of the indicators on dataset 3

without any significant spurious drops or peaks that smear the
overall trend of the degradation.

Given the trends of the indicators shown in Figures 4 to 7, a
convergence of the SCoh indicator to a maximum value is
not observed. Likewise, an ever-increasing trend for SCor
indicator is also absent. However, the SCor ind maintains
the monotonicity of its increasing trend to the point where the
bearings fail, which offers a more convenient way of discern-
ing the stages of the faults. Although this is not exactly the
argument as showcased by the simulated signals, it is notable
that the cyclic spectral correlation indicator is able to provide
information regarding the degradation of bearing faults over
time more clearly than the coherence-based indicator, as de-
terioration of the bearing faults is expected to be continuous.

The discussion regarding the trends shown in the figures is
not aiming to compare the early detection or diagnosis capa-
bility of the cyclic spectral correlation and coherence. Yet it
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Figure 7. Evolutions of the indicators on dataset 4

is to comprehend how informative the trends of the indicators
are to assess the severity of the bearing fault as this is vital
information for data-driven approaches that use these indi-
cators. Therefore, the trends of the indicators are inspected
with regard to the accuracy of tracking mechanical degrada-
tion. Apart from that, the normalization of the cyclic spectral
coherence makes it insensitive to the operating conditions of
the machine. Therefore, as an extent of the study, these two
approaches can be also tested on vibration signals measured
on rotating machines operating at varying conditions.

4. CONCLUSION

The outcome of this study demonstrates that, while the sim-
ulated data shows an ever-increasing trend of the indicators
estimated over the cyclic spectral correlation maps, this same
phenomenon is not observed on the experimental signals. It
appears that in practice the signal-to-noise ratio level after
which the trend of the spectral coherence indicator converges,
is not attainable on real vibration signals. This study does not
aim to compare the two approaches for their superiority in
terms of early fault detection. The results do indicate that
the trends of SCorind estimated on the experimental data
are monotonously increasing. On the other hand, the cyclic
spectral coherence indicator does not demonstrate such a per-
sistent trend.

The foundation of the claimed argument is that tracking the
amplitude evolution in the vicinity of the theoretical fault fre-
quency over the cyclic spectral correlations maps provides
potentially more information on the degradation level of the
bearing fault compared to tracking that of the cyclic spec-
tral coherence maps. Therefore, the remaining useful life
may be inferred utilizing SC'or in a more efficient way. Al-
though it is not as clear as the outcome of the simulation re-
sults, the experimental results also show that SCorind is a
relatively better tool for RUL inference thanks to its mono-

tonicity. On the other hand, it is also demonstrated that in
practice the SNR level after which the SCohind converges
to a maximum value is not attainable. Inspections made on
20 run-to-failure tests manifest that roller bearings fail much
earlier than the required SNR level for SCohind to flatten
out. However, the monotonicity in the increasing trends of
SCorind reveals that the use of cyclic spectral correlation
maps come to the fore as it provides more robust information
to assess the state of a bearing fault degradation continuously.
Therefore, the SCor ¢nd appears to be a better-suited tool for
data-driven approaches that try to infer the condition or the
RUL of bearings based on vibration measurements.
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NOMENCLATURE
Crs autocorrelation function
f carrier frequency
@ cyclic frequency
SCoh cyclic spectral coherence
SCohind cyclic spectral coherence indicator
SCor cyclic spectral correlation
SCorind cyclic spectral correlation indicator
EES enhanced envelope spectrum
SCoh enhanced envelope from coherence maps
SCor enhanced envelope from correlation maps
RUL remaining useful life
SNR signal-to-noise ratio
SoA sum of amplitudes
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