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ABSTRACT

The latest generation micro-electro-mechanical system
(MEMS) accelerometers offer high bandwidth and low noise
floors previously limited to piezoelectric transducer (PZT)
based sensors. These relatively low cost MEMS sensors dras-
tically expand the financially practical applications for high
frequency, vibration based, prognostic health management
(PHM). This paper examines a physically redundant array of
MEMS accelerometers for applications where sensor access
after deployment is difficult or infeasible. Three identical sin-
gle axis MEMS accelerometers were placed in an array for
testing. Instead of a typical tri-axial configuration, the three
sensors were placed with a common sensitivity axis. The con-
struction and basic performance parameters of the MEMS
array is discussed. Signal correlation was chosen as a condi-
tion indicator (CI) to use in conjunction with majority voting
to determine sensor operating status. Signal correlation is
reviewed and various synthesized signals were analyzed to
study the anticipated cross-correlation of different wave-
forms. The theoretical effect of sensor noise was analyzed
to determine its impact on the method. Auto-correlation
was used with previously collected vibration data to confirm
feasibility with real world signals. Subsequent measurements
with the physically redundant array of impulses and motor
vibration show the feasibility of implementing robust MEMS
accelerometer arrays using the latest generation of high band-
width MEMS accelerometers. Planned future work includes
deploying the sensor array on tribology test equipment to
validate MEMS sensor effectiveness compared to traditional
PZT based accelerometers for the detecting of scuffing faults.

1. BACKGROUND

Traditionally, vibration fault monitoring has been performed
using integrated electronic piezoelectric (IEPE) based ac-
celerometers which offered superior sensitivity, noise den-
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sity levels, and bandwidth than other accelerometer config-
urations. The IEPE accelerometers, also known as ICP ac-
celerometers (ICP is a trademark of PCB Piezotronics), inte-
grate a pre-amplifier circuit into the transducer to isolate the
transducer from output impedance loads and reduce transmis-
sion noise (Instruments, 2019; Pizotronics, n.d.).

IEPE accelerometers are an excellent choice for many sys-
tems but have inherent shortcomings that restrict their op-
erating environment. IEPE sensors often require instrument
grade DC power supplies operating between 18 and 30 volts
and currents up to 2 mA (Pizotronics, n.d.). The relatively
high supply voltage and current requirements limits their ap-
plication in remote, battery powered, situations. The high
cost of system components also limits their use to research
and development activities and high capital cost systems such
as aerospace PHM. Power supply and system cost prohibi-
tions for IEPE accelerometers leave a substantial niche in
PHM - small, low power draw, inexpensive accelerometers.
Micro electro mechanical system (MEMS) accelerometers
are a rapidly maturing technology, relegated until recently to
low bandwidth applications, poised to take over even high
performance requirement applications (Piezotronics, n.d.).

MEMS accelerometers are fabricated using microelectronic
fabrication techniques, typically using a silicon semiconduc-
tor base, similar to computer chip manufacturing. The abil-
ity to produce sensor elements using semiconductor manu-
facturing techniques leads to very compact, low cost sensors.
Commercially available MEMS accelerometers are typically
integrated with a pre-amplifier similar to IEPE accelerome-
ters providing an analog signal output (Piezotronics, n.d.).
Figure 1 shows the ADXL10005z, a single axis MEMS ac-
celerometer installed with an analog anti-aliasing filter on a
printed circuit board measuring just 20 mm (0.8 inches) on
a side. Table 1 compares the bandwidth and noise density of
the ADXL1005 MEMS accelerometer to the lower bandwidth
model family member ADXL1001, the previous generation
ADXL001 MEMS accelerometer, and two high performance
piezoelectronic accelerometers; the low noise PCB 352C04
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Table 1. Sensor array sensitivity.

Sensor Spectral noise Resonant frequency
at 100Hz

ADXL1005 75 [ µg√
Hz

] 42 kHz

ADXL1001 30 [ µg√
Hz

] 21 kHz

ADXL001 4000 [ µg√
Hz

] 22 kHz

PCB 352C04 8 [ µg√
Hz

] > 50 kHz

PCB 352A60 40 [ µg√
Hz

] > 95 kHz

and the high bandwidth PCB 352A60. A trend shown by the
ADXL100x and PCB 352xxx series is a trade-off of higher
bandwidth at the expense of additional spectral noise.

The reliability of PHM system components is essential for
their successful application. The system must be capable of
operating in their employed environment, and ideally sys-
tems would be able determine their operating status. Ap-
plications such as satellites in space, autonomous vehicles,
and remotely operated manufacturing facilities are all possi-
ble applications of reliable and robust sensor systems. Some
MEMS accelerometers have on-board self-test capabilities
(ADXL1005Z Evaluation Board, n.d.). Beyond determining
operating status it would be ideal if there are system redun-
dancies to permit continued PHM after an instrument fault
detection (IFD) event. Paul Frank explores the merits of an-
alytical (functional) and physical redundancy to isolate IFD
and component fault detection (CFD) events (Frank, 1990).
Analytical redundancy uses system relationships to provide
redundant information, e.g. using the temperature measure-
ment from a thermal-couple at location A to estimate air pres-
sure at location B to provide redundancy to a pressure gauge.

Physical redundancy uses multiple sensors measuring the
same variable. Physical redundancy using majority voting
logic does not require a priori knowledge of system relation-
ships and is typically more computationally efficient to imple-
ment, these characteristics make physical redundancy appeal-
ing when developing a system that can be widely deployed
on a variety of platforms. Frank argued that the high cost of
physical redundancy was a limiting factor and was a propo-
nent of analytical redundancy - requiring significant system
level knowledge to implement (Frank, 1990). The low cost
of MEMS accelerometers make it feasible to utilize multiple,
redundant, sensors with self-testing and cross-correlation al-
gorithms providing insight into PHM system status.

2. MEMS SENSOR ARRAY

The prototype MEMS sensor array of this work is based on
the Analog Devices AD1005z evaluation board. The eval-
uation board consists of the Analog Devices AD1005 high

bandwidth MEMS accelerometer mounted on a printed cir-
cuit board with a power supply decoupling capacitor and
a resistor-capacitor low pass anti-aliasing filter with a -3dB
bandwidth of 20 kHz. The evaluation board was chosen for
its availability and convenience, planned future versions will
use a custom circuit board to reduce the physical footprint
of a three sensor array. The prototype array is mounted on
a machined aluminum mounting block that locates the sen-
sitivity axis of the sensors co-linear with the the mounting
bolt. A shear mode ICP accelerometer, a PCB 352A60, is also
mounted for initial troubleshooting. The assembled MEMS
accelerometer array, minus wiring, is shown in Figure 1.

Figure 1. MEMS accelerometer array prototype.

A GW Instek GPC-30300 lab grade DC power supply is used
to provide 5 VDC to the MEMS sensors while a National In-
struments PXI-1031 chassis with a PXI-4472B card was used
for data acquisition (DAQ) including the ICP accelerometer.
The sampling rate, unless otherwise specified, was 102400
Hz - the maximum sampling rate of the PXI-4472B card. A
control panel with switches to individually activate the Self
Test and Standby features of the MEMS accelerometers was
used as an interface between the DAQ and the array.

2.1. Calibration

System calibration was performed using a PCB 394C06
handheld calibrator operates at 159Hz and was set to an ex-
citation amplitude of 1 g RMS. The ADXL1005 MEMS ac-
celerometer has a ratiometric sensitivity meaning the output
sensitivity is proportional to power supply voltage [VDD], the
fixed 5V DC output of the power supply was used for testing
in this work.

As seen in Table 2 there is noticeable sensor to sensor dif-
ferences in sensitivity, values provided in Table 2 were ob-
tained with a supply voltage of 5.0364V DC. Calibration
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Table 2. Sensor array sensitivity.

Sensor Sensitivity [ g
V olt

]

ADXL1005z A 45.1764

ADXL1005z B 45.2323

ADXL1005z C 49.9702

PCB 352A60 93.2522

was performed at the start of each test sequence and pe-
riodically throughout data collection. Calibration was per-
formed in the frequency domain using a three second long
sample. Time domain data was windowed using an ampli-
tude adjusted Hann window. The power spectral density in
units of V olts2

Hz is calculated, the peak energy frequency bin
is identified (at 159Hz) and its energy is used to calculate
the sensor sensitivity using the known calibration amplitude
of 1 g RMS.

2.2. Sensor noise floor

All measurements have some degree of uncertainty to them
both systematic and random. Proper calibration of a sen-
sor helps minimize systematic error. Even after calibration
a measurement chain consisting of sensing element, internal
pre-amplifier, cabling, and data acquisition system has a noise
floor characteristic to the measurement chain. To measure the
noise floor, the MEMS array was mechanically isolated from
vibration using thick open cell foam placed on a cast iron as-
sembly table. A one second long data sample was collected
of the isolated MEMS array and the signal analyzed. As the
MEMS array was static the measured signal represents sys-
tem noise.

Accelerometer noise is typically provided by the manufac-
turer in units of µg√

Hz
RMS and is therefor dependent on sys-

tem bandwidth. The evaluation boards have a built in low
pass anti-aliasing filter at 20 kHz, but the the measurement
is made at a sampling rate of 102400Hz, so the effective
bandwidth is the Nyquist frequency of 51200Hz. Analog
Devices specifies a noise density of 75 µg√

Hz
. Using Eq. (1)

(Devices, n.d.) the expected noise from just the sensor is
0.0215 g RMS.

Noise = NoiseDensity ∗
√
bandwidth ∗ 1.6 (1)

The RMS noise floor of the measurement chain for the full
bandwidth of 51200Hz was measured for Sensor C of the
MEMS array at 0.0250 g RMS. The measured noise floor
is close to the expected noise from just the sensor and indi-
cates that the measurement chain is minimally contributing
to system noise. These results also emphasize the importance

Table 3. Power supply isolation.

Calibrator status and sensor Acceleration [g RMS]

OFF, Sensor A 0.0447

OFF, Sensor C 0.0250

ON, Sensor A 0.9746

ON, Sensor C 0.0246

of using low noise density accelerometers as the MEMS ac-
celerometer is likely the major source of noise in the mea-
surement.

2.3. Power Supply Isolation

For true physical redundancy, the three MEMS sensors in an
array should have independent power supplies and grounds.
Design constraints including space and cost may necessitate
a common power supply. The system reliability of a com-
mon power supply verse independent power for each sensor
should be considered during the design of a redundant array.
In the prototype MEMS array used in this work, a common
power supply was desired for simplicity. Sensor indepen-
dence was tested by mechanically isolating Sensor C while
Sensor A was excited with the PCB394C06 calibrator. Ide-
ally the physically isolated and static sensor, Sensor C, would
produce the same readings independent of Sensor A excita-
tion. Table 3 provides RMS acceleration values for Sensors
A and C for successive test runs, the initial run is with Sen-
sor A mounted to the inactive calibrator. The second run,
performed immediately after, has the calibrator active with
a nominal acceleration of 1 g RMS. The results shown by
Table 3 indicate sensor output of the ADXL1005z evaluation
boards is independent with a common power supply. Sen-
sor C measurements in both cases matched the sensor noise
floor measurements conducted earlier. The elevated measure-
ment for Sensor A with the calibrator off can be attributed to
the calibrator placement on a non-isolated workbench instead
of open cell foam. The measurement independence with a
common power supply allows initial testing with a simplified
design; however, for true physical redundancy, independent
power supplies should be used for each channel.

3. SENSOR FAULT DETECTION

As discussed earlier, sensor redundancy can be accomplished
in variety of ways ranging from simplistic physical redun-
dancy to sophisticated functional redundancy that requires
extensive system level knowledge to implement. Physical re-
dundancy incurs increased equipment costs (Stork & Kowal-
ski, 1999). Recent advancements in MEMS accelerome-
ters allow for high performance applications using relatively
cheap sensors - facilitating the use of simple physical redun-
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dancy and rapid implementation on new applications. To cap-
italize on low cost sensors, a majority voting scheme is pro-
posed for a physically redundant MEMS accelerometer array.

For the N = 3 sensor array used in this work there are mul-
tiple methods to implement majority voting. A common im-
plementation of majority voting is using each sensor mea-
surement to calculate a condition indicator (CI) and when a
majority of sensors (2 or more for an N = 3 array) agree, the
result with majority is accepted as the valid result. For the
prototype array in this work it was desired to know the sen-
sor operating condition of the array independent of system
fault CI’s. Signal correlation, a measure of similarity of two
signals, provides an excellent sensor operational check when
combined with majority voting in a physically redundant ar-
ray.

3.1. Signal correlation

Correlation is a time domain based concept that is a measure
of how similar two signals are. The terms auto- and cross-
correlation are used when comparing a signal to itself or to
a separate signal respectively. Conceptually correlation is
calculated by multiplying two time domain signals together
element-wise, integrating with respect to time the element-
wise products, and normalizing for signal duration. This mul-
tiplication and integration is performed for all possible rela-
tive time differences between the two signals, after each cor-
relation calculation the element-wise multiplication pairs are
shifted by one time step. The net time shift, or delay, is de-
noted as Tau. Cross-correlation in the time domain can be
notated using conjugation as shown by equation (2)

Rxy(τ) =
1

T
x(−t)⊗ y(t) (2)

where ⊗ is the operative representing conjugation.

The result of this process for auto-correlation is a vector of
values with maximum value when there is no relative shift
between the signals. When there is no shift, all element-wise
multiplications will have matching signs, always resulting in
a positive valued product, maximizing the element-wise prod-
uct integral . As relative shift between the two signals oc-
curs there will be element-wise operations where negative
and positive values are multiplied - reducing the magnitude
of the integral (Gabrielson, 2018).

3.2. Correlation calculation

While straightforward in explanation, correlation is compu-
tationally expensive to calculate in the time domain. Fortu-
nately, efficient computation of correlation is possible in the
frequency domain thanks to the Fast Fourier Transform. A
brief description of the frequency domain calculation of cor-
relation follows. If we let x and y represent our time do-

main data,X and Y represent their respective discrete Fourier
transforms - their linear spectra, and

X = F [x] (3)

and

x = F−1[X] (4)

where F and F−1 are the discreet Fourier and inverse Fourier
transform operatives. Also note the inverse discrete Fourier
transform of a complex conjugate produces the time reversed
complex conjugate in the time domain as shown in equa-
tion (5),

x∗(−t) = F−1[X∗]. (5)

When calculating correlation we are dealing with data that
originated in the time domain and are thus all real, the com-
plex conjugate does not change a real value. We can thus
write x∗(−t) without denoting the complex conjugate as the
equivalent x(−t).

It is also important to note that the inverse Fourier transform
of two frequency domain linear spectra is equivalent to the
convolution of their time domain vectors. Following from
equation (5) and written as cross-correlation we have the re-
sult,

F−1[X∗ Y ] = x∗(−t)⊗ y(t), (6)

which is a simple time normalization away from the correla-
tion definition of equation (2) (Gabrielson, 2018).

3.3. Correlation theoretical performance

As noted above, auto and cross-correlation differ simply by
the use of the same or different signal vectors for the sec-
ond term in the product pair. In a physically redundant
pair the difference between the two types of correlation is
blurred as the the signals from any sensor pair are nomi-
nally identical. Due to this, the expected cross-correlation
performance closely matches the theoretical results of a sig-
nals auto-correlation. For simplicity the performance of auto-
correlation of common signal phenotypes will be explored,
followed by auto-correlation of real world signals, an analy-
ses on the impact of sensor noise on auto-correlation, and ex-
pected results of common sensor faults for cross-correlation.

3.3.1. Auto-correlation of typical artificial signals

An understanding of expected results from a variety of sig-
nals is essential to contextualize the application of correlation
to a physically redundant MEMS accelerometer array. Four
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classes of signals are explored; low and high frequency sinu-
soids (relative to signal length), multi-tone sinusoidal signals,
random noise signals, and impulsive signals.

Low frequency sinusoids, for the purpose of correlation cal-
culations, are defined as those with periods longer in length
than the time signal analyzed. This important distinction is
due to the repetition of waveform features that occurs with
waveforms of relatively higher frequency. Long waveform
periods relative to signal length prevent the time-alignment
of signals at time shifts of one period for uniform waveforms.
This is most clearly shown in Figures 2 and 3 showing auto-
correlation of a one second signal with sinusoids of ampli-
tude of 1 g and frequencies of 1Hz and 10Hz. The high
frequency signal in Figure 3 has multiple correlation peaks
with spacing of one time period of the signal sinusoid.

Figure 2. Low frequency sinusoid auto-correlation.

Figure 3. High frequency sinusoid auto-correlation.

For the purpose of sensor fault detection in a physically re-
dundant array, a single sharp peak in cross sensor correla-
tion is desired. A single sharp peak with minimal noise floor
will allow algorithms to readily detect nominal performance
with a high degree of probability. Figures 2 and 3 show a
catch-22 when using pure sinudoidal signals for correlation
calculations, any tonal signal of low enough frequency to pre-
vent repetitive peaks in correlation will have a broad peak
in correlation. The broad response curve of sinusoidal auto-
correlation is due to adjacent signal samples dependence on
nearby values (e.g. sample 8 is highly correlated to sample 9).

This is clearly seen in Figure 4 where a 1Hz signal is shifted
by a delay of π6 radians and plotted with the original signal.
As seen in Figure 4, for any given sample time the sign of
the two signals is likely to agree, increasing the element-wise
integral inherent in correlation calculation and producing the
characteristic broad peak of sinusoid auto-correlation.

Figure 4. Sinusoid with phase delay overlay.

Single tone sinusoids do not produce sharp correlation peaks
as desired for our sensor operation check, but real world sig-
nals are often comprised of multiple tones. Especially when
the tonal components are non-integer multiples, a multi-tonal
signal allows for the relaxation of our high frequency limit.
Figure 5 is the auto-correlation of a one second long signal
comprised of equal magnitude tones at 17Hz, 23Hz, and
31Hz, the three frequencies chosen are the 7th, 9th, and
11th prime numbers and have a lowest common multiple of
12121Hz. Figure 5 exhibits the expected auto-correlation
peak at zero time shift, however the rapidly and widely fluc-
tuation correlation signal is inappropriate to use for the sensor
cross-correlation operation check.

Figure 5. Multi-tonal signal auto-correlation.

As shown above, signal- and multi-tone sinusoidal signals
are not valid waveforms to perform sensor cross-correlation
checks. Lessons learned from the prior examples include us-
ing a waveform without periodically repeating segments and
a waveform where neighboring samples are independent of
each other. Two signal types commonly used in signal analy-
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sis immediately spring to mind that comply with our lessons
learned; the random noise and impulse signals.

To generate a random noise signal the MATLAB function
randn was used, providing a one second long sample of nor-
mally distributed pseudo-random numbers at a sampling rate
of 102400Hz. The impulse signal follows the convention of
containing a single non-zero value that integrates to a non-
dimensional 1.0 using equations (7) and (8) where ∆t is the
inverse of sampling rate (Gabrielson, 2018)

N∑
n=1

δn∆t = 1 (7)

δn = [
1

dt
, 0, 0, 0, ...]. (8)

Figures 6 and 7 show auto-correlation results from random
noise and impulsive signals, respectively. Immediately ev-
ident is the similarity between auto-correlations of the two
signals which are vastly different. The impulse signal’s auto-
correlation is a singular peak at zero time shift and zero for all
other time shifts. This is the expected result for a signal that
has non-zero amplitude for only one time value. The, possi-
bly, surprising result is the auto-correlation of a random noise
signal as shown by Figure 6. Contrary to the broad peaks
of the sinusoid signals, the random noise signal produces an
auto-correlation very similar to the impulsive signal. At zero
time shift all values have matching sign and thus increase the
integral in the correlation calculation. At all other time shifts
the random nature of the signals produces auto-correlation
values near zero.

Figure 6. Random noise auto-correlation.

The auto-correlation results of Figures 6 and 7 are very
promising for the use of random and impulsive signals. A sin-
gular peak at zero time shift and a relatively low noise floor
at all other values for auto-correlation should produce nearly
identical results for cross-correlation between physically re-
dundant MEMS accelerometers. While the above results are
promising, real world signals are unlikely to be purely ran-
dom or perfectly impulsive and are studied next.

Figure 7. Impulse signal auto-correlation.

3.3.2. Auto-correlation of real world signals

Signals representative of real world data were used to investi-
gate the applicability of correlation for sensor function checks
of in-situ physically redundant MEMS accelerometer arrays.
As an initial check, auto-correlation was calculated to see if
the signals were conducive to sensor function checks. Once
the auto-correlation was analyzed the effects of sensor noise
was investigated to more closely align with the realities of
a sensor array. Two different classes of signals were used.
An impulsive signal from a wind turbine with pinion gear
fault, and a second order cyclostationary signal from a healthy
roller element bearing.

The first dataset analyzed was from a 3 megawatt wind tur-
bine, the vibration readings for the data labeled ‘Case 1’ were
considered high, and the turbine was pulled off-line for in-
spection. A faulty pinion gear was diagnosed (’Bechhoefer,
n.d.). The impulsive waveform typically seen in gear faults
was viewed as a good test case for correlation based sensor
function tests based on the results of the perfectly impulsive
test signal used in Figure 7. This dataset was recorded with a
sampling rate of 97656Hz and the units of acceleration were
not noted so the arbitrary unit of Waveform Units [WU ] is
used in Figure 8 below. The resulting auto-correlation show a
distinct singular peak in correlation with high signal-to-noise
ratio (SNR) that can clearly be differentiated from an uncor-
related signal such as Figure 10.

Figure 8. Windmill pinion gear fault auto-correlation.
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The impulsive gear fault from the wind turbine data was
viewed as the easier signal type for correlation based sensor
fault detection. To provide a more challenging use case, vi-
bration data from a healthy roller element bearing was also
analyzed. Roller element bearings are considered second or-
der cyclostationary - they have fundamental fault frequencies
which have random variation about a mean value due to the
imperfect motion of roller elements inside the bearing races
(Roque et al., 2009). The fundamental fault frequencies for
an inner race, outer race, roller element, or cage fault would
be expected to dominate the signal for a fault of a given type.
The date sample used was from the start of a bearing fault test
on a nominally healthy bearing (Lee, Qiu, Yu, Lin, & Ser-
vices, 2007), the resulting data is not dominated by any faults
and is typical for bearing data collected in-situ on industrial
equipment. Figure 9 shows the resulting auto-correlation and
indicates that typical roller element bearing vibration data is
conducive to correlation based sensor fault detection albeit
with a greater noise floor.

Figure 9. Healthy bearing vibration auto-correlation.

3.3.3. Correlation resilience to sensor noise

Thus far we have only looked at the auto-correlation of syn-
thetic and legacy real world signals. In a physically redun-
dant MEMS accelerometer array the individual sensors are
independently subject to sensor noise. According to the man-
ufacturer of the MEMS accelerometers used in this work,
the sensor noise has a Gaussian distribution and is uncorre-
lated to external influence (Devices, n.d.). Figure 10 shows
the theoretical cross-correlation between two truly indepen-
dent sensors with the same noise density specifications as
the ADXL1005 sensor. Figure 11 shows the empirical cross-
correlation between Sensors A and C when Sensor C is phys-
ically isolated from Sensor A and the sensors are nominally
static.

The theoretical results show the random noise expected from
the cross-correlation of uncorrelated signals. The empirical
results using two of the sensors from the MEMS accelerom-
eter array show that the signals are not completely uncorre-
lated; however, an inspection of the y axis shows minimal
range in correlation values and no clear separation between

the gradual peak and the noise floor. Also of note is the non-
zero dc offset of the cross-correlation which is unique to this
particular dataset. Overall, the results of sensor noise inde-
pendence are satisfactory for the application.

Figure 10. Theoretical sensor noise cross-correlation.

Figure 11. Empirical sensor noise cross-correlation.

The effect of independent sensor noise was studied for the
random noise, impulse signal, and wind turbine gear fault sig-
nals used for Figures 6, 7, and 8. Two separate random noise
signals were generated Noise Signal A and Noise Signal B,
each random noise signal had a noise density equal to the
specification sheet value of the ADXL1005, 75 µg√

Hz
. Instead

of performing auto-correlation on the three signals of inter-
est, cross-correlation was used with the first signal containing
the base signal with Noise Signal A superimposed, and the
second component of cross-correlation using the same base
signal but Noise Signal B superimposed. This simulates two
sensors on a physically redundant MEMS accelerometer ar-
ray measuring the same vibration signal. If the sensor noise is
low enough, there will be minimal impact between a signals
auto-correlation and the simulated cross-correlation.

After the addition of independent sensor noise the theoret-
ical cross-correlation was calculated for the random noise,
impulse signal, and wind turbine gear fault signals of Fig-
ures 6, 7, and 8. Figures 12, 13, and 14 show the resulting
cross-correlation which are functionally identical to their cor-
responding auto-correlation results. This indicates that corre-
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lation based sensor fault detection is resilient to sensor noise
from the MEMS accelerometers used.

Figure 12. Random noise with sensor noise cross-correlation.

Figure 13. Impulse signal with sensor noise cross-correlation.

Figure 14. Windmill pinion gear fault with sensor noise
cross-correlation.

3.3.4. Theoretical cross-correlation with healthy sensors

Starting with our well understood random noise signal cross-
correlation, Figure 15 shows the cross-correlation results an-
ticipated for a healthy array. Each of the three sensors - Sen-
sor A, Sensor B, and Sensor C are experiencing the same base
signal with their respective independent sensor noise super-
imposed. As shown above, sensor noise has minimal effect
so the expected results for the three cross-correlations is that

of a random noise signal auto-correlation. As seen in Fig-
ure 15 the three possible cross-correlation pairs match with
sharp peaks and minimal noise floor, this is an idealized re-
sult of an array with functioning sensors.

Figure 15. Random noise, healthy array cross-correlation.

3.3.5. Theoretical cross-correlation with sensor faults

The chief advantage of a physically redundant MEMS ac-
celerometer array is the ability to detect when a single sen-
sor is faulty, reject the contribution from the faulty sen-
sor, and continue to provide quality data to the end user.
The ability to distinguish between healthy and faulty sensor
cross-correlations is critical. Figure 16 showcases the cross-
correlation phenotype expected when a single sensor fault re-
sults in a vector of zeros for that sensor’s data. In the case of
Figure 16 the theoretical random noise base signal and sen-
sor noise for Sensor C is set to zero while Sensors A and
B remain functional. Because Sensors A and B are func-
tioning correctly their cross-correlation, RAB , will produce
a sharp, singular, peak with minimal noise floor. The two
cross-correlations with a Sensor C signal component, RAC ,
and RBC , fail to provide the expected result. In fact the cross
correlation for the two fault containing cross-correlations is
a uniform zero vector. When a single sensor is faulty, two
of the three cross-correlation pairs will show poor correlation
results.

If Sensor C failed such that the signal was random noise in-
dependent from the signals of Sensors A and B, the idealized
cross-correlation result would be that shown in Figure 17.
Figures 16 and 17 are functionally identical but can be dif-
ferentiated by zooming the y-axis. When the individual non-
zero time shift cross-correlation values are viewed the dif-
ference becomes clear. The noise floor for the later figure is
non-zero and randomly distributed instead of identically zero.

The relative performance of RAB , RAC , and RBC , shown
in Figures 16 and 17, is the basis for the sensor function
majority voting scheme. A touch of confusion arises as the
faulty sensor signal component is present in two of the cross-
correlation calculations, due to this there are two faulty phe-
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Figure 16. Sensor C reading zero, array cross-correlation.

Figure 17. Sensor C uncorrelated, array cross-correlation.

notype cross-correlations in the above plots when only one
sensor is providing faulty data. Nonetheless, Sensors A and
B are in agreement - evident by the cross-correlation plot of
RAB .

The expected makeup of a faulty physically redundant array
is a single faulty sensor and two healthy sensors. The oppo-
site is feasible where there are two independent faults and one
healthy sensor. When there is only a single healthy sensor the
current method is insufficient to identify which sensor, if any,
is healthy. Figure 18 displays the idealized result of three
sensors with mutually uncorrelated signals as might occur if
two (or all three) of the array sensors are providing faulty
data. Techniques to identify a single healthy sensor in a phys-
ically redundant array are being investigated to supplement
the computationally efficient cross-correlation technique.

Based on the theoretical results in Figure 17 it is possible to
determine when a single sensor has failed. In the single faulty
sensor case the cross-correlation of one pair of sensors pro-
vides a nominal result while the other two cross-correlation
vectors showcase faulty phenotypes. Continuous, or at least
routine, monitoring of the cross-correlation results are nec-
essary to identify instances of a second sensor failure at a
later point in time. It is also possible to identify when 2 or
more sensors have independent faults as evidenced by com-

Figure 18. All sensors uncorrelated, array cross-correlation.

plete lack of correlation for RAB , RAC , orRBC . There is the
unfortunate possibility of false-positive results when two cor-
related sensor faults occur. Due to the basic product rule of re-
liability, the likelihood of two faulty sensors and one healthy
sensor returning a false-positive is less than the likelihood of
the converse, or the likelihood of a single sensor system fail-
ing in isolation.

3.4. Validation using cross-correlation of MEMS ac-
celerometer array

To empirically validate the theoretical framework discussed
above, the physically redundant MEMS accelerometer array
was used to collect data in both healthy and faulty config-
urations. Two types of data were gathered for both healthy
and faulty arrays. Impulsive data was collected by placing
the MEMS array mount on open cell foam in the orientation
shown in Figure 1. Open cell foam was used to isolate the
sensor array from external vibrations and simulate free-free
boundary conditions, the array was struck normal to the sen-
sitivity axis. Separately, low bandwidth roller element bear-
ing data, < 10 kHz valid bandwidth, was collected using a
magnetic sensor mount placed on the case of a three phase
induction motor with the sensitivity axis aligned radially with
the roller element bearing. The impulse and motor vibration
data provide real world signals similar to the synthesized sig-
nals studied previously.

3.5. Healthy MEMS accelerometer array

Prior to data collection the MEMS accelerometer array was
physically inspected and then operationally checked by per-
forming a sensor calibration. The array was placed on an iso-
lated section of open cell foam and was struck normal to the
sensitivity axis. Figure 19 shows the resulting time domain
signals. A three second data sample was used to facilitate
manually triggering the DAQ record function and then im-
pacting the array. Figure 20 is the resulting cross-correlation
showing the high degree of correlation expected from func-
tioning sensors with an impulsive signal. The three cross-
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correlation pairs for this impact data have a sharp peak of
similar magnitude and a low noise floor.

Figure 19. Impact data, healthy array time series.

Figure 20. Impact data, healthy array cross-correlation.

Three second samples of induction motor vibration were col-
lected with the MEMS accelerometer array. The motor was
running at a nominal 1725RPM at steady state conditions.
The motor used for this dataset had been pulled offline due to
audible noise indicating an unknown fault. Figure 21 shows
the resulting cross-correlation results. As expected from the
theoretical cross-correlation of the bearing dataset shown in
Figure 9 there is a higher noise floor than the healthy impact
data. In fact this sample had so much tonal background noise
the resulting cross-correlations were somewhat inconclusive.
After analyzing the initial data, a second set of data was ob-
tained from an identical motor that did not produce audible,
tonal, noise. Figure 22 shows the cross-correlation pairs for a
healthy array monitoring a nominally healthy motor. A lesson
learned is that significant tonal background noise can reduce
the effectiveness of cross-correlation sensor fault detection.

3.6. Faulty MEMS accelerometer array

To simulate one possible sensor fault type the four mounting
screws used to secure Sensor C were loosened until only two
threads of the 4-40 Unified National Coarse (UNC) thread
machine screws were engaged in the MEMS array mount.
This could simulate either loosened mounting screws due to

Figure 21. Noisy motor data, healthy array cross-correlation.

Figure 22. Quiet motor data, healthy array cross-correlation.

machine vibration, a mount failure due to vibration fatigue
failures, or an installation error.

Figures 23 and 24 show the result of a loosely mounted Sen-
sor C exposed to an impulsive signal in the time domain and
the cross-correlation pairs produced. As seen in the time do-
main of Figure 23, Sensor C, the ‘faulty’ sensor, has a dras-
tically different impulse response than Sensors A and B. The
large negative acceleration peak recorded by Sensor C is ev-
ident in the correlation results as the element wise multipli-
cation and integration of correlation produces negative values
of correlation and multiple peaks of significant amplitude in-
stead of a singular peak. The noise floor is low due to the
physical isolation provided by the open cell foam.

Figure 23. Impact data, faulty array time series.
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Figure 24. Impact data, faulty array cross-correlation.

Figure 25 revisits the noisy motor of Figure 21 and shows the
result when Sensor C is loosely mounted. The relative ampli-
tude differences forRAB between the two figures is a result of
motor vibration differences between runs. Despite the gener-
ally unfavorable healthy array cross-correlation for the noisy
motor measurements, Figure 25 clearly shows a discernible
difference when Sensor C is faulty. RAB shows a clear peak
and much greater amplitude than the faulted cross-correlation
pairs of RAC and RBC . The ability to distinguish the healthy
array of Figure 21 and the faulty array of Figure 25 is encour-
aging.

Figure 25. Noisy motor data, faulty array cross-correlation.

4. CONCLUSIONS

Single sensor fault can be detected using majority voting and
computationally efficient cross-correlation calculations. Test-
ing shows that the ADXL1005z evaluation boards are suitable
for use with a common power supply with minimal impact
to sensor output independence. Theoretical results for syn-
thesized signals show that waveforms dominated by random
noise or impulsive events produce sharp correlation peaks that
are conducive to sensor fault detection. Analysis of real world
datasets confirm the applicability of correlation for sensor
fault detection.

The physically redundant MEMS accelerometer array was
used to collect impulse data and motor vibration data in
healthy and faulted conditions. Results from array testing

confirm that cross-correlation can be used to identify a single
faulty sensor in an array of three physically redundant sen-
sors. Caution is urged when implementing cross-correlation
when the signal is dominated by tonal components as first
shown by sinusoid auto-correlation and later by real world
data of a motor with significant audible tones (Figures 5 and
21). Planned future work includes detection of individual sen-
sor sensitivity drift and installing the physically redundant
MEMS accelerometer array on tribology test equipment to
detect the initiation of scuffing wear.
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