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ABSTRACT 
The term smart manufacturing refers to a future-state of 
manufacturing, where the real-time transmission and 
processing of information across the factory will be used 
to produce advanced manufacturing intelligence that can 
optimize every aspect of its operation. In recent years, 
initiatives and groups such as the Smart Manufacturing 
Leadership Coalition (SMLC), Industry 4.0, and the 
Industrial Internet Consortium (IIC), have led the way by 
bringing together industry, academia and government to 
establish policies, roadmaps and platforms to support 
smart manufacturing. Although there are many 
characteristics that can be associated with smart 
manufacturing across these initiatives, a common theme is 
the emphasis on transitioning operations from reactive 
and responsive, to predictive and preventative. The 
research presented in this paper focuses on the 
development of a data pipeline that supports the 
development of data-driven Prognostics and Health 
Management (PHM) applications. In the context of smart 
manufacturing, PHM enables facilities to transition from 
preventative and reactive maintenance strategies, to 
predictive, preventative and condition-based strategies. 
The benefits that can be derived by PHM are aligned with 
those of smart manufacturing, which include the 
opportunity to decrease costs, increase machine 
availability, reduce energy consumption, and improve 
production yield.  

However, the process of ingesting, cleaning and 
transforming real-time data streams for data-driven PHM 
is a difficult, complex and time-consuming task, with 
estimates from business intelligence projects ranging from 
80% to 90% of total project effort. This effort may only 
be exacerbated further in manufacturing environments 
due to additional technology challenges, such as low 
levels of standardization, disparate protocols and 
interfaces, and ad hoc data management. While emerging 
technologies such as Cyber Physical Systems (CPS) and 
Internet of Things (IoT) can overcome many of these 
challenges and provide an open platform for transmitting 
data, existing large-scale manufacturing facilities that are 
subject to compliance, regulation, and stringent quality 

assurance policies may not be able to adopt these 
technologies in the short-term due to the associated cost, 
risk and effort. Therefore, PHM applications that need to 
access data streams in large-scale manufacturing facilities 
must do so using transparent data integration that does not 
discriminate between emerging and legacy technologies 
in the factory. To this end, this research presents a real-
time, scalable, robust, and fault tolerant data pipeline for 
ingesting, cleaning, transforming, processing and 
contextualizing time-series data from a wide-range of 
sources in the factory. 

1. INTRODUCTION 

The term smart manufacturing refers to a paradigm that 
describes the transmission and sharing of real-time 
information across pervasive networks with the aim of 
creating manufacturing intelligence in every aspect of the 
factory (Davis, Edgar, Porter, Bernaden, & Sarli, 2012a; 
Lee, Lapira, Bagheri, & Kao, 2013; Lee, 2014; Wright, 
2014). Experts predict that smart manufacturing may 
become a reality in the next 10 to 20 years. The objective 
of smart manufacturing is similar to manufacturing 
intelligence insofar as it focuses on the transformation of 
raw data to knowledge, which can improve decision-
making and have a positive impact on operations. 
However, smart manufacturing supersedes manufacturing 
intelligence in its emphasis on real-time data collection 
and aggregation, which facilitates knowledge sharing 
across physical and computational processes that can 
result in seamless operating intelligence (Manufacturing 
et al., 2011). In general terms, smart manufacturing can be 
considered an intensified application of manufacturing 
intelligence, where every aspect of the factory is 
monitored, optimized and visualized (Davis et al., 2012a).  

While smart technologies facilitate the creation of 
knowledge, workers must apply this knowledge in some 
way before it can have a positive impact on operations. 
Therefore, while technology transformation is arguably 
the most publicized aspect of smart manufacturing, the 
transformation and education of workers should not be 
ignored. The demands placed on workers in smart 
manufacturing facilities are not be entirely limited to 
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vertical operations, and will therefore require a multi-
disciplinary perspective. Many of the technologies and 
systems associated with smart manufacturing discuss high 
data visibility across the factory, where the potential 
impact of a decision can be evaluated in the context of the 
entire facility rather than being isolated to a particular 
department. Without adopting this type of holistic 
decision-making, it is difficult to envisage how smart 
manufacturing objectives such as demand-driven and 
intelligent production, real-time data management, system 
interoperability, and cyber security, can be realized 
(Manufacturing et al., 2011). Therefore, decision-makers 
embedded in smart manufacturing operations will need a 
basic understanding of multiple disciplines, including 
engineering, computing, analytics, design, planning, 
automation, and production (Meziane, Vadera, Kobbacy, 
& Proudlove, 2000; Sharma & Sharma, 2014).  

1.1. Groups and initiatives focused on smart 
manufacturing  

There are a number of government, academic and industry 
groups promoting an awareness of smart manufacturing. 
These initiatives include the Smart Leadership Coalition 
(SMLC) (Manufacturing et al., 2011), Technology 
Initiative SmartFactory (Zuehlke, 2010), Industry 4.0 
(Lee, Kao, & Yang, 2014), and The Industrial Internet 
Consortium (IIC). These initiatives formed from the 
realization that challenges facing smart manufacturing 
adoption are too big for any single organization to 
address, and while terminology used by initiatives may 
differ, they share an overarching vision of smart 
manufacturing where real-time data streams are used to 
realize operational efficiencies. The two most prominent 
smart manufacturing initiatives are the SMLC and 
Industry 4.0, with each loosely related to their 
geographical origin – the US and EU respectively. 

The SMLC working group differs from other initiatives in 
a couple of ways. The SMLC is comprised of numerous 
academic institutions, government agencies and industry 
partners. This blend enables the SMLC to identify real 
problems by consensus, which may mitigate from bias 
recommendations that do not serve the wider 
manufacturing community. Furthermore, the SMLC have 
not only developed theoretical artifacts relating to smart 
manufacturing, such as roadmaps, recommendations and 
guidelines, they have also undertaken the development of 
a smart manufacturing platform that implements many of 
these ideas. Industry 4.0 is a high-tech strategy that was 
created by the German government to promote an 
awareness of smart manufacturing and its potential 
economic benefits. The term Industry 4.0 is a simple 
naming convention that serves to partition each industrial 
revolution, with 4.0 referring to an anticipated fourth 
revolution. Expert opinions differ regarding a realistic 

timeline for Industry 4.0, with general estimates ranging 
from 10 to 20 years. Exploring the Industry 4.0 naming 
convention further, previous industrial revolutions are 
predictably labelled 1.0, 2.0 and 3.0. Industry 1.0 was 
brought about by the introduction of mechanical 
production using water and steam power, with the first 
mechanical loom used in 1784. Industry 2.0 was brought 
about by the division of labor and the realization of mass 
production, which were largely facilitated by electrical 
energy, with the first assembly line introduced in the 
Cincinnati slaughter house in 1870. Finally, Industry 3.0 
was brought about by advances in electronics and IT 
systems, which enabled automation of production using 
control networks, with the first programmable logic 
controller (PLC) Modicon 084 introduced in 1969.  

1.2. Benefits of smart manufacturing 

Smart manufacturing focuses on pervasive networking 
and intelligent data-driven analytics that are highly 
integrated, intelligent, and flexible. The combined 
application of these technologies can be used to facilitate 
highly customized and optimized demand-driven supply 
chains that can dynamically respond to the needs of the 
customer. Furthermore, smart manufacturing addresses 
many common business and operating challenges, such as 
increasing global competition and rising energy costs, 
while also facilitating shorter production cycles that 
respond quickly to customer demand (Manufacturing et 
al., 2011; Sharma & Sharma, 2014). In addition to these 
high-level efficiencies, more quantifiable benefits have 
also been cited. For example, the SMLC identified 
realistic performance targets for different aspects of smart 
manufacturing, including (1) a 30% reduction in capital 
intensity, (2) up to a 40% reduction in product cycle 
times, as well as (3) an overarching positive impact across 
energy, emissions, throughput, yield, waste, and 
productivity. Furthermore, smart manufacturing can also 
provide benefits to the wider economy. A recent report 
from Fraunhofer Institute and Bitkom highlights the 
potential economic benefit of Industry 4.0 to the German 
economy. The report states the transformation of 
traditional factories to Industry 4.0 could be worth 267 
billion euros cumulatively to the German economy by 
2025 (Heng, 2014).  

1.3. Impediments to smart manufacturing adoption 

While the potential benefits of smart manufacturing are 
apparent, there are numerous challenges and issues that 
must be overcome before they can be realized. In 
particular, facilities must develop the infrastructure and 
network-intensive real-time technologies needed to 
support smart manufacturing, as well as cultivating 
multidisciplinary workforces and next-generation IT 
departments that are capable of working with smart 
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technologies(Manufacturing et al., 2011). The degree to 
which these challenges exist in each facility will vary. For 
example, there are obvious differences between 
implementation challenges in greenfield and brownfield 
sites (Davis, Edgar, Porter, Bernaden, & Sarli, 2012b). 
Excluding fundamental challenges, such as budgetary 
constraints, technology availability and the presence of a 
skilled workforce, greenfield sites are better positioned to 
adopt emerging smart technologies when compared with 
brownfield sites. Brownfield sites may be restricted by 
legacy devices, information systems, and protocols, which 
can also include proprietary and ad hoc technologies. 
These technologies are from a time when low latency 
distributed real-time networks and large-scale data storage 
and processing were simply not a concern. In some 
instances legacy technologies may be replaced with 
smarter equivalents, but there are numerous reasons why 
substitution may not be an option; 

• Historical investment in IT and automation. Many 
facilities invested in information systems and 
automation networks over the last 40 years. 
Therefore, facilities may be reluctant to replace 
technologies that received significant investment and 
continue to operate at an appropriate level. 

• Regulatory and quality constraints. In certain 
industries, such as pharmaceuticals and medical 
devices, internal or external constraints may exist in 
the form of regulatory and/or quality standards. In 
these instances, the existence of exhaustive processes 
and procedures may negate the enthusiasm for legacy 
technology replacement. 

• Dependency on proprietary systems or protocols. 
While numerous open standards exist for 
manufacturing information systems and automation 
networks, such as ISA95 for system interoperability 
and OPC for device-level communication, their 
adoption is sporadic. Therefore, where proprietary 
and closed technologies are used in place of open 
standards, technology adoption (i.e. smart 
technologies) is limited by the proprietary vendors 
offerings. 

• Weak vision and insufficient commitment. The 
transition to smart manufacturing is a significant 
undertaking that requires strong leadership and a 
shared vision of the short and long-term benefits for 
the facility. Facilities that do not have a clear vision 
of how smart manufacturing can improve their 
operations may be less likely to have an appetite for 
technology replacement. 

• High risk and disruption. The implementation of new 
and emerging technologies and systems are 
considered high-risk projects, which can negatively 
impact operations while technical competency is 

being achieved. Therefore, the appetite to undertake 
large-scale IT projects may be weak until such time 
lost opportunities effect the facilities competitiveness.  

• Skills and technology awareness. IT and automation 
departments are entrenched in mature computing, 
automation and networking methods that have been 
in existence for decades. However, technologies 
synonymous with smart manufacturing (e.g. IoT, 
CPS, Big Data, Cloud Computing) require a shift 
from these approaches. Therefore, if the relevant 
departments do not embrace these technologies and 
contribute to the organizations smart manufacturing 
roadmap, their lack of knowledge may impede 
technology replacement. 

There are numerous impediments surrounding the 
introduction of technologies for smart manufacturing, but 
the majority of these relate to brownfield sites where 
technology replacement can be problematic. The main 
challenge facing brownfield sites is the encapsulation and 
integration of legacy technologies with emerging smart 
technologies, methodologies and roadmaps. Facilities that 
do not address these issues may be restricted in their 
adoption of smart manufacturing, and the realization of its 
associated performance enhancements and benefits.  

This paper focuses on Prognostics and Health 
Management (PHM) applications for equipment 
maintenance in the context of smart manufacturing. PHM 
comprises methods for detecting and predicting 
equipment faults to optimize equipment uptime and 
availability (Bruton et al., 2014; Bruton, Coakley, 
O’Donovan, Keane, & O’Sullivan, 2013; Lee, Bagheri, & 
Kao, 2015; Lee et al., 2013; O’Donovan, Leahy, Bruton, 
& O’Sullivan, 2015; Wright, 2014). The main 
contributions of this paper are high-level requirements for 
data-driven smart manufacturing systems in highly 
regulated and quality controlled brownfield sites, where 
legacy integration may impede smart manufacturing 
adoption, and a system architecture that satisfies these 
requirements and enables real-time data ingestion and big 
data processing in the cloud.  

2. RESEARCH METHODOLOGY 

This research employed an embedded study, which was 
undertaken in DePuy Ireland - a large-scale 
manufacturing facility which is part of the Johnson & 
Johnson family of companies. The aim of this research 
was to identify the main requirements and associated 
system architecture, to support the development of PHM 
applications by reducing expensive and time-consuming 
activities, such as ad hoc data integration, and improving 
overall data accessibility and reusability.  
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2.1. Establishing scope 

As there were numerous potential applications of PHM 
and industrial analytics in the context of smart 
manufacturing, the first priority was to establish research 
boundaries. After an initial discussion between research 
team members, and automation personnel in DePuy 
Ireland, the focus of the research was narrowed using the 
following specificities. 

2.1.1. Type of PHM applications 

It was agreed that research efforts would focus on data-
driven applications that deal with predictive and 
intelligent equipment maintenance. Equipment uptime 
and availability was considered a critical aspect of 
operations given the potential impact downtime can have 
on production. Therefore, the development of a solution 
that can stream data directly to PHM applications focused 
on promoting machine uptime and availability was 
deemed a worthwhile pursuit. 

2.1.2. Regulation and compliance 

Given this research was undertaken in a highly regulated 
and quality-focused environment, and an empirical 
research methodology was employed, there is an implied 
narrowing of the research scope insofar as observations 
may only apply to facilities with the same characteristics. 
As legacy technology replacement is not easily achieved 
in these environments (e.g. smart technologies), it was 
agreed an emphasis would be placed on legacy 
technology integration, with the aim of amalgamating 
legacy and smart technologies in a single framework. This 
was considered a significant real-world challenge for 
brownfield sites, which could only improve the value of 
this research. Furthermore, it was agreed that the final 
solution requirements and prerequisites should be 
minimal (e.g. it should not require a facility to use a 
particular brand of controller). 

2.1.3. Time-series data 

This research focuses on data-driven PHM applications 
for equipment maintenance in the context of smart 
manufacturing. Therefore, it was agreed data ingestion, 
processing and accessibility aspects of the research could 
be limited to time-series data measurements. Based on 
experiences of research team members and feedback from 
automation personnel in DePuy Ireland, time-series data 
was the format most relevant to equipment maintenance 
monitoring, analysis and decision-making. By limiting the 
pipeline to a particular class of data the number of 
permutations for extraction, transformation and loading 
operations were reduced, given the predictable and low-
dimensional structure of the data (e.g. time/value pairs). 

2.1.4. Data flow and direction 

The overarching theme of this research is the 
investigation of real-time data integration and 
transmission from large-scale industrial facilities. 
Therefore, it was agreed that data flows in the pipeline 
would only move one-way (i.e. factory to cloud) and this 
data would be immutable (i.e. read only). While this 
research may not consider a two-way communication 
channel for PHM applications to send instructions back to 
the factory, these applications can extend the framework 
and implement their own protocol to initiate actions in the 
factory if required.  

2.1.5. Industrial data integration 

Legacy integration was deemed an important aspect of 
this research given the prominence of proprietary systems 
and diverse communication protocols that can exist in 
industrial environments.  However, given the broad and 
ill-defined nature of this problem it was agreed initial 
legacy integration would be limited to log files produced 
by Programmable Logic Controllers (PLC) and 
Manufacturing/Building Systems, OLE Process Control 
(OPC), Modbus, and BACnet.  

2.1.6. Industry collaboration 

To better understand the manufacturing systems, 
processes and technologies in DePuy Ireland, and to gain 
a greater appreciation for manufacturing operations in 
general, we engaged with internal teams across 
automation, energy, big data and smart manufacturing. 
Discussions with these teams assisted in the identification 
of data sources, processes and industrial protocols that 
were relevant to PHM applications in the factory.  

• Automation - the automation team consisted of eight 
staff with skills covering control and automation, 
production, energy and information technology. The 
automation team informed the research teams 
understanding of infrastructure supporting production 
in the factory, as well as scheduling and maintenance 
strategies for machinery. 

• Energy – the energy team comprised of five staff 
with skills in engineering and energy. The energy 
team informed the research teams understanding of 
energy consumption monitoring for equipment, as 
well as highlighting how malfunctioning equipment 
can produce energy fluctuations. 

• Big Data and Smart Manufacturing - there are no 
dedicated teams currently responsible for big data and 
smart manufacturing. Therefore, the research team 
interacted with multiple teams and personnel to form 
a better understanding of how emerging technologies, 
such as Internet of Things (IoT) and big data 
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technologies, were being considered for use in the 
factory.  

2.2. Research questions 

Two research questions were identified to guide research 
efforts. The purpose of the first question (RQ1) was to 
establish the real-world data integration requirements for 
large-scale industrial environments, with an emphasis on 
those that are not supported by traditional data integration 
tools (e.g. ETL tools). The purpose of the second question 
(RQ2) was to create an open and accessible architecture 
for data ingestion, processing and management that could 
satisfy requirements identified by RQ1. 

2.2.1. RQ1 – What requirements and characteristics 
are important to large-scale manufacturing 
facilities when it comes to data integration 
methods? 

This question focuses on establishing requirements and 
characteristics that may support the development of data-
driven PHM applications in real-world large-scale 
manufacturing environments, with a particular emphasis 
on facilitating transparent data flows across the entire 
factory, which is aligned with the vision of smart 
manufacturing.  

2.2.2. RQ2 – How can a data pipeline serve data-
driven PHM applications using legacy and 
emerging technologies in an indiscriminate 
manner? 

This question considers the design of a data pipeline 
architecture that can provide a framework for PHM 
applications focused on equipment maintenance, while 
satisfying the requirements from RQ1.  Recommendations 
from smart manufacturing are combined with those of 
RQ1 to further inform the pipelines design, incorporating 
the need for real-time capabilities, open standards, and 
seamless data access. 

3. RESULTS AND DISCUSSION 

3.1. RQ1 – Requirements and characteristics 

The following requirements and characteristics were 
identified in response to RQ1 during the study. Although 
these findings were derived from discussions relating to 
PHM applications focused on equipment maintenance, 
they should also be considered representative of industrial 
data integration challenges facing facilities transitioning 
to smart manufacturing.  

3.1.1. Legacy integration 

Some facilities will not be in a position to adopt emerging 
and smart technologies to realize intelligent systems 

associated with smart manufacturing. Based on 
observations of the research team, many large-scale 
manufacturing facilities may have invested too much time 
and resources in control and automation networks to 
consider replacing legacy devices with smarter 
equivalents.  Similarly, while many facilities may be 
aware of the potential benefits associated with emerging 
technologies, such as big data analytics, they may not 
know how they can integrate with existing operations, or 
fully appreciate the multi-disciplinary and technical skills 
needed to implement them in the facility. Therefore, 
facilities may want to leverage and maximize existing 
investments, skills, knowledge, vocabulary and systems, 
while incrementally transitioning to smart manufacturing 
rather than completely overhauling technologies and 
operations. To achieve this transparent data integration 
will be an important requirement, whereby legacy and 
smart technologies are abstracted to deliver indiscriminant 
data access.  

3.1.2. Cross-network communication 

Real-time data transmission across pervasive networks is 
a fundamental aspect of smart manufacturing. However, 
networks in modern manufacturing facilities were not 
designed with these characteristics in mind. The research 
team encountered several instances during the study 
where equipment maintenance data was restricted by 
firewalls and other security measures. Furthermore, 
limited access to equipment data was also encountered 
due to external maintenance and support agreements with 
vendors (e.g. wind turbines). While these measures may 
make sense in the context of traditional manufacturing 
operations, they represent a challenge to data-driven smart 
manufacturing. Therefore, to provide data visibility across 
facilities (and/or multiple sites) it may be necessary to 
communicate across secure networks.  

3.1.3. Fault tolerance 

Information systems and technologies that play a role in 
production, automation and maintenance may have high 
demands placed on them given their ability to directly 
impact facilities production yield and operational 
efficiency. Based on observations of the research team, 
information systems deployed in industrial environments 
must be highly available and fault tolerant.  Therefore, 
these characteristics will be expected of new systems and 
tools operating in similar environments.  

3.1.4. Extensibility 

Proprietary and/or ad hoc technologies and systems in 
large-scale manufacturing facilities are common. Based 
on observations of the research team, it appears that 
facilities have become more aware of technology 
integration and consolidation, but duplication and 
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disparity across systems is still evident. Some of these 
inefficiencies may be due to the inextensibility of existing 
information systems, which can result in ad hoc 
implementations. Therefore, an important requirement for 
systems operating in industrials environments is 
extensibility, where new data types, methods and 
protocols can be supported as requirements emerge. 

3.1.5. Scalability 

As the digitization of factories accelerate, the ability to 
dynamically scale based on demand is becoming a 
desirable characteristic for industrial information systems. 
This is especially relevant when considering emerging 
technologies (e.g. IoT) in smart manufacturing, and the 
unknown load they will place on these systems. While 
modern large-scale manufacturing facilities are 
entrenched in technology, the real-time and data-rich 
nature of smart manufacturing may expose unforeseen 
limitations  due to their inability to scale. For example, 
the normal resolution for data measurements observed 
during the study was 15 minutes. Without considering the 
addition of new sensors and measurements (i.e. IoT), the 
data production rate in the facility would increase by 
900% if measurement intervals were reduced to 1 second. 
Therefore, the ability to scale based on demand is an 
important requirement. 

3.1.6.  Data accessibility 

Modern large-scale manufacturing facilities produce a lot 
of data. However, based on observations of the research 
team, access is inhibited by diverse protocols, formats and 
structures. These issues are currently overcome using 
expensive data discovery and integration procedures, 
which focus on proprietary and ad hoc data integration 
routines that address the peculiarities of a particular 
project. However, these approaches typically result in 
poor reuse, which results in tasks being repeated and 
duplicated across projects. Therefore, it is important to 
abstract and generalize low-level data integration routines 
to provide a consistent data interface for data sources and 
devices in the factory. 

3.2. RQ2 – Data pipeline architecture 

A high-level data pipeline architecture for data-driven 
PHM applications focused on equipment maintenance 
was produced using the requirements from RQ1.  Figure 1 
illustrates the data pipeline architecture, with each stage 
of the factory-to-cloud workflow numbered and 
highlighted. The aim of the data pipeline is to deliver a 
low cost turnkey solution for industrial data integration, 
which is built on a real-time, open, scalable and fault 
tolerant infrastructure. The purpose and function of each 
component and stage in the data pipeline is described in 
the proceeding sections. 
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Figure 1. Data pipeline architecture and workflow 
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3.2.1. Stage 1 – Site manager 

Purpose: The site manager resides on a cloud server and 
stores meta-data regarding each facility and associated data 
sources. Its purpose in the architecture is to persist essential 
site information, such as the location of each data point and 
the type of protocol that needs to be used for integration. 

Functions: The site manager has multiple functions that are 
related to the factory – (1) store details relating to the site, 
such as the type and location of local data sources that shall 
be ingested, (2) schedule and assign jobs to ingestion 
engines in the factory based on the availability and location 
of each node, and (3) derive a suitable amount of data to 
ingest for each engine based on its current location, 
bandwidth, CPU and bandwidth availability.  

3.2.2. Stage 2 – Ingestion process 

Purpose: Ingestion engines are distributed software agents 
that are deployed across networks in the factory to collect 
and integrate time-series data for different data-driven PHM 
applications (e.g. HVAC, Chillers, Boilers). They execute as 
background workers on a server and continually send their 
status to the site manager (Stage 1), and when instructed, 
collect and transmit data from local data sources to the 
cloud. As illustrated in Figure 1, the distributed and 
autonomous nature of an ingestion engine enables them to 
be deployed across different networks that are separated by 
firewalls and/or geographical boundaries. Furthermore, 
these characteristics also allow the ingestion process to scale 
by deploying more ingestion engines, which increases the 
throughout capacity of the pipeline from the factory. 

Functions: The ingestion engine has multiple functions – (1) 
communicate location, bandwidth, CPU and memory 
availability to the site manager so an appropriate ingestion 
task can be assigned, (2) interpret ingestion tasks sent by the 
site manager and automatically extract time-series data from 
the relevant sources in accordance with the task parameters 
(e.g. particular date range), and (3) transmit the collected 
time-series data to the cloud message queue. A novel aspect 
of the ingestion process is an expert ruleset that can 
automatically map and extract time-series data to limit 
expensive and manual data mapping tasks.  

3.2.3. Stage 3 – Message queue 

Purpose: The highly available and distributed message 
queue service in the cloud accepts time-series data from 
ingestion engines in the factory. Its main purpose is to 
provide intermediary storage between the factory and 
processing components in the pipeline. This decouples data 
ingestion components from data processing components, 
which instills resilience by facilitating asynchronous 
communication and parallel operations when the pipeline is 
at peak demand.  

Functions: The message queue has two main functions – (1) 
notify subscription service when new data has been 
ingested, and (2) add received data to a queue so data 
processing components can access it further down the 
pipeline.  

3.2.4. Stage 4 – Subscription service 

Purpose: The subscription service provides an endpoint for 
the data ingestion process and functions as a notification 
mechanism for data processing components when new data 
is received. The notification of new data results in one or 
more data preparation and/or analysis tasks being 
undertaken. The number of data processing actions executed 
can be increased or decreased by subscribing or 
unsubscribing from the subscription service. 

Functions: The functions of the subscription service are 
limited, but essential in the orchestration of events in the 
pipeline – (1) listen to the message queue for new data and 
(2) notify subscribers when new data are available for 
processing.  

3.2.5. Stage 5 – Data processing 

Purpose: Data processing components are responsible for 
transforming raw time-series data to a format suitable for 
analysis. The aim of data processing is to remove the onus 
on each PHM application to undertake expensive and time-
consuming operations. At the most basic level the pipeline 
aggregates time-series data at different levels of granularity, 
such as hourly, daily, monthly and annual averages. 
Examples of more sophisticated processing may include the 
execution of expert rules to identify faults, or the semantic 
encoding of time-series data (e.g. Project Haystack) to 
promote interoperability with other applications. Each data 
processing component in the architecture is responsible for 
executing a single processing operation to promote 
modularity.  This enables new data processing components 
to be easily added to the pipeline as new requirements 
emerge. 

Functions: The functions that may be associated with data 
processing  are truly diverse. Therefore, data processing 
components in the pipeline cannot be strictly prescribed 
given processing requirements will vary from application-
to-application, and factory-to-factory. However, common 
use cases could be built over time to form a library of 
default processing components. The current default scenario 
illustrated in the data pipeline is time-series aggregation – 
(1) daily average, (2) monthly average, and (3) annual 
average.  

3.2.6. Stage 6 – Data access 

Purpose: The data access stage exposes a consistent and 
open method for PHM applications to consume data that 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

9 

originated from equipment in the factory. A naming 
convention is used to promote consistency in data access 
and contextualize data requests. The convention uses an   
encoded URL to request data for an object (e.g. HVAC) and 
date. Figure 1 illustrates the naming convention between 
stage 5 and 6 in the pipeline, and Table 1 describes each 
parameter of the naming convention in more detail; 

Table 1. URL convention for data requests 

Parameter Description 

Data Refers to a particular data set (e.g. energy). 

Object Identifying name or code that exists within the 
data set (e.g. machine number). 

Year Year relevant to data request/query. 

Month Month relevant to data request/query. 

Day Day relevant to data request/query. 

Functions: Functions relating to data access include – (1) 
ensuring data are stored in the appropriate location as per 
the naming convention and (2) return the appropriate data 
for requests that utilize this convention.  

3.3. Alignment of architecture with requirements 

This section discusses how the data pipeline architecture 
from RQ2 satisfies requirements from RQ1. Table 2 
supports this discussion by describing how different stages 
of the pipeline address different requirements. 

Table 2. Relationship between requirements and architecture 

Requirement Data pipeline stages 

Legacy integration Stages 1 and 2 in the architecture are 
responsible for legacy integration. The site 
manager creates meta-data for each data 
source in the factory, which is then used 
by the ingestion engine to extract data 
independent of the underlying source (i.e. 
either legacy or smart). 

Cross-network 
communication 

Stages 2 and 3 in the architecture 
facilitate communication across networks. 
Ingestion engines are remote autonomous 
agents that are network agnostic. 
Therefore, given an outbound connection 
to the queue service in the cloud, ingestion 
engines can be deployed across multiple 
networks to unify data in the pipeline. 

Extensibility Stages 2, 5 and 6 promote extensibility in 
the data pipeline architecture. First, data 
ingestion instructions are dynamically 
disseminated from the site manager, which 
means these instructions can be extended 

to support new types of data sources etc. 
Second, data processing components are 
modular, which enables processing 
capabilities of the pipeline to be extended 
through the addition of new processing 
components. Finally, the type of data 
served to PHM applications via the data 
interface can be extended to include 
additional formats.  

Scalability Stages 1-6 illustrate how scalability is 
embedded in the pipeline. First, the 
distributed design of the ingestion process 
is realized using autonomous agents, 
which enables integration routines to run 
in parallel and scale based on the number 
of data points being measured. Second, the 
message queue, notification and storage 
services are inherently scalable given the 
selection of a cloud provider that supports 
auto-scaling. Finally, data processing 
components (i.e. workers) can benefit 
from load balancing and auto scaling 
features of cloud computing, which 
enables these components to dynamically 
distribute and scale based on the quantity 
of data to be processed. 

Data accessibility Stage 6 provides a common interface for 
PHM applications to consume data from 
the pipeline. The architecture employs a 
cloud-based repository to serve low-
latency precompiled views of time-series 
data to geographically distributed end-
users and PHM applications. Furthermore, 
interoperability with 3rd party applications 
is supported by the use of open standards 
and protocols (e.g. HTTP, JSON etc.). 

 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a set of challenges and 
characteristics associated with collecting and integrating 
industrial data for data-driven manufacturing, and a system 
architecture that addresses these challenges. In particular, 
the system architecture supports real-time data ingestion 
from a range of legacy and smart devices throughout the 
factory, while using a mix of novel and conventional 
technologies to promote fault tolerance, scalability and 
accessibility. The automated data pipeline architecture can 
provide facilities with a robust, flexible and adaptable 
managed framework to enable data-driven manufacturing 
(i.e. smart manufacturing) while mitigating low-level 
technical details, such as legacy and smart technology 
integration.  While emerging smart sensors and technologies 
(e.g. IoT) will eventually eliminate the need for legacy 
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integration, given the fact 20 year old PLC’s are still in 
operation, it is advisable that researchers and innovators 
should be conservative when estimating timelines for when 
large-scale industrial facilities will be operating using smart 
technologies exclusively. Therefore, to transition to smart 
manufacturing and develop the insightful data-driven 
applications that can deliver predictive and efficient 
operations, facilities must be capable of addressing the 
fundamental issue of transparent data integration.  

ACKNOWLEDGEMENTS 

The authors would like to thank the Irish Research Council, 
DePuy Ireland and Amazon Web Services for their funding 
of this research, which is being undertaken as part of the 
Enterprise Partnership Scheme (EPSPG/2013/578).	
   

REFERENCES 

Bruton, K., Coakley, D., O’Donovan, P., Keane, M. M., & 
O’Sullivan, D. (2013). Development of an Online 
Expert Rule based Automated Fault Detection and 
Diagnostic (AFDD) tool for Air Handling Units: Beta 
Test Results. In ICEBO - International Conference for 
Enhanced Building Operations. Montréal, Canada. 

Bruton, K., Raftery, P., O’Donovan, P., Aughney, N., 
Keane, M. M., & O’Sullivan, D. T. J. (2014). 
Development and alpha testing of a cloud based 
automated fault detection and diagnosis tool for Air 
Handling Units. Automation in Construction, 39, 70–
83. doi:10.1016/j.autcon.2013.12.006 

Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. 
(2012a). Smart manufacturing, manufacturing 
intelligence and demand-dynamic performance. 
Computers & Chemical Engineering, 47, 145–156. 
doi:10.1016/j.compchemeng.2012.06.037 

Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. 
(2012b). Smart manufacturing, manufacturing 
intelligence and demand-dynamic performance. 
Computers and Chemical Engineering, 47, 145–156. 
doi:10.1016/j.compchemeng.2012.06.037 

Heng, S. (2014). Industry 4.0: Huge potential for value 
creation waiting to be tapped. Deutsche Bank Research. 
Retrieved from 
http://www.dbresearch.com/servlet/reweb2.ReWEB?rw
site=DBR_INTERNET_EN-
PROD&rwobj=ReDisplay.Start.class&document=PRO
D0000000000335628 

Lee, J. (2014). Recent Advances and Transformation 
Direction of PHM, 1–31. 

Lee, J., Bagheri, B., & Kao, H. (2015). A Cyber-Physical 
Systems architecture for Industry 4 . 0-based 
manufacturing systems. MANUFACTURING 
LETTERS, 3, 18–23. doi:10.1016/j.mfglet.2014.12.001 

Lee, J., Kao, H.-A., & Yang, S. (2014). Service Innovation 
and Smart Analytics for Industry 4.0 and Big Data 

Environment. Procedia CIRP, 16, 3–8. 
doi:10.1016/j.procir.2014.02.001 

Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent 
advances and trends in predictive manufacturing 
systems in big data environment. Manufacturing 
Letters, 1(1), 38–41. doi:10.1016/j.mfglet.2013.09.005 

Manufacturing, S., Manufacturing, C. S., Coalition, L., 
Smart, T., Leadership, M., Incorporated, E., … Any, D. 
(2011). About this Report About the Smart 
Manufacturing Leadership Coalition. 

Meziane, F., Vadera, S., Kobbacy, K., & Proudlove, N. 
(2000). Intelligent systems in manufacturing: current 
developments and future prospects. Integrated 
Manufacturing Systems, 11(4), 218–238. 
doi:10.1108/09576060010326221 

O’Donovan, P., Leahy, K., Bruton, K., & O’Sullivan, D. T. 
J. (2015). Big data in manufacturing: a systematic 
mapping study. Journal of Big Data, 2(1), 20. 
doi:10.1186/s40537-015-0028-x 

Sharma, P., & Sharma, M. (2014). Artificial Intelligence in 
Advance Manufacturing Technology-A Review Paper 
on Current Application, (1), 4–7. 

Wright, P. (2014). Cyber-physical product manufacturing. 
Manufacturing Letters, 2(2), 49–53. 
doi:10.1016/j.mfglet.2013.10.001 

Zuehlke, D. (2010). SmartFactory—Towards a factory-of-
things. Annual Reviews in Control, 34(1), 129–138. 
doi:10.1016/j.arcontrol.2010.02.008 

 


