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ABSTRACT

A sudden failure of a critical component in light-emitting
diode (LED) manufacturing equipment would result in
unscheduled downtime, leading to a possibly significant loss
in productivity for the manufacturer. It is therefore
important to be able to predict upcoming failures. A major
obstacle to failure prediction is the limited amount of
equipment lifecycle data available for training, as equipment
failure is not expected to be frequent. This calls for machine
learning techniques capable of making accurate failure
predictions with limited training data. This paper describes
such a method based on sparse coding. We demonstrate the
prediction performance of the method on a real-world
dataset from LED manufacturing equipment. We show that
sparse coding can draw out salient features associated with
failure cases, and can thus produce accurate failure
predictions. We also analyze how sparse coding-based
failure prediction can lead to significant efficiency
improvements in equipment operation.

1. INTRODUCTION

Reducing costs and increasing productivity are crucial
concerns in the competitive manufacturing industry. Many
manufacturers are seeking to implement intelligent
manufacturing processes including the use of automated
data analysis techniques (Scoville, 2011) which can allow
for cost- and time-saving predictive maintenance (Rothe,
2008). This paper addresses approaches to optimizing
predictive maintenance methods for light-emitting diode
(LED) manufacturing equipment.

Modern LEDs are multilayered structures of chemical
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materials in which the thickness and composition of the
various layers determine the color and brightness of the
emitted light and device energy efficiency. The layers are
deposited sequentially through the metal organic chemical
vapor deposition (MOCVD) process, a critical determinant
process in LED performance. The crystalline structure of
each new layer is epitaxially aligned with that of the
underlying layer. This complex process is affected by the
conditions of a multitude of components, such as pumps,
heaters, mass flow controllers, and particle filters ' .
Unexpected component failure can reduce LED production
yields, and finding and repairing the source of the failure
can take engineers up to 5 days. For example, the failure of
a particle filter will cause the pump to shut down, resulting
in all the raw materials consumed in that run to be wasted.
Here, we focus on developing a failure prediction algorithm
for the particle filter to ensure continuous high-performance
operation in the MOCVD process.

Learning features associated with failure cases plays a
critical role in a data-driven prediction approach. The goal is
to come up a compact yet discriminative feature
representation, in which samples related to failure cases can
be accurately expressed and easily differentiated from others.
Many feature learning methods have been discussed in the
literature; see, e.g., Huang & Aviyente, 2006. These include
principle component analysis (PCA), linear discriminant
analysis (LDA) and sparse coding (SC). The SC approach
used in this paper has emerged as one of the most popular
feature learning methods in recent years, in areas such as
computer vision (Wright et al., 2010). It computes a sparse
representation of input data in terms of a linear combination
of atoms in an overcomplete dictionary (more details are
given in Section 4.1). Compared to methods based on

"Note that by a particle filter we mean in this paper a physical filter in
MOCVD equipment. This is not to be confused with particle filtering
methods in the diagnostics and prognostics prediction literature (see, e.g.,
Orchar & Vachtsevanos, 2007).
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orthonormal transformations, SC has been shown to offer
superior performance in a variety of applications including
face recognition (Wright et al., 2009), emotion recognition
(Chen et al., 2015), and wireless link prediction (Tarsa et al.,
2015). Therefore, the proposed failure predictor is based on
SC.

In evaluating our SC-based approach, we use real-world
sensor data from LED MOCVD equipment. We found that
the SC-based failure prediction method can improve F-
measure about 39% over a conventional PCA-based
approach. In terms of annual uptime of MOCVD equipment
operation, the SC-based failure prediction method can
increase it by about 600 hours over a traditional preventative
maintenance policy. To the best of our knowledge, this work
is the first application of SC to the prediction of component
failure in MOCVD equipment.

The remainder of this paper is organized as follows: Section
2 provides an overview of failure prediction problem and
prior work. Section 3 describes the dataset used in our
experiments. Section 4 explains the basic concept of sparse
coding and the proposed failure prediction pipeline for
MOCVD equipment. In Section 5, we show the
experimental results of PCA-based and SC-based failure
prediction methods. Cost-benefit analysis for different
maintenance and prediction policies is discussed in Section
6. Conclusions are given in Section 7.

2. FAILURE PREDICTION PROBLEM AND PRIOR WORK

The goal of failure prediction is to predict an upcoming
component failure in MOCVD equipment, and raise an
alarm or a maintenance advice to the manufacturer who can
then intervene to prevent unscheduled downtime. In this
paper, we focus on the next-run failure prediction. In other
words, following each run, the system provides a prediction
of whether the particle filter will fail in the next run. Here a
run denotes an execution of a fabrication task on MOCVD
equipment. The next-run failure prediction can be simply
considered as a decision problem of predicting a yes or no
outcome. We thus address it as a binary classification task.

Failure prediction methods can be roughly categorized into
model-based and data-driven approaches (Lee et al., 2014).
Model-based approaches have been traditionally used to
understand failure mode progression associated with
equipment components. In training physics-model
parameters, such as those in Kalman or particle filter
methods (Orchar and Vachtsevanos, 2007), model-based
methods usually require relatively smaller amounts of data.
However, to achieve acceptable performance in prediction,
building an appropriate physical model would require
detailed mechanistic knowledge and could be time-
consuming. In contrast, data-driven approaches build a
machine learned model based on observed sensor data from
equipment without relying strongly on domain knowledge.
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Figure 1. Data illustration of a particle filter replacement
cycle. It is an example of the 22 cycles considered. (a)
dp.filter raw data over runs in a replacement cycle and (b)
dp.filter maximum values over runs in the same cycle. Here
a run denotes an execution of a fabrication task on MOCVD
equipment. (Runs may vary somewhat in their execution
time.) The maximum value of dp.filter raw data is used to
represent the feature of each run. Thus a replacement cycle
can be represented as a sequence of these maximum values.
More details about dp.filter are given in Section 3.

3. DATA DESCRIPTION

MOCVD processes produce powders and particulates which
can cause unexpected and significant damage to costly
pump equipment. A particle filter is therefore needed to
avoid contamination of the pump. Among the sensors in
MOCVD equipment, dp.filter is the most critical sensor in
monitoring the particle filter status in the level of dust being
accumulated there. This sensor measures the difference of
pressure between the reactor and the pump. As fabrication
tasks are carried out on MOCVD equipment, more powders
and particulates are stacked on the filter, so dp.filter values
usually increase gradually. Figure 1(a) shows an example of
the degradation of the dp.filter signal in a replacement cycle.
This cycle consists of multiple runs, with vertical lines
denoting the boundaries between runs. Practically, the
particle filter will be replaced when the maximum value of
dp filter over a run exceeds a configured threshold (e.g., 30).
Accordingly, we extracted the maximum value for each run
in our experiments. This means that each cycle was
represented as a sequence of dp.filter maximum values as
shown in Figure 1(b).

Note that the dips in Figure 1(b) were caused by executing
“clean runs” on MOCVD equipment. Such clean runs are
sometimes needed to clean up residual gases in the reactor
mentioned earlier. The amount of gases used in a clean run
is much less than those associated with a regular fabrication
task execution, leading to dips in a sequence of the
subsequent dp.filter maximum values.
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In total, 22 replacement cycles were collected. In our
experiments, the first 15 cycles and the remaining 7 cycles
were respectively used to build the training and the test data.
To predict whether the particle filter will fail in the next run,
we labeled the previous run before the one whose dp.filter
maximum value exceeded 30 as a faulty run. To incorporate
historical information for failure prediction, we used a
sliding window of size 10 runs (with adjacent windows
overlapped by one run) to create the feature vector for each
run. In other words, we used 10 dp.filter maximum values
from the previous nine runs and the present run to represent
the feature vector for the present run. Thus each created
sample has a dimensionality of 10. Since each replacement
cycle consists of a different number of runs (varying from
23 to 104 runs), different numbers of normal samples are
thus collected for the training and the test data. Specifically,
the training data consists of 387 normal and 15 faulty
samples, and the test data is composed of 319 normal and 7
faulty samples.

4. SPARSE CODING BASED FAILURE PREDICTION

4.1 Basic Concept of Sparse Coding

Given N data samples x; € RM*!, we first learn a dictionary
D using the following mathematical optimization:

. 1 1
MM gpenioer ~ S0y 2 llx; — Datl3 + Allacly

c2{peR"™ s t||d’ =19 =1,..K} (1)

for certain A > 0, where «; is the sparse code of x;, and D is
the dictionary composed of K columns and d; is the jth
column (i.e., atom) in D. We split samples into smaller
patches of length four; therefore, we have M = 4 in our
experiments.

Given the learned dictionary D, we consider the following
LASSO (Least Absolute Shrinkage and Selection Operator)
formulated optimization problem:

ming eprxallx; — Da I3 + Allelly (2)

For a given data point x;, by solving the LASSO
optimization using methods such as least angle regression
(LARS) (Efron et al., 2004) and interior-point (Koh et al.,
2007) we find the sparse code «; for x;.

4.2 LEARNING AND TRAINING PIPELINES

Figure 2 shows the learning and training pipelines for
particle filter failure prediction via sparse coding. We use
the following steps for dictionary learning and SVM
classifier training.

1. Patch generating. To capture local variation within
each sample, we split each sample into overlapping
patches {xi,..., X;,..., X19.,+1 }, Where the patch size is p

Dictionary learning
training Patch  |X[ Patch selecting & |PxDr [ Dictionary D=[DyDy]
data generating dictionary learning concatenating NEE

SVM classifier training for SC-based failure prediction
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Figure 2. Dictionary learning and SVM classifier training
pipelines.

and the overlapping is one. In our experiments, p is
typically set to four.

2. Patch selecting and dictionary learning. Note that for
next-run failure prediction, only the run before the last
run in a replacement cycle is labeled as faulty. All other
runs are labeled as normal. Thus there are far more
normal runs than faulty runs. To deal with this
imbalance, two dictionaries Dy and Dy are then
respectively learned on normal and faulty samples
using (1). (Note that if all samples were used to learn a
single dictionary, the dictionary would be dominated by
normal samples.)

Specifically, to discriminatively learn these two
dictionaries, only the patches whose values are all
smaller than a threshold Thy are used to learn Dy On
the other hand, if one value within the patches exceeds
Thy, these patches will be used to learn Dp. Other
patches that do not satisfy either of these two conditions
are discarded.

3. Dictionary concatenating. A simple concatenation
forms the final dictionary D = [Dn|Dk].

The following steps are used in SVM classifier training for
failure prediction based on sparse code.

1. Patch generating. We split each sample into

overlapping patches {xi,..., Xj,..., X10p+1} -

2. Sparse coding. Given the learned dictionary D, we use
(2) to compute sparse code &; of each patch x;. In total,
10-p+1 sparse codes are thereby obtained for each
sample.

3.  Max pooling. To incorporate local variation of patches
to reflect global features of each sample, we perform
max pooling over these 10-p+1 sparse codes to obtain a
pooled sparse code z such that the kth element in z, z; =
max( @y g, -, Aj g, ) X1o—pr1,k) Where @ is the kth
element from ;. Therefore, each sample is encoded as
a pooled sparse code. The effectiveness of using pooled
sparse code in classification as opposed to a; is well
known (see, e.g., Chen et al., 2015, and Tarsa et al.,
2015).
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4. Classifier training. We use pooled sparse codes as
features to train a linear SVM classifier for failure
prediction.

4.3 FAILURE PREDICTION ON TEST SAMPLES

For a test sample, we first divide it into overlapping patches.
Then, we compute sparse codes for each patch and perform
max pooling on these sparse codes to obtain a pooled
feature vector. Finally, the pooled feature vector is used as
an input vector for the pre-trained SVM to obtain the
prediction result.

5. EXPERIMENTAL SETUP AND RESULTS

5.1 Baseline: PCA+SVM

The proposed method was compared against a PCA-based
baseline method. In this baseline method, PCA was used to
project data onto a lower dimensional space spanned by a
relatively small number of dominant eigenvectors of the
covariance matrix of the training data. Then, a linear SVM
was used as the predictor.

5.2 Experimental Setup and Evaluation Metrics

To provide a fair comparison, we used the same setting of
the penalty parameter in a linear SVM (Chang & Lin, 2011)
for both PCA- and SC-based approaches. The maximal
number of principal components (PCs) used in the
experiments was six, which can explain over 95% of the
training data variance. Different numbers of atoms in
dictionary Dy and dictionary Dy were set for comparison.
Since a particle filter will be replaced when the maximum
value of dp.filter over a run exceeds 30, we set Thy and Thy
to 10 and 20 respectively. As mentioned earlier, the patch
size p was empirically set to four. Sparse coding is set to use
about three non-zero coefficients in our experiments.

Four standard metrics (Salfner et al., 2010)—true positive
rate (TPR), false positive rate (FPR), F-measure and the
area under the receiver operating characteristic (ROC) curve
(AUC)—were used to compare the performance of different
methods. Note that a positive sample means a faulty sample
in our experiments.

5.3 Patch Selection for Dictionary Learning

To learn the two dictionaries Dy and Dy that can
respectively represent normal and faulty regularities, we
generated two patch sets. For this, two patch selection
schemes were compared. As shown in Figure 3(a), two
patch sets were separately created by considering whether
the patch belongs to the last sliding window in each cycle.
(Note that we can create seven patches from a window
consisting of 10 runs.) Clearly, some patches overlapped,
making it difficult to differentiate between atoms in the
dictionaries Dy and Dg. In contrast, we defined two

thresholds to select non-overlapped patches. As shown in
Figure 3(b), only the patches satisfying the constraints
described in Section 4.2 were used for dictionary learning.
The other patches were discarded.

Figure 4 shows the sparse codes of a patch at a faulty run
using dictionaries learned by different patch selection
schemes. The dictionary Dy and the dictionary D are
respectively indexed as 1~15 and 16~18. Obviously, when
using the patch selection scheme 1, the overlapping of
patches makes it difficult to train these two dictionaries
discriminatively. Thus the patch at a faulty run can be
incorrectly coded by atoms in Dy (e.g., indices of 6, 10 and
12, as shown in Figure 4(a)). In contrast, when we separated
patches into two sets without overlap, different atoms can be
learned in Dy and Dg. Accordingly, the same patch can be
almost coded by only the atom in Dy (e.g., the index of 18,
as shown in Figure 4(b)). In summary, the patch selection
scheme 2, as used in our pipeline, creates patches that can
be used to train Dy and D more discriminately.

(a) patch selection scheme 1

dp.filter maximum value

dp.filter maximum value

|:|: patches used to train dictionary Dy I:I: patches used to train dictionary Dy

run index

Figure 3. Two patch selection schemes. (For simplicity of
plot, black points denote other overlapping patches used to
train Dy)

(a)

coefficient

coefficient

2 4 6 ;tOIn 11I?ldex 12 14 16 18
Figure 4. Sparse codes of a patch at a faulty run using
dictionaries learned by patch selection (a) scheme 1 and (b)
scheme 2.
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Table 1. Performance comparisons. For PCA+SVM, PCs=2
(in parenthesis) denotes that data is projected onto the first
two PCs (a similar definition applies to PCs=3 and PCs=06).
For SC+SVM, 10/3 (in parenthesis) means we have /0
atoms in Dy and 3 atoms in Dy (a similar definition applies

to 15/3).

Column
Index 1 2 3 4 5

Method PCA PCA PCA SC SC

+SVM +SVM +SVM +SVM +SVM

Metric (PCs=2) | (PCs=3) | (PCs=6) (10/3) (15/3)
TPR (%) 85.71 71.43 71.43 85.71 100
FPR (%) 16.93 12.23 5.64 9.4 13.17
F-measure | 0.179 0.196 0.333 0.279 0.25
AUC 0.916 0911 0.847 0.942 0.983

5.4 Prediction Results

Table 1 compares the performance of the baseline method
(PCA+SVM) and the proposed method (SC+SVM). For the
PCA+SVM method (columns 1, 2 and 3), when more PCs
were used, we obtained higher F-measure values. This
means that reserving more PCs is useful for failure
prediction. Under TPR equals to 85.71% (columns 1 and 4),
the proposed SC+SVM method achieves a lower FPR (9.4%)
than that of the PCA+SVM method (16.93%). In other
words, the proposed method raised fewer false alarms than
the PCA+SVM method. The proposed method (column 5)
also achieves the best prediction performance in terms of
AUC.

Figure 5 shows the receiver operating characteristic (ROC)
curves of these two methods under the best AUC values
(columns 1 and 5 in Table 1). From this figure, we observed
that the PCA+SVM method raises more false alarms.
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Figure 5. ROC curves of the baseline method (PCA+SVM)
and the proposed method (SC+SVM).

In addition, when using a non-linear, radius basis function
(RBF) SVM as a predictor rather than a linear SVM, the
highest AUC value of PCA-based method achieves 0.925
(under PCs=2) and the highest AUC value of SC-based
method achieves 0.965 (under 15 atoms in Dy and 3 atoms
in Dg). This experiment shows again that the use of SC-

based features outperforms that of traditional PCA features
when a non-linear SVM is used as a predictor.

Furthermore, to assess robustness of performance against
various partitions of the data set into training and test cycles,
we also evaluated the performance of two other random
partitions. Similar results as mentioned above were found.

6 COST-BENEFIT ANALYSIS OF DIFFERENT
REPLACEMENT POLICIES FOR MOCVD EQUIPMENT

In this section, we provide cost-benefit analysis of the
proposed SC-based prediction method when compared with
some other methods for MOCVD equipment. Given the
difficulty of quantizing detailed factors of costs such as
hardware and software design, engineering qualification and
certification (Saxena et al., 2010), we only consider the
annual uptime of MOCVD equipment operation. We use the
following notations to facilitate the discussion.

UT: average uptime per cycle,
DT: average downtime for a replacement, and

H: the probability that the maintenance time provided by a
certain replacement policy is before an actual failure.

Practically, UT is calculated based on the maintenance time
under a given replacement policy on the test cycles. DT is
calculated as

Hx15+ (1—H) * 108

where 1.5 and 108 are average downtimes (in hours) for a
scheduled and an unscheduled replacement, respectively.
Note that in contrast, the execution time of a run is about 8
hours. Here these average downtimes and the run’s
execution time were obtained from engineers who maintain
MOCVD equipment.

The expected uptime in a year under a replacement policy is
calculated by multiplying the number of operation units,
each of which is the time duration for a pair UT and DT, in a
year and the average uptime per cycle:

total hours in a year "
UT+DT

ur

Expected uptime in a year =

In addition to the SC- or PCA-based predictive maintenance
policy, we consider two conventional replacement policies:
(1) run-to-failure replacement policy, under which the
particle filter will be used until it fails (i.e., H = 0), and (2)
preventive maintenance policy, under which the particle
filter will be replaced once the number of executed runs
exceeds the average number of runs in training cycles.

Figure 6 compares uptime against the FPR under different
replacement policies for the test data. The X-axis is the FPR
of the PCA+SVM and SC+SVM methods. The Y-axis is the
annual uptime of the MOCVD equipment. To facilitate the
discussion, the total number of particle filters for which no
alarm was raised under a replacement policy before they
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failed is denoted as #misses. For example, under the run-to-
failure replacement policy, #misses is 7 since these filters
are used until they fail; under the preventive maintenance
policy, only one filter is not replaced before it fails, so
#misses is 1. To study cost-benefit effects of #misses for the
PCA+SVM and SC+SVM methods, we consider the three
FPR subintervals shown in Figure 6. In these FPR regions
various methods exhibit their relative strengths.

Interval; (#misses is larger than 1 for both PCA+SVM and
SC+SVM). When we allow a very low FPR, it is unlikely
that an alarm will be raised. Then the performance of both
the baseline method and the proposed method is worse than
that of preventive maintenance in terms of uptime (as shown
in the lower-right zoomed-in panel of Figure 6).

Interval, (#misses is 1 for SC+SVM, and #misses is either 2
or 3 for PCA+SCM). We compare the proposed method
with preventive maintenance under the same #misses. We
can see that the proposed SC-based method outperforms the
preventive maintenance strategy with an increased uptime of
300+ hours (as shown in the upper-right zoomed-in panel of
Figure 6).

Interval; (#misses is 0 for SC+SVM, and #misses is either 1
or 2 for PCA+SVM). The proposed SC-based method
successfully raises alarms before any particle filter fails, and
therefore achieves the best uptime among all methods.

In summary, the proposed SC-based method outperforms
the other replacement policies in Interval, and Intervals.
Particularly, the proposed SC+SVM method outperforms
the preventive maintenance policy in annual uptime by 600+
hours under FPR equal to 5% (as shown in the upper-right
zoomed-in panel of Figure 6). This suggests that under the
given data set, when the proposed SC-based prediction
method is used, the target FPR should be set at 5%. Note
that if FPR is set too high (e.g., 50%), the proposed SC-
based failure predictor would incur many false alarms,
leading to a shortened uptime.

7  CONCLUSION AND FUTURE WORK

In this paper, we propose a sparse coding-based failure
prediction method for the particle filter in MOCVD
equipment. Using a real-world dataset, our proposed SC-
based method raises fewer false alarms than a PCA-based
baseline method under the same TPR. Compared with the
preventative maintenance strategy, the proposed SC-based
method increases the annual uptime of MOCVD equipment
by 600+ hours. To the best of our knowledge, this work is
the first application of sparse coding to the prediction of
component failure in MOCVD equipment, with
performance demonstrated using a real-world dataset.

The paper focuses on classifiers rather than their ensembles.
It is generally true that ensemble methods are often more
accurate than their individual classifiers provided that the
latter are accurate and diverse (Dietterich, 2000). As a future
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Figure 6. Annual uptime of MOCVD equipment operation
under different replacement policies.

work, we plan to study ensemble methods based on the
proposed SC-based classifiers of this paper.
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