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ABSTRACT 

A sudden failure of a critical component in light-emitting 
diode (LED) manufacturing equipment would result in 
unscheduled downtime, leading to a possibly significant loss 
in productivity for the manufacturer. It is therefore 
important to be able to predict upcoming failures. A major 
obstacle to failure prediction is the limited amount of 
equipment lifecycle data available for training, as equipment 
failure is not expected to be frequent. This calls for machine 
learning techniques capable of making accurate failure 
predictions with limited training data. This paper describes 
such a method based on sparse coding. We demonstrate the 
prediction performance of the method on a real-world 
dataset from LED manufacturing equipment. We show that 
sparse coding can draw out salient features associated with 
failure cases, and can thus produce accurate failure 
predictions. We also analyze how sparse coding-based 
failure prediction can lead to significant efficiency 
improvements in equipment operation. 

1. INTRODUCTION 

Reducing costs and increasing productivity are crucial 
concerns in the competitive manufacturing industry. Many 
manufacturers are seeking to implement intelligent 
manufacturing processes including the use of automated 
data analysis techniques (Scoville, 2011) which can allow 
for cost- and time-saving predictive maintenance (Rothe, 
2008). This paper addresses approaches to optimizing 
predictive maintenance methods for light-emitting diode 
(LED) manufacturing equipment. 

Modern LEDs are multilayered structures of chemical 

materials in which the thickness and composition of the 
various layers determine the color and brightness of the 
emitted light and device energy efficiency. The layers are 
deposited sequentially through the metal organic chemical 
vapor deposition (MOCVD) process, a critical determinant 
process in LED performance. The crystalline structure of 
each new layer is epitaxially aligned with that of the 
underlying layer. This complex process is affected by the 
conditions of a multitude of components, such as pumps, 
heaters, mass flow controllers, and particle filters 1 . 
Unexpected component failure can reduce LED production 
yields, and finding and repairing the source of the failure 
can take engineers up to 5 days. For example, the failure of 
a particle filter will cause the pump to shut down, resulting 
in all the raw materials consumed in that run to be wasted. 
Here, we focus on developing a failure prediction algorithm 
for the particle filter to ensure continuous high-performance 
operation in the MOCVD process. 

Learning features associated with failure cases plays a 
critical role in a data-driven prediction approach. The goal is 
to come up a compact yet discriminative feature 
representation, in which samples related to failure cases can 
be accurately expressed and easily differentiated from others. 
Many feature learning methods have been discussed in the 
literature; see, e.g., Huang & Aviyente, 2006. These include 
principle component analysis (PCA), linear discriminant 
analysis (LDA) and sparse coding (SC). The SC approach 
used in this paper has emerged as one of the most popular 
feature learning methods in recent years, in areas such as 
computer vision (Wright et al., 2010). It computes a sparse 
representation of input data in terms of a linear combination 
of atoms in an overcomplete dictionary (more details are 
given in Section 4.1). Compared to methods based on 

                                                           
1 Note that by a particle filter we mean in this paper a physical filter in 
MOCVD equipment. This is not to be confused with particle filtering 
methods in the diagnostics and prognostics prediction literature (see, e.g., 
Orchar & Vachtsevanos, 2007). 

Jia-Min Ren et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited. 
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