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ABSTRACT 

Due to its inherent efficiency and reliability, brushless DC 

(BLDC) driven actuation systems are widely used in a 

variety of industries such as aerospace, electric 

transportation and industrial positioning. However, it is 

inevitable that various types of faults can develop in the 

actuator either from the BLDC motor or geared positioning 

systems. This paper, focusing on actuator load positioning 

system failures, proposes a data-driven based failure 

prediction method. Run-to-failure data is first collected from 

test-beds of specific BLDC actuation systems and then 

critical features representing system performance are 

extracted. There are also dynamic behavioral tests used, 

which are designed to provide discrete measurements 

reflecting system health conditions. Ultimately, based on 

optimized mapping between the two groups of information, 

a general neural network model is developed to establish a 

nonlinear trajectory model for failure progression. The 

model also allows for prediction of gear failure without the 

interruption of performing dynamic behavioral tests during 

continuous working condition. This approach provides for 

real time monitoring of system behavior as well as 

possibility of the predicting the Remaining Useful Life 

(RUL)  of the actuation system. Although many efforts have 

been done to predict gear wear based on vibration signal, the 

proposed method is formulated within a "sensor-less" 

environment and makes full use of existing on-board 

sensing information, which provides the possibility of a 

closed-loop control system for life management.  

1. INTRODUCTION 

 

Geared Brushless Direct Current Motor (BLDC) Electric 

actuators are common devices used for mechanical 

displacement, positioning or precision motion control.  They 

are widely used in industry applications such as aircraft, 

natural gas and diesel engines, etc. These types of actuators 

usually consist of a BLDC motor, gearbox (referred as load 

system), and control board. Internal Faults in BLDC motors 

have been extensively investigated, such as stator, inverter, 

and rotor failures [1]. Besides motor related faults, the 

gearbox is another critical source of faults. Most of the 

gearbox condition based monitoring is focused on vibration 

analysis, which requires high-resolution accelerometers for 

diagnosis and performance prediction. However, in most 

industry applications, actuators are operated in a hostile 

environment, and even simple sensors installed would have 

to satisfy the strict requirements of compactness, lightness 

and reliability without sacrificing precision. Considering the 

cost and vulnerability of accelerometers, it was desired for 

the case study discussed to explore the feasibility of using 

only the existing feedback sensor technology of the actuator 

system for diagnosis and performance prediction. From the 

aspects of electric engineering, only a few efforts have 

researched the possibility of only utilizing the motor current 

and voltage information for identifying load system faults 

for an actuator such as: shaft imbalance, bearing and gear 

teeth wear out [2]. As such, there exist limited Condition 

Based Monitoring (CBM) efforts using the motor as a tool 

to identify external load gear system problems, not mention 

to predict gear failure. Traditionally, the actuator life is 

estimated statistically and conservative end life intervals are 

usually used based on offline accelerated life tests and 

empirical experiments. However, degradation of an on-duty 

actuator is a dynamic process and it is also affected by 

unanticipated variation during operation. Considering the 

limitations of current actuator system prognostics on 
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sensing and inflexible end life, this study attempts to 

estimate gear failure degradation process of an actuator 

using only output position and motor stator current signals 

and predict its progress ahead. 

The study in [2-5] mainly introduced and further reviewed 

both CBM or model based motor fault detection, 

identification and diagnosis methods. Many faults from both 

internal motor and external load system are studied in terms 

of their complex signatures in different signals and their 

combination. The problem of distinguishing between faults 

with the same fault signatures is also addressed. Researchers 

in [6] proposed a data-driven methodology for the 

remaining useful life prediction of a jet engine actuator 

system. The method utilizes the control system including 

hydraulic pressure, current and position to create a 

classification model, which can identify actuators state of 

health. For prognostic analysis, targeted at valve health, 

Kalman filter is used as a tracking or trending algorithm to 

model the failure progression. The valve health is estimated 

as a hidden state.  Researchers in [7] propose a method to 

predict the failure state of starter motor gear engagement  

using Hidden Markov Models (HMMs). They use time–

frequency features extracted from the motor current and 

methods for computing the parameters from limited data are 

presented.  

Similarly, in this study, the real gear wear is not directly 

measured. A series of dynamic tests are conducted to 

evaluate gear condition with standard control signal. The 

failure progression modeling is formulated as a mapping 

issue between discrete failure "measurement" and real time 

observation. The position error waveform signatures 

quantify the failure and the real time observation are 

representative features of the system performance, which 

are extracted from state current and position error frequency 

signature. These features are processed to be more generic 

avoiding the influence of individual unit setup position. The 

neural network method is used to track the failure 

progression and perform the failure and remaining useful 

life prediction. 

The organization of the paper is as follows. In section II, we 

first introduced experiment test-bed and then overview the 

proposed approach step-by-step. All of the extracted 

features are introduced in section IV as well as feature 

normalization methods. In section V, the failure 

quantification method is introduced. Finally, the General 

Neural Network method based failure progression method is 

introduced in section VI and RUL prediction is validated by 

two more testing units in section VII. This paper also 

introduces how to tackle mapping issues between discrete 

failure measurement and continuous feature variable.  

2. ACTUATOR ACCELERATED TESTING 

The test bed set up within Woodward Inc. to run three 

BLDC electric actuators to failure is seen in Fig. 1. The 

actuators are used in natural gas and diesel engines and are 

expected to achieve a life goal of 30,000 hours. For the test, 

springs were attached on the output shafts to intensify the 

working condition. This test bed had the first actuator, Unit 

1, with on-board electronics, the second actuator, Unit 2, 

had of the electronics off-board and the third actuator, Unit 

3, had similar configuration as the Unit 1 but with oil 

lubrication. Unit 1 was run to complete failure, while Unit 2 

was terminated shortly after Unit 1, for it was needed for 

another project. 

The following subsections describe the two types of tests 

that were conducted on the actuators: endurance testing and 

dynamic testing.  

 

Figure 1. BLDC actuator test bed 

2.1. Endurance test 

In order to run the actuators to failure in a realistic window 

of time for data acquisition, endurance testing was 

performed in which the actuators were running constantly in 

a small range of full travel and five times faster at 10 Hz 

than normal conditions at 2 Hz. In normal conditions, the 

actuator would be shut down once per day, at this faster 

pace it was necessary to have the actuators automatically 

shut down every 5 hours. This shutdown allowed the spring 

to drive the actuator to a mechanical stop and also 

redistributed the grease on the gears. In order to keep dataset 

size to a minimum, only ten minutes of data were collected 

daily from the actuators at a 1 KHz sampling rate. The 

various types of data signals collected were almost identical 

on the units with the exception of no temperature reading 

from the actuator with off-board electronics. 

2.2. Dynamic testing 

In addition to the endurance test, dynamic tests were also 

performed on the actuators on a week-to-week basis. During 

the test, gear positioning system will run in full travel range 

under steady speed, which will allow inspection of all of 

gear teeth in motor pinion gear and frequent engaged teeth 

in drive train gears. The dynamic tests consisted of various 

signal inputs such as: steps, ramps, sweeps and steady state 

positions.  Fig. 3 shows the raw transmission error, or 

difference between the shaft and motor positions, with the 
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ramp input for all seven days the dynamic test was 

performed on Unit 1.  

 

 Figure 2.  Raw transmission error for each dynamic test 

3. ACTUATOR DEGRADATION AND REMAINING USEFUL 

LIFE PREDICTION  

This research focuses on developing data-driven method for 

actuator remaining useful life prediction based on 

positioning gear failure progress modeling. On the one 

hand, the daily endurance data of position or current signals 

from on-board control system is used to extract 

performance-indicating features; Through frequency domain 

analysis, original signals can be translated to features that 

represent gear mesh t signatures. The input and output 

position signal are also analyzed together to quantify 

transmission error caused by nonlinear backlash over time. 

Since each unit has its own initial condition, Minimum 

Quantization Error (MQE) of Self-organizing map (SOM) 

method is used to convert all of critical feature into a single 

dimension health indicator by comparing them with 

consistent baseline normal condition from unit 2. On the 

other hand, weekly dynamic behavior test data provides 

quantitative information directly related to the gear wear. 

Based on the two groups of information, a simple General 

neural network based approach is used to develop baseline 

failure degradation model. 

 

Figure 3. Method overview 

 

As seen in Fig. 3. With baseline failure degradation model, 

system failure condition can be predicted without 

interrupting continuous work for dynamic tests; 

furthermore, after translating fault measurement to design 

actuator life information, the RUL prediction can be 

realized.  

4. FEATURE EXTRACTION 

4.1. Transmission error 

The transmission error (TE) of a gear, gear set, or of a 

complete gearbox is defined as the deviation between the 

theoretical angular position of the driven gear (output) and 

its actual position, when driving the input at a constant 

steady rotation. In this study, TE is defined as the deviation 

between gearbox driven motor position and the output 

gearbox shaft position. The absolute transmission error is 

also partially adjusted by the feedback control mechanism, 

because when the gearbox is degrading, the feedback 

position signal will try to compensate the loss by demanding 

more current. 

                                           (2) 
 

As able to clearly observe the position error caused over 

different rotational angles, the transmission error spectrum 

is calculated  over time against position of motor shaft (as 

Fig. 4 shows). According to  endurance tests, the motor is 

setup to run within one revolution (44 rad-38 rad), however 

the travel range has been changed twice at the end of 

actuator life. Before the changes,  the transmission error 

variance at certain position of motor shows gradually 

increasing. This becomes a good indicator to actuator gear 

system performance. Therefore, average TE variance over 

motor drive range (in Fig. 5) is calculated as one of the 

critical features.   

Instead of focusing on the absolute value of TE and motor 

or shaft position, the frequency domain features, which are 

directly related to motor and shaft rotation variations, are 

more concerned.  Fig. 6 shows shaft position feature in 

frequency domain. Because the actuator is operated at 10hz 

and every stroke movement includes the forward and 

backward actions, the 20hz becomes signature frequency to 

indicate vibration increasing caused by friction and 

backlash. Apparently, Unit 1 has a more dramatic 

degradation pattern starting about one-third of the way into 

the test.  

4.2. Frequency Response of gear system 

Faults such as gear wear caused friction or nonlinear 

backlash in actuator positioning system can be considered as 

system instinct characteristic change. The variation of total 

backlash in the gear system will affect system frequency 

response characteristics. Therefore, in the study, the feature 

of power distributed at the low frequency range (around 20 
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hz) is extracted from the frequency response spectrum with 

input motor position and output shaft position to indicate 

system performance change as shown in Fig. 7. 

 
Figure 4. TE spectrum over motor position 

 

 
Figure 5 TE variation feature 

 
Figure 6. Position feature in frequency domain 

 
Figure 7. Frequency response at 20 hz 

4.3. Current Signal Analysis 

Stator current has been one of critical signals used in motor 

fault detection and diagnosis [4]. However, in particular, for 

the load system that usually consists of gearbox, coupling, 

and bearing supports, vibration based analysis is very 

popular and in fact, some electro-machine system systems 

are equipped with vibration sensors. Vibration sensors 

usually are delicate and expensive; however, they can detect 

early incipient failures. In this study, instead of using a 

vibration sensor, as suggested in [3], spectral analysis of 

stator current is utilized to spot faults from load system.  

The faults from the load system mainly are induced by: 

worn and broken teeth on motor pinion gear, driving gear 

box, and the increase in friction caused by the diminishing 

lubricant [4, 8]. These faults will cause instability in load 

torque and result in pulsating components. As seen in (1), 

during steady speed operation, load torque has a nearly 

linear relationship with state current.  

                                           (1) 

Therefore, ideally, if the motor itself was considered under 

good condition, a stator current spectral analysis could 

indicate localized fault from gears in load system, 

particularly for the motor pinion and driving wheel gear.    

In the dynamic testing, the ramp signal is fed into the 

system, which leads to steady motor rotation. The Welch 

Power density spectrum for the phase A stator current and 

its transformation in d-q coordination are shown in Fig. 8. 

The dynamic test is run at a 1 Hz frequency and the number 

of teeth on the motor pinion is 14, therefore the motor 

pinion gear mesh frequency can be seen around 14 Hz. 

 

Figure 8. PDS of stator current 

4.4. Feature Calibration and Normalization 

In real utilization, every unit might be subjected to random 

emerging conditions. One of frequent condition changes 

comes from the demanding or input signal, material and 

supply power. During machining, produced parts might be 

slightly different because of variation in the input material. 

Actuators performance might also be changing due to 

drifting power supply and other thermal effects. As Fig. 8 

shows, during endurance the test, Unit 2's current sensor 

suffers a high temperature meltdown. After replacing, the 

supply voltage has an increase, which caused an obvious 

change in the current signals. This variation has affected all 

of current related features.  
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As to recover the trendability of the system degradation 

reserved in the significant current features, a linear feature 

calibration technique is used to adjust feature values after 

the voltage increase as shown in Figure 9 

 

Figure 9. Current frequency feature and its calibration 

 

Besides input variation, individual units will perform 

slightly different due to mechanical configuration variation 

or others. It is frequently observed that units start with 

different initial values; therefore the normalization step 

would be necessary to make different units compatible. 

Hence, every value in the feature matrix is normalized by 

comparing them with the starting baseline value of each 

feature as (3) shows.  

 (   )  
 (   )   

  
                              (3) 

In the equation, i is the instance index and j is feature index. 

Mj is the mean value of the first 5 samples in every feature.  

5. FAILURE MEASUREMENT 

During the dynamic test, with the ramp signal input to the 

system, motor is designed to run around 12 resolutions 

(from 3rad to 88rad) at steady speed. The output shaft 

finishes one stroke movement and is driven by geared load 

system that engaged with motor pinion. Since daily 

endurance tests always excise the system at a smaller range 

of one working cycle (one output shaft stroke), therefore, 

the frequent engaged motor pinion or driven train gear teeth 

are worn early and the same engagement position will have 

an apparent increase in transmission error compared with 

other position in dynamic test. As Fig.10 shows, at around 

42 rad of every working cycle, compared with other 

position, the TE increases. In Fig. 10, the depth and time 

duration of the TE drop increases for each dynamic data set 

as depicted in the various colors. In Unit 2, because the 

calibration for the position was set opposite of Unit 1, the 

TE has an increased instead of decreased spike around the 

similar position. In this study, the depth of the drop in Unit 

1 and the height of the spike in Unit 2 are used to qualify 

failure of the gear wear. From the Figure 10, it is obvious 

that Unit 1 has more severe degradation than Unit 2. 

Compared with endurance tests that excise the actuator in a 

daily base and provide performance features, dynamic test is 

design to benchmark system failure. However, the dynamic 

tests are conducted less frequent than endurance tests, the 

size of samples of fault measurement are only 6, compared 

with around 60 samples from endurance test totally. The 

system performance and fault measurement mapping cannot 

be realized unless both the target and predictor variables 

have a compatible size of samples. Therefore, a curve fitting 

method is used to  generate reasonable fault measurement 

for each performance sample. The fault measurement from 

initial dynamic test for Unit 2, before all of endurance tests, 

is taken as reference for all of Unit 2 fault measurements. 

The curve fitting result is shown in Fig. 11.  

 

 

Figure 10. TE in dynamic test with ramp input 

 
Figure 11. Curve fitting for gear wear 

6. SYSTEM DEGRADATION MODELING AND PREDICTION  

After evaluating features based on system knowledge and 

visualization of the trendability, four features, current 

frequency, shaft position in 20 hz, positioning frequency 

response and TE average variation over travel range, are 

extracted from endurance tests to formulate the data pattern 

of actuator system degradation. Consequently, the system 

degradation modeling issue becomes an optimized mapping 
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issue between endurance test features (xi) and failure 

measurement (yi). 

    ∑  ( (          )   )
 
                     (4) 

In equation (4),           is performance features. Before 

the mapping, the features are first converted into Self-

organizing map-minimum quantization error (MQE) values, 

that represent system performance health index. 

6.1. Health index of actuator load system  

Minimum Quantization Error (MQE) is a method of 

applying Self-organizing map (SOM) to measure system 

performance change by calculating the distance of current 

data with the normal baseline. The normal data are trained 

as the SOM map and the testing feature vector is compared 

with the weight vector of the all map units. The minimum 

distance between the new feature sample and the BMUs are 

used to quantify the health levels. Here, the baseline is 

selected from initial testing of unit 2. the MQE value of 

three unit test are calculated as shown in Fig. 12 

SOM algorithm is a one layer neural network model. It also 

can be used to map high-dimensional data to a lower 

dimensional grid and convert the nonlinear relationship of 

the dataset into simple geometric distribution and then 

visualize it on a distance map [10]. During the map training 

iteration, the best matching units (BMU) are the neurons 

that have the closest distance to the input vectors.  

                                        (6) 

 
Figure 12. MQE value 

Since only part of fault measurement samples are from the 

real dynamic test not curve fitting results, the original 

degradation modeling issue becomes a semi-supervised 

mapping optimization issue [9].  If it’s assumed that Z is the 

subset of predictor variable samples in time series which 

contains the real measurement values: 

      ∑  ( (    )   )   
     ∑  ( (  )   )   (5) 

As mentioned in [9], there are two items added in the 

previous loss function (4). The first added item allows the 

points with real measurement value to have strong 

influence. The second item is to favor the progressing 

sequence of the Y measurement, adhering to prior 

knowledge; however, in this study, since the curve fitting 

results have shown promising goodness of fit, the influence 

of last term is ignored as equation  (5) shows. 

6.2. GRNN based degradation modeling 

General regression neural network (GRNN) is used to map 

relationship between system performance health index and 

the off-board physical fault measurement. It also predicts 

system degradation. GRNN [11] is a one-pass memory-

based neural network. It does not require an iterative 

training procedures like back propagation networks. It can 

be used for any regression problems without constrain on 

linearity. It approximates any arbitrary function between 

input and output vectors. As the training set size increases, 

the estimation error approaches zero [12]. A GRNN consists 

of an input layer, pattern layer, summation layer and output 

layer. During prediction, the predicted value y, according to 

a unknown input vector x, is: 

  
∑        (    )

 
   

∑      (    )
 
   

                           (6) 

 

Based on (6), the optimization (5) is designed to find best 

spread of the radial basis function s, which is a parameter 

contained in D(x-xi), with least sum square error (SSE). It 

proved that when the spread equaled to 0.00031, the loss 

function of SSE value reached a global minimum. 

Using this approach, an actuator degradation model can be 

established. Based on the model, given health value of 

MQE, the actuator degradation can also be predicted, for 

example, Fig. 13 shows prediction results for all unit 2 mqe 

value. in Fig. 14, the actual failure measurement of unit 2 

from dynamic test is compared with predicted value. For 

unit 1 the first actual failure measurement already reaches 

0.002. Based on the degradation model, unit 1's 28th cycle's 

mqe value is the one corresponding to the failure level.  

 

Figure 13 GRNN degradation model based on unit 2 
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Figure 14 Degradation prediction for unit 1 and unit2 

7. REMAINING USEFUL LIFE PREDICTION 

Among all of testing units, the unit 2 and unit 1 are finally 

disassembled after all of tests. Unit 2 proved to have 0.003 

inch gear wear at motor pinion gear after 69 running cycle, 

which is 25% of remaining useful life left according to the 

product design. Unit 1 proved to fail much early than unit 2 

and run further than accepted life term. At the end one tooth 

even fell. Unit 3, has special oil filter system and no failure 

symptom when the test is stopped. Therefore, all fault 

measurements of unit2 are linearly translated into remaining 

useful life as shown in Fig. 15. In the model only half of 

samples are used to train the model and the prediction MSE 

for all of samples is 0.009.  

If assume the unit 2 as the baseline model as mentioned 

above, RUL of both unit 1 and unit 2 are predicted as Fig 16 

shows. The prediction results are consistent with the real 

condition. Unit 1 is predicted to fail after 31 cycle. Unit 3 

just consumed less than 20% of its life after 83 cycles  

 
Figure 15. Unit2 Degradation prediction by RUL 

 
Figure 16. Unit1 and Unit 3 RUL prediction 

8. CONCLUSION AND FUTURE WORK 

The research discussed in this paper strives to predict gear 

failure and RUL in BLDC electric actuators using existing 

feedback sensors rather than adding cost with the inclusion 

of accelerometers. Through the implementation of a test bed 

within Woodward Inc., the proposed method is able to use 

run-to-failure endurance data to extract useful information 

from only current and position signals about the gear wear 

within the actuators.  

A neural network based optimized mapping method is 

develop to model generic gear failure progression in the 

BLDC actuator system, which also lead to the prediction of 

gear failure before it reaches severe damage.  The proposed 

method also made efforts to compensate for the semi-

supervised mapping issue caused by "incomplete" discrete 

failure measurement samples compared to "complete" high 

sampling rate process observation features.  

In this research, one actuator (Unit2) was used to develop 

the failure progression model and another two similar units 

were used to validate the method. Although each unit has 

different control mechanism and random operation 

variation,  for similar gear failure issues, the proposed 

method is able to compensate the difference by extracting 

critical features to represent the failure progression, 

calibrating features based on every unit initial condition, and 

reducing feature dimension by MQE based method. 

Using a general regression neural network, the paper 

successfully demonstrated the ability to predict the actuator 

gear failure progression and caused RUL. In the future, 

other regression modeling method will be benchmarked and 

this method will be improved for compatibility using run-to-

failure endurance data from more actuators of the different 

type.  
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