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ABSTRACT 

The focus of this contribution is to distinguish different 
Metalworking Fluid (MWF) with respect to different 
additives used for related formulations. Acoustic Emission 
(AE) measurements can be easily taken as process-close 
measures for evaluating cutting and forming processes as 
well as MWFs performance. In thread forming process, AE 
measurements from different kinds of MWFs could be ± 
related to the position of the tool - divided into different 
process phases: air, forward, and reverse phases. From a 
physical view, forward part contains most useful AE data. 
Therefore, extracting forward part data is significant for 
MWFs classification. In this contribution, a new data 
processing method is proposed to abstract the forward part 
data from non-related parts of the whole measurement signal. 
For the first time, scalogram is applied to define the 
boundaries in time domain. Firstly, the intact measurement 
signal is transformed from time domain to time-frequency 
domain by continuous wavelet transform (CWT) and 
scalogram is acquired. As boundaries among different phases 
aUe RbYiRXV iQ VcalRgUaP, b\ UeYeUVe calcXlaWiRQ, bRXQdaUieV¶ 
location in time domain could be defined and forward part 
data of each measurement are picked out. Afterwards, data in 
forward phase are divided into different samples and each 
VaPSle cRQWaiQV daWa Rf RQe URXQd. FiQall\, VaPSleV¶ feaWXUeV 
are extracted and classified by convolutional neural network 
(CNN). By adjusting CNN structure and hyperparameters 
with cross validation method, features in time domain could 
be distinguished well. For five kinds of testing MWF, the 
classification accuracy is as high as 98.11 %. For reference, 
oil-based, and water-based MWF classification, the results 
can reach to 98.94 %. Accuracy for water-based MWF 
distinction is 97.55 % while for oil-based MWF distinction is 
98.29 %. Comparing with results using the whole AE 
measurements, these results improve significantly. The 
results show that the proposed data processing method could 

extract most useful information from the whole AE 
measurements in time domain for MWF distinction. Besides, 
the proposed method also provides an effective way for data 
analysis in the future. 

1. INTRODUCTION 

Metalworking fluids (MWF) are defined as liquids which are 
supplied to a manufacturing process in a way that allows for 
increased productivity based on lubricating and cooling 
effects (Brinksmeier, Meyer, Huesmann-Cordes & 
Herrmann, 2015). Since 20th century, application of 
metalworking fluids grew rapidly due to the rapid growth of 
emerging industries such as the automotive, rail, and 
aerospace industries, as well as from the increased use of 
mechanical equipment and household appliances (Evans, 
Hooijman & Veer, 2020). Numerous formulations or 
additives like oils, emulsifiers, anti-weld agents, corrosion 
inhibitors, buffers, and biocides can be integrated into MWF 
(Anderson & Meade, 2014). Specific properties of MWF are 
achieved by adding specific chemical additives. To evaluate 
properties of MWF with diversity additives, tapping torque 
test etc. can be conducted. Effects of different MWF in 
grinding process using Acoustic Emission (AE) is presented 
by Liu et al. (Liu, Zhao, Bafakeeh & Marinescu, 2016). 
Acoustic Emission signals are also applied to evaluate 
performance of diversity additives in thread forming process 
by Wirtz et al. (Wirtz, Demmerling & Söffker, 2017) and Wei 
(Wei, Demmerling & Söffker, 2021). However, results in 
both contributions are improvable: different oil-based MWF 
can not be distinguished by Wirtz et al. while previously 
realized classification results (with respect to accuracy) show 
improvement potential. 

Acoustic Emission events generated by rapid release of 
energy from materials can be linked to the onset of new 
damage or the progression of existing anomalies. Acoustic 
Emission analysis is based on passive detection of dynamic 
surface motion caused by elastic stress or pressure waves 
(Bohse, 2013). To analysis damage or anomalies, Acoustic 
Emission signals can be analyzed in time domain, frequency 
domain, and time-frequency domain. Continuous wavelet 
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transform (CWT) plays for a key role in time-frequency 
analysis for non-stationary signals. According to (Sifuzzama, 
Islam & Ali, 2009), wavelets reveal signal information in 
both time and frequency domain whereas the standard 
Fourier transform only reveal signal information in frequency 
domain. Comparing with short-time Fourier transform 
(STFT) which also reveal signal information in time and 
frequency domain, wavelets offer a better signal resolution 
using multi-resolution analysis.  

Metalworking processes can be categorized into: forming, 
cutting, grinding, milling, and stamping. Thread drilling 
screw has cutting edges and chip cavities that generate a 
mating thread by removing material from the part they are 
driven into. On the contrary, thread forming is a 
manufacturing process involving the generation of internal 
threading by plastic deformation. Successive action of tap 
lobes is conducted in thread forming, each lobe causes three-
dimension plastic flow and plastic flow leads to strain 
hardening of work material. The process of thread forming 
can be divided into three parts: air part (tap has no contact 
with workpiece), forward part (tap drills into reserved hole), 
and reverse part (tap leave reserved hole). Comparing with 
other metalworking processes, no chips are produced in 
threading forming. Therefore, AE signals are less effected by 
chips in thread forming than in other metalworking process. 

Convolutional neural network (CNN) is a type of deep 
learning that can extract sample features and classified 
features automatically. Innovation of CNN is its ability to 
automatically learn a large number of filters in parallel 
specific to a training dataset under the constraints of a 
specific predictive modeling problem (Alzubaidi, et al., 
2021). Classical layers for CNN are convolution, polling and 
fully connected layers (Kiranyaz, et al., 2021). In addition, 
nonlinear activation feature layers, dropout layers, batch 
normalization layers, and softmax layers are included in the 
CNN structure. Although CNN can extract data features 
automatically, data processing such as selection and filtering 
are also important for data classification because they help 
separate irrelevant data from the main data so that it is not 
processed further. 

In this contribution, experiments applying different kinds of 
MWF in threading forming process are conducted. Acoustic 
Emission signals are acquired in the experiment and 
analyzed. In AE signal analysis process, for the first time, one 
data selection and filtering method combing data in time 
domain and CWT is introduced. Afterwards, selected data are 
segmented into different samples and features of samples are 
extracted and classified by CNN. Comparing with results 
with no data selection in Wei (Wei, Demmerling, & Söffker 
2021), classification results are improved after raw AE 
signals are filtered. 

The structure of this paper is as follows: experiment will be 
introduced in Section 2. Data selection method and features 
extraction and classification will be introduced in detail in 

Section 3. In Section 4, results will be shown. Lastly, 
conclusions are drawn in Section 5. 

2. EXPERIMENT DESIGN 

The experiment is designed and conducted by the Chair of 
Dynamics and Control and Rhenus Lub GmbH & Co KG, the 
measurements are taken at Rhenus Lub. Details about the test 
rig and measurement procedure are reported in (Demmerling 
& Söffker, 2020). To reduce chip effects for AE signals in 
metalworking process as much as possible, thread forming is 
chosen as metalworking process. As introduced in (Wei, 
Demmerling, & Söffker, 2021), Thread forming trials are 
carried out on a tribometer Tauro®120 (Taurox e. K., 
Germany). The test rig for threading consists of a test 
platform made of a carbon steel (1.1191) with drilled pilot 
holes of 5.6H7 mm, a titanium nitride-coated tapping tool for 
thread forming (Emuge M6-6HX InnoForm1-Z HSSE-TiN-
T1). The active tap length is 8 mm with an entry taper of 
approximately 2 to 3 mm and speed of tap is 1000 rpm. The 
test rig is shown in Figure 1.   

 
Figure 1.  Test rig (Rhenus Lub, Germany) (Demmerling & 

Söffker, 2020) 

Before threading, five different kinds of MWF are filled into 
the predrilled holes: reference fluid (Ref) and four different 
test fluids (Emulsion 1 and 2, Oil 1 and 2). Main components 
and additives in these five MWF are listed in Table 1. Besides 
the run-in of the tap at the beginning of the test procedure (32 
threads with reference fluid), 16 threads are tapped with each 
test fluid. The test order of the fluids is shown in Table 2.   

Table 1. Main component and additive in MWF 
MWF Basis Water 

(%) 
Oil 
(%) 

Ester 
(%) 

Phosphor
us (ppm) 

Reference Water 95  0  1.25  50 
Emulsion 1 Water 95  1.4  0  3163  
Emulsion 2 Water 95  1.4  0  48  
Oil 1 Oil 0  85  6.5  80  
Oil 2 Oil 0  85  6.5  1600  
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Acoustic Emission measurement is conducted by a custom 
FPGA-based AE measuring system established by the Chair 
Dynamics and Control. A disc-shaped broadband 
piezoelectric transducer with 3.6 MHz corresponding 
resonant frequency is mounted on the workpiece using 
cyanoacrylic glue. During thread forming, AE signals are 
continuously acquired with 4 MHz sampling rate. Although 
several contributions have applied AE data from this 
experiment, as their results are still improvable, AE data are 
analyzed again with new approach in this contribution. 

Table 2. Test order of MWF 
Series MWF Number of threads 
m1 Reference (run-in) 1-32 
m2 Emulsion 1 33-40 
m3 Emulsion 2 41-48 
m4 Oil 1 49-56 
m5 Oil 2 57-64 
m6 Reference 65-72 
m7 Oil 2 73-80 
m8 Oil 1 81-88 
m9 Emulsion 2 89-96 
m10 Emulsion 1 97-104 
m11 Reference 105-112 

 

3. PROPOSED APPROACH 

To distinguish AE signals acquired from different MWF in 
the experiment, data are processed before they are put into 
CNN for feature extraction and classification. Feature 
extraction and classification method has been introduced in 
(Wei, Demmerling, & Söffker 2021). In this contribution, the 
new data processing method will be introduced in detail. 

In the experiment, as the temporal start and end of tapping 
are performed manually, the tapping process can be divided 
into air, a forward, and a reverse part. No usable AE data in 
air part because the tap has no contact with the platform. For 
this reason, data in this part should be removed. From a 
physical point of view, threads are mainly formed in the 
forward part of one measurement, therefore the relevant AE 
events occur in this part - data in this part should be analyzed.  
However, no clear boundary among air, forward and reverse 
part as shown in Figure 3. To find the boundary among 
different part in one measurement and pick up the forward 
part data, firstly, whole measurements are transformed into 
time-frequency domain by CWT and scalogram are gotten. 
As boundary among different parts are clear in scalogram, 
forward part can be isolated. Then, by reverse calculation, 
forward part data in time domain are picked out. Afterwards, 
forward part data of each measurement are segmented into 
different samples according to tap speed. Lastly, features in 
these samples are extracted and classified by CNN. Flowchart 
of the proposed approach is presented in Figure 2.  

 
Figure 2.  Flowchart of proposed approach 

3.1. Data Processing 

3.1.1. Raw AE signal 

In the experiment, time for each threading is controlled at 
about 5 seconds. As the start and end time of each threading 
is controlled manually, consequently, time of tap stays in the 
air is not exactly the same. The AE signals are continuously 
acquired at sampling rate of 4 MHz, so most threading have 
about 20 M data. The length of each measurement is not 
constant. For example, threading-163243 contains about 
19480000 data, meanwhile, threading-163429 contains about 
24658000 data as shown in Figure 3. In other words, the 
forward part start point of each measurement is variant. 
Besides different start point of forward part in each 
measurement, no clear boundary among different parts in one 
whole measurement. This means that it is impossible to single 
out forward part data from one whole measurement just in 
time domain. 

 
Figure 3.  Raw AE data of threading 
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3.1.2. Measurement Transform  

To search out the forward part of each measurement, 
Continuous wavelet transform is performed to the raw AE 
signals of the whole measurement. By specifying the mother 
ZaYeleW µPRUleW¶ aQd Vcale YalXe, SVeXdR-frequencies 
corresponding to scales and wavelet are gotten. Furthermore, 
CWT coefficients are acquired by specifying the frame size. 
Finally, scalogram of each whole measurement are acquired. 
As shown in Figure 4, boundaries among different parts in 
whole measurement are clear in scalogram. For example, in 
Figure 4, the forward part in this threading arises at 1.1s and 
last until 2.8s. Besides that, frequency distinction among 
different parts is also obvious: frequency in forward part and 
reverse part are higher than air parts. Frequency band 
concentrate in the range of 80-120 kHz while in reverse 
process, frequency band concentrate in the range of 45-75 
kHz. Although frequency is obvious in scalogram, for each 
fluid, only 16 measurements are conducted in this 
experiment, so 16 samples for each class are classified. This 
sample number is too less for deep learning which need 
quality samples. Accordingly, in this contribution, scalogram 
is employed for finding boundaries among different part in 
whole measurement instead of samples to CNN.  

 
Figure 4. Scalogram of one threading (163133) 

3.1.3. Reverse Calculation 

While the forward part of each measurement is clear in 
scalogram in time axis, the forward data in time domain can 
be simply selected. As the sampling rate of AE signals is 4 
MHz, start time multiply with 4,000,000 is the start point of 
forward data. Meanwhile, end time multiply with 4,000,000 
is the last data point of forward part. Data in between start 
point and end point are forward part data. Despite the start 
time of each threading is different, forward part duration time 
are the same for all threading. 

3.1.4. Segmentation  

Since samples are at the core of machine learning, a large 
amount of training samples plays a critical role in making the 
machine learning models successful. To train a machine 

learning model, the sample number must be suitably large. 
Measurement segmentation is an efficient technique for 
increasing samples. As thread forming belong to rotating 
machinery process, the segmentation length is designed by 
WaS¶V speed. In consideration of tap speed is 1000 rpm and 
sampling rate is 4 MHz, so each sample contains 240000 
data. To maintain the key points of each sample, data 
overlaps with neighboring samples.   

3.2. Feature Extraction and Classification 

Convolutional neural network is employed to extract features 
from segments and classify them. Hyperparameters of CNN 
which determine the network structure and how the network 
is trained have significant effects on results [Yamashita, 
Nishio, Do & Togashi, 2018].  

Each sample contains as much as 240000 data, CNN structure 
should be deep enough to extract their feature. Structure with 
respect to the number of layers used, it was observed that 
eight layers are most suitable. The proposed CNN structure 
contains: eight convolutions, eight batch normalizations, 
eight active functions, and eight max pooling layers are 
contained. Two dropout layers are added in between to 
reduce calculation time. Finally, one fully connected layer 
and softmax layer are applied to classify samples features. 
For hyperparameters related to training algorithms, cross 
validation method is applied. Several values are tried for one 
hyperparameter in CNN and the value that get best results is 
keSW. TheQ, RWheU h\SeUSaUaPeWeU¶V YalXe aUe chRVeQ b\ Whe 
same way. In this way, the set of hyperparameters are tuned 
and optimized step by step. Detailed information about cross 
validation is introduced in (Wei, Demmerling, & Söffker 
2021).  

4. RESULTS 

Five different kinds of MWF are employed in the experiment. 
Two options are applied to distinguish these five MWF. For 
the first option, these five MWF are classified into five 
classes: reference (R), emulsion 1 (E1), emulsion 2 (E2), oil 
1 (O1), and oil 2 (O2). For the second option, five MWF are 
firstly classified into 3 big categories: reference, emulsion-
based (E), and oil-based (O). After that, emulsion-based fluid 
is further differentiated into emulsion 1 and 2, oil-based fluid 
is further decollated into oil 1 and 2. To reduce the 
randomness of results and check robustness of the model, the 
same data in each step is calculated 5 times. Detailed results 
are shown in Table 3. 

When five MWF are differentiated in one step, accuracy is 
from 96.65 % to 99.43 %, average accuracy for these five 
times is 98.11 %. When five MWF are firstly divided into 3 
categories, test accuracy is from 98.56 % to 99.04 %, average 
accuracy is 98.94 %. Average accuracy for emulsion 1 and 
emulsion is 97.55 % while average accuracy for oil 1 and oil 
2 is 98.29 %. The results can be summarized as: 
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1) No relevant difference among each calculating time 
can be observed, this means the proposed model is 
robust. 

2) The results are good regardless of whether the MWF 
used in the experiment is first divided into five 
classes or into three classes and then subdivided into 
detail classes. 

3) Emulsions 1 and 2 can be distinguished perfectly in 
the fifth calculation. 

Table 3. Results 

MWF Test accuracy (%) 

1 2 3 4 5 Ave. 

R./E1/E2/ 

O1/O2 

97.70 98.28 98.85 99.43 96.65 98.11 

R./E/O 99.04 99.04 99.04 99.04 98.56 98.94 

E1/E2 98.56 96.40 97.84 97.96 100 97.55 

O1/O2 99.28 98.65 97.12 97.84 98.56 98.29 

 

In (Wei, Demmerling, & Söffker, 2021), these five MWF are 
differentiated using the second option. Results in that paper 
is as following: average accuracy for 3 classes is 71.27 %, 
average accuracy for emulsion 1 and 2 is 79.83 %, and 
average accuracy for oil 1 and 2 is 68.76 %. Comparing these 
results with the newly obtained ones it can be stated that the 
proposed approach (combing CWT and time domain for data 
processing) will significantly improve the results. 

5. CONCLUSION 

To validate metalworking fluid influence on AE signals in 
metalworking process, an experiment is designed. Before 
thread forming, five MWF are filled into the pre-drilled holes. 
During threading, AE signals are acquired. On account of 
threading process is conducted manually, whole threading 
measurement could be divided into air, forward, and reverse 
parts. While in air part, tap has no contact with platform, data 
in this part should be abandoned. From a physical point of 
view, threading is mainly formed in forward part and more 
AE events occur in this period, so forward part data should 
be picked out from whole measurement. However, no clear 
boundary among different parts from raw AE signals in time 
domain. In this contribution, a new data processing method 
is raised. Firstly, AE data of whole measurement in time 
domain are transformed into time-frequency domain by CWT 
and scalogram are obtained. Boundaries among different 
parts in whole measurement is very clear in scalogram. By 
reverse calculation, forward part data are picked up in time 
domain. Afterwards, the forward part data of each 
measurement are segmented into different samples according 

to tap speed. Finally, segments features are extracted and 
classified by CNN.  

Five MWF employed in the experiment are differentiated into 
two options: first option is to categorize five MWF into five 
classes while second option is to categorize these five MWF 
into three categories and then subdivide each category into 
detail classes. Results from both two options are good. 
Besides, comparing with previous work which apply the 
whole measurements and divide them into segments 
randomly, results in this contribution improve greatly. From 
results and calculation process, the following conclusions can 
be drawn: 

1) Forward part of thread forming process contains 
more useful AE event comparing with the whole 
measurement. 

2) For rotating machinery, segments length can be 
decided by tool speed. 

3) Continuous wavelet transform support the analysis 
of AE signal. 

4)  Combination of time domain and time-frequency 
domain analysis is a good way for data processing. 

For future work, experiments applying more MWF can be 
conducted.  The proposed data processing method can be 
used to analyze AE signals.  
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