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ABSTRACT 

In many instances, condition monitoring equipment has not 
been installed on machinery. Yet, operators still need 
guidance as to when to perform maintenance that is better 
than what is offered by the equipment manufacturers. For 
these systems, running hours, counts, or some other measure 
of usage may be available. This data, along with failure rate 
data, can provide an expected time to failure, and the 
estimated remaining useful life. The failure rate (even small 
sample size) is used to estimate the shape and scale 
parameters for the Weibull distribution. Then the 
conditional expectation of the truncated survival function of 
the Weibull is used to estimate the time to failure. This is an 
actuarial technique to solve the conditional survival function 
problem of: given that the equipment has survived to time x, 
what is that probability of the equipment surviving to time x 
+ y. The inverse cumulative distribution of the truncated 
survival function can then be used to estimate the remaining 
useful life, that is: a time when the conditional likelihood of 
failure is small, such as 10%. The 90% confidence of the 
shape and scale parameters is then used to give a bound on 
the remaining useful life. This method is then tested on a 
real world bearing dataset. 

1. INTRODUCTION 

There is for many industrial operators, a point where the 
business conditions force them into reducing costs. When 
evaluating cost saving measures that impact productivity, 
condition monitoring is clearing one methodology that is 
attractive. For most operators, unscheduled maintenance 
events impact profitability. Unscheduled maintenance 
events can be impacted through design, condition 
monitoring, or a combination of both.  Design efforts 
usually take time, and are costly to retrofit into existing 

platforms. This leaves condition monitoring techniques as 
one of the most cost effective means to reduce unscheduled 
maintenance, thus improving productivity and profitability. 

There are a number of condition monitoring techniques that 
an operator can explore, including vibration, acoustic 
emissions, and oil particle/condition monitoring. These 
methods give the operator an indication of the damage/state 
of the machine under monitoring. Other methods, such as 
usage tracking, can be used as well. These “open loop” 
(indirect) methods, while not as powerful as the direct 
(closed loop) measure of damage, such as vibration, can still 
bring value to the operator in planning a maintenance event. 

Consider the operators current maintenance paradigm. The 
equipment, such as a drilling machine, is designed with an 
operating life of 20 years. This life does not take into 
account a number of externalities, such as: 

• Oil contamination 

• Oil level low/oil starvation 

• Unanticipated loads 

• Variations in material quality 

• Improper maintenance 

When the operator experiences an unscheduled maintenance 
event, for large equipment in remote locations, the down 
time and loss of productivity can be costly.  

However, many large and critical manufacturing equipment 
have programmable logic control (PLC) units that can 
record torque, rpm, current, and at the very least, operating 
hours. This level of detail, in addition to historic failure 
data, can be used to develop a prognostics health 
management (PHM) program. This in turns helps advice the 
operator when to perform maintenance, and reduces the 
chance of an unscheduled maintenance event. For an 
operator initiating a condition monitoring (CM) program, 
this is a powerful and low cost mean to approach this.  
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Actuarial science is a discipline within mathematics where 
statistical methods are applied to estimate future contingent 
events. The discipline has evolved with great pace during 
the last 30 years due to the development of modern 
computers, and is an indispensable tool in industries such as 
insurance, finance and healthcare. Although the discipline is 
well developed within the listed industries, the techniques 
are not widespread within the community of engineering. 

In this paper, using historic data and PLC operating hours, 
an estimate of the remaining useful life (RUL) is calculated 
using a conditional survival function. This is an actuarial 
procedure to generate a 90% probability of surviving to 
some future time. This is tied to a Health Index (HI) 
concept. The HI is a single measure of the total health of the 
component or equipment under consideration. A HI of zero 
indicates that the component is “new”, i.e. operates perfectly 
according to specifications. A HI of one indicates that the 
component operates at the boundary of its specification 
envelope, in which the operator is advised to perform 
maintenance.  

The RUL is the time from the current HI to an HI of 1, i.e. 
the estimated time from current time until the time when the 
component operates outside designated specification 
envelope. The HI itself is a combination of condition 
indicators (CIs) fused together, where each CI is a certain 
measure or statistic chosen to detect faults with minimum 
false alarm rate. Thus, the CIs should be able to differentiate 
between different faults and healthy state with maximum 
confidence. 

While this HI concept has been proposed for gear health 
monitoring (Bechhoefer and He, 2012), the mapping of a 
conditioned probability of survival to an HI is a new 
concept. 

2. CONCEPT OF HEALTH AND THE RUL 

To simplify presentation and knowledge creation for a user, 
a uniform meaning across all monitored machines should be 
developed. The measured CI statistics, e.g. probability 
density functions (PDFs), will be unique for each 
component or machine monitored due to different rates, 
materials, loads, etc. This means that the critical values 
(thresholds) will be different for each monitored component. 
By using the HI paradigm, one can normalize the CIs, such 
that the HI is independent of the component or machine. 
This facilitates the use of a “stop light” informational 
system by using nominal (green), warning (yellow) and 
alarm (red) levels. This paradigm also provides a common 
nomenclature for the HI, such that: 

• The RUL forecasts the time when it is appropriate 
to do maintenance, not the time until failure. 

• The HI ranges from 0 to 1. For vibration based 
CM, the threshold is set such that the probability of 
exceeding an HI of 0.5 is the probability of false 

alarm (PFA). For the conditional probability of 
survival model, the HI is scaled such that there is 
only a 0.1 probability of exceeding 1.2. For the 
conditional model, this was chosen such that the 
probability of failure at HI 1 is small.  

• A warning alert is generated when the HI is greater 
than or equal to 0.75. Maintenance should be 
planned by estimating the RUL until the HI is 1.0. 

• An alarm alert is generated when the HI is greater 
than or equal to 1.0. Continued operations could 
cause collateral damage. 

Again, this nomenclature does not define a probability of 
failure for the component, or that the component fails when 
the HI is 1.0. Rather, it suggests a change in operator 
behavior to a proactive maintenance policy: perform 
maintenance prior to the generations of cascading faults. For 
example, by performing maintenance on a bearing prior the 
bearing shedding extensive material, costly gearbox 
replacement can be avoided. 

3. THE WEIBULL PROBABILITY DISTRIBUTION FUNCTION 

The Weibull distribution is attributed to Waloddi Weibull in 
1951 (Abernaethy, 1996). Extensive research by the U.S. 
Air Force for fitting of life data suggests that the Weibull 
analysis is a leading method. Abernethy (1996) reported 
while working at Pratt & Whitney that the Weibull method 
worked with extremely small samples: even two or three 
failures gave good results. This characteristic is important in 
many industries where the cost of development/applications 
testing is high. The ability of the Weibull to give relatively 
good parameter estimates with small sample size, allows 
this distribution to be used with more advanced techniques, 
such as failure forecasting and prognostics. 

The Weibull PDF is characterized as: 

𝑓 𝑥, 𝜆, 𝑘 = 𝑘
𝜆
𝑥
𝜆

!!!
𝑒!

!
!
!

, 𝑥 ≥ 0       (1) 

where k is the shape parameter and λ is the scale parameter. 
It is interesting to note that with k   =   1, the PDF is 
exponential, which describes a memoryless process (e.g. 
where the failure rate is constant over time, or Markovian). 
For k   =   2, the PDF is the Rayleigh distribution, which is 
used extensively in radio frequency/radar models to describe 
receiver random energy.  

While a number of different methods can be used for 
estimating the parameters k and λ, the maximum likelihood 
estimator (MLE) (Cohen, 1965) is commonly used, because 
of its numerical stability. 

In general, consider the likelihood of the joint density 
function of n random sample of  f(x,  λ,  k), then  

𝐿 = ∏!!!
!   𝑓 𝑥, 𝜆, 𝑘 .                               (2) 
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For a well behaved function, the maximum likelihood of 
𝑓 𝑥, 𝜆, 𝑘  is the solution of  

𝑑   ln(𝐿)
𝑑𝜃 = 0.                                (3) 

Differentiating with respects to k and solving:   

𝑛
𝑘 +    𝑙𝑛 𝑥!!

!!!     − 1 𝜆 𝑥!!𝑙𝑛 𝑥!!
!!! = 0.       (5) 

Differentiating and solving for λ, gives: 

− 𝑛 𝜆 + −
1
𝜆!    𝑥!!  !!!

! = 0.                    (6) 

Solving for k in terms of λ gives: 

𝑛   𝑥!! ln 𝑥!   !!!
!

   𝑥!!!!!
!     − 1 𝑘 𝐸 𝑥! .              (7) 

Eq. (7) is easily solved for k using the Newton-Raphson 
method, and then λ is found as  𝜆 =   𝐸 𝑥! . 

3.1. The Conditional Probability of Survival 

The Weibull PDF gives the unconditional probability 
function of the component under analysis. This allows the 
estimation of the component life from the first moment (e.g. 
the expected life), and from the second moment, the 
variance in the life. That said, operators are typically 
interested in a different question: Given that the component 
has survived until today, what is the probability that it will 
survive until tomorrow, or until the next maintenance 
period. This concept of survival is well established by 
actuarial models and is the basis for insurance products. 

The cumulative distribution function F(x,  λ,  k), is defined as 
the integral of f(x,  λ,  k) from 0 to x, or the probability of a 
component failing between time 0 and x. This allows one to 
define the probability of surviving to time x as: 1   -­‐  F(x,  λ,  
k). For simplicity, one can assume that the estimates of λ,  k, 
are established.  

One can now conceptualize the conditional probability of 
component survival to time x. This is a subset of the sample 
space of the random variable X, i.e. those values of X that 
fail in excess of x. This is the condition survival function, or 
formally 

Pr(X  >  x+n  |  X  >  x)  =  S(x+n  |  X  >  n).           (8) 

This is the probability that the age of failure will exceed 
x+n, given that is does last until x. This is the concept that 
the probability of survival to x+n, given survival to x. From 
Bayes, one then finds that: S(x+n  |  X  >  n)  =  S(x+n)/S(x). 
In the actuarial sciences, this is called the lower truncation 
of the distribution of X; see (London, 1997). 

The more general view of the truncated distribution is to 
consider the distribution in which X fails between times y 
and z. This truncated distribution is then given as: 

S(x|y<X≤z)  =  Pr(X>x|y<X≤z)  =  Pr(x<X≤z|y<X≤z).   
(9) 

If this condition probability is multiplied by the probability 
of obtaining the condition (which is S(y)   –   S(z)), then the 
unconditional probability for failure between x and z, which 
is S(x)  –  S(z),  is then 

S(x|y<X≤z)  =  [S(x)  –  S(z)]  /  [S(y)  –  S(z)].        (10) 

From this, one can derive the expectation of the age of 
failure, X, of a component known to be functioning at time 
y. By subtracting y from this expected age of failure, one 
obtains the expected future life of a component (in the 
actuarial sciences, this is denoted at the expectation of life at 
age y). Formally, this is expressed as 

E[X|X>y]  –  y.                                                                            (11) 

Since 𝑓 𝑥|𝑋 > 𝑦 𝑑𝑥 = 1!
! , the expectation is written as: 

𝐸 𝑋 𝑋 > 𝑦 − 𝑦 = 𝑡𝑓 𝑡 + 𝑦|𝑋 > 𝑦 𝑑𝑡!
! .                 (12) 

Note that f(t+y   |   X   >   y)   is the probability distribution 
function of (X-­‐y|X>y). 

3.2. Some Complications and Deifications  

The health concept is based on the idea that the operator 
does maintenance when it is appropriate. With vibration/oil 
condition monitoring, there is feedback from measurements 
that give indications of wear and damage. In the actuarial 
model, one is given probabilities that relate to failure. The 
time of estimated failure is not the time when one wants to 
trigger a maintenance event. Failure causes an unscheduled 
maintenance event, which leads to higher cost.  
 
This leads to a definitional problem: what should the target 
condition probability of survival be? While not entirely an 
ad hoc issue, this is a case where simulation results can be 
used to evaluate the definition process in a structured way. 

• The RUL is the condition probability that, given 
the component has survived to time y, it will 
survive until time x. 

• The RUL is a conservative value, such that the 
time x, at which maintenance is performed is such 
that the reliability of the component is not 
significantly degraded. For plants such as an off 
shore oil platforms, it may be difficult to get a 
replacement component if it fails prior to the 
planned maintenance event, and downtime is 
extremely expensive. 

• The operator needs a range/confidence in the RUL 
estimate. The RUL estimate range is taken by the: 
low probability of failure as the 0.1 estimate of the 
Weibull parameters, while the high probability of 
failure is the 0.9 estimate of the Weibull 
parameters.  
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• Because one is not interested in the time until 
failure, but the time until it is appropriate to do 
maintenance, the expected time of a failure 
conditioned is given at a probability of exceeding 
that 83% of that time, with a confidence of 90%. 

 
The expected time of failure is defined as e. The last bullet 
point above thus means that the expected time of failure is 
the inverse of the lower truncated cumulative distribution 
function (CDF) at 90%, divided by 1.2. Thus, RUL=e-t, 
where t is the current time. 
 
Because there is no closed form solution for the inverse 
lower truncated CDF, this was calculated numerically via 
the Newton-Raphson method, such that: 

S = 1-F                                  (13) 
where F is the Weibull CDF for the current time x, λ, k. Fe 
is the Weibull CDF for expected time of failure at time e, λ, 
k. Further, we define the probability of survival after time e 
as 

S(e) = 1 – Fe,             (14) 
and the confidence 

P = S(e)/S = 0.9                              (15) 
 

Simulation used to evaluate the performance of this HI 
paradigm was developed using a shape parameter, k = 6, 
and a mean time to failure of 5.5 years. Then, λ was 
calculated as:   

𝜆 = 𝜇
𝛤 1 + 1 𝑘

                              (16) 

The Weibull random function was then called to simulate 
the time of failure of 5 components. Then, using these 
failure times, an estimate of Weibull parameters, a 0.1 and 
0.9 confidence of the Weibull was estimated using Cohen’s 
method (Cohen, 1965). Example Matlab© code can be 
found in the appendix. Figure 1 shows the simulated 
example of a component that will fail after 4.42 years, 
where the experiment has run 3.19 years. The RUL is 1.43 
years, with a lower limit (e.g. confidence of the RUL) of 
0.48 years to 2.28 years.  

4. RESULTS AND PERFORMANCE METRICS 

Simulation was used to develop the analysis routine and 
then evaluate the performance of a notional component. 
Once the analysis engine was tested via simulation, it was 
applied to a real world fault data set.  

4.1. Simulation Results 

Simulation is a powerful tool to evaluation the performance 
of algorithms. Given the expense and time required to study 
fielded components, the ability to test “what if” conditions 
requires the establishment of performance metrics to grade 
the quality of the analysis. Three metrics that were chosen 
for this study where:  

 

 
Figure 1 Example of HI and RUL using Condition Survival 
Function 

4.1.1. The Safety Margin  

This is the time between the actual time of failure and 
current time (e.g. when the HI = 1). From this, one can 
estimate the expectation of how much usage of the 
equipment was lost in replacing prior to failure. 
Additionally, given that, an opportunity cost can be 
associated with lost productivity due to a failure, and 
associated costs can be calculated. 

4.1.2. The RUL at the End of the Experiment 

The RUL is defined as: the expected life – the current time. 
The experiment ends when the HI ≥1. Thus, this is a direct 
measure of the average error in the RUL calculation.  

4.1.3. The Future Value of Money at the End of the 
Experiment.  

This cost is calculated on the safety margin, or the time of 
lost usage on the equipment.  

4.2. The Experiment 

The experiment was run with 500 trials. For this study, the 
cost of equipment failure will be taken as $600K per day. 
The capital cost to replace the failed equipment will be set at 
$2,000K. The cost of money (for early replacement) is taken 
as 7%. It is also assumed that the time to replace the failed 
equipment is 14 days, or $8.4 million in opportunity cost.  
For this simulation, just 7.6% of the trials failed prior to 
recommended replacement, of which 0.4% failed within 2 
weeks of the RUL estimate (see Figure 2). Thus, the mean 
opportunity cost of failure in using this model is $638K, or 
approximately 1 day. Without this replacement model and 
simply making replacements upon failure, the opportunity 
cost is, as noted, $8,400K.  
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Given the distribution of the safety margin (e.g., 
replacement of the equipment prior to the failure of the 
equipment, Figure 3), the future value of the money spent 
on replacing the equipment early is $278K.  Because the 
future value is skewed, the median is somewhat less, at 
$268K (Figure 4).  

 

 
Figure 2 RUL Error based on Failure Occurring Prior to HI 
of 1 

The net benefit of replacement based on this actuarial model 
is: $8,400K – ($638K + $268K) = $7,494K. This is a large 
cost saving, which can be achieved solely on existing data 
from in-service failures.  

 
Figure 3 Distribution of Time Until Failure of the 
Equipment in Days 

 
Figure 4 Distribution of Cost of Capital to Replace 
Equipment Early 

4.3. Bearing Fault Data 

The time until failure for high speed bearing with an axial 
crack was generously provided by the National Renewable 
Energy Laboratory (NREL), Gearbox Reliability 
Collaborative. The data set consists of bearing with short 
life (mean age of failure 2.09 years based on 23 examples) 
and longer life (mean age of failure 4.07 years based on 25 
examples). 

The experiment was conducted by randomly sampling 6 
bearings out of the dataset to estimate the Weibull λ, k 
parameters. The estimated RUL was compared to the actual 
life, in a process similar to the simulation study. 

Entering assumptions for cost can be defined based on 
historic industry values. The cost of replacing a high speed 
bearing “up tower” (i.e. prior to failure and the associated 
collateral damaged associated with failure) is $50K, and two 
days of lost production. The cost associated with a “down 
tower” (i.e. after the failure occurs, during which there is the 
cost of replacing the gearbox, and a mobilization cost for the 
crane), is $400K and 30 days of lost production. The lost 
revenue for a day of power production will be taken as $1K. 

4.3.1. Short Life Bearing Replacement Policy 

Based on the random draw of the six bearing failure times, a 
λ of 2.26 and k of 13.15 was calculated from for the 
Weibull. The expected life the bearing, from the inverse 
lower truncated CDF at the start of the experiment is 1.58 
years. At the time of replacement, the expected value of the 
days remaining until failure (Figure 5) was 0.48 years. 

The net present value of replacing the bearing early was: 
$53.7K, including lost revenue for the maintenance. This 
compares to a cost of 430K for the current practice. The net 
benefit of actuarial model is: $430K - $53.7K = $376.3K 
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Figure 5 Short Bearing Life Margin Of Safety PDF 

4.3.2. Long Life Bearing Replacement Policy 

For the long bearing life experiment, the λ was 4.27 and k 
of 9.5, giving a life the bearing, from the inverse lower 
truncated CDF at the start of the experiment of 2.81 years. 
At the end of the experiment, the expected lost years of 
usage (i.e. the margin of safety) was 1.1142 years (Figure 6) 

 
Figure 6 Long Bearing Life Margin of Safety PDF 

The mean cost of this policy was $57.9K. Given a similar 
cost structure for replacing the bearing when its failed, the 
net benefit of the method was $372.1K 

5. CONCLUSION 

Actuarial methods provide a means to examine condition 
probabilities of survival. This in turn can be used to modify 
existing maintenance practices to replace equipment when it 
is appropriate, versus when the equipment has failed. From 
a human factors perspective, the usage and current health of 
the equipment is present to the operator in such a way that 
maintenance is planned when the health is at 0.75, and 

performed when the component/equipment is at an HI of 1 
or greater. 

This conservative process insures that the probability of 
unscheduled maintenance is small. For the simulated data, 
this results in a significant opportunity cost saving relative 
to the current “run to failure” model.  Even taking into 
account the cost of money, and the rare cases in which this 
model fails, this paradigm resulted in a 90% cost saving 
over traditional maintenance models ($7.5 million savings 
on an $8.4 million dollar estimated cost). 

For the real world bearing data, this resulted in a cost 
reduction of 6:1 (e.g. ~$55K cost of replacing early, vs. a 
$430K cost when failed). It can be argued that, perhaps the 
failed bearing does not require a “down tower” repair. Even 
under these circumstances, its likely that the cost benefit is 
at least the lost revenue due to lost production, or 30K. 

While this modeled used time, reduction in system variance 
may be improved by using other metrics of usage, such as 
power hours or some other more direct measure of load or 
wear on the equipment. 

The use of simulation of the actuarial method would allow 
optimization and minimization of opportunity costs. This 
could be achieved by adjusting the expected life to HI 
mapping. This model is based on certain assumptions in the 
cost of money, the opportunity cost due to lost productivity, 
and the cost of the equipment. These clearly can be argued 
and updated as needed. 
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APPENDIX 
function	
  [safety,error,fHI]	
  =	
  getRUL	
  (lam,k)	
  
	
  	
  
safety	
  =	
  zeros(100,1);	
  
error	
  =	
  zeros(100,1);	
  
fHI	
  =	
  zeros(100,1);	
  
for	
  j	
  =	
  1:500,	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  if	
  nargin	
  ==	
  0,	
  
	
  	
  	
  	
  	
  	
  	
  	
  mv	
  =	
  5.5;	
  
	
  	
  	
  	
  	
  	
  	
  	
  k	
  =	
  6;	
  
	
  	
  	
  	
  	
  	
  	
  	
  lam	
  =	
  mv/gamma(1+1/k);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  sampe	
  =	
  wblrnd(lam,k,1,5);	
  
	
  	
  	
  	
  	
  	
  	
  	
  actual	
  =	
  wblrnd(lam,k);	
  
	
  	
  	
  	
  	
  	
  	
  	
  [parmhat,	
  parmbnd]	
  =	
  wblfit(sampe,.1);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  k	
  =	
  parmhat(2);	
  
	
  	
  	
  	
  	
  	
  	
  	
  lam	
  =	
  parmhat(1);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  khi	
  =	
  parmbnd(1,2);	
  
	
  	
  	
  	
  	
  	
  	
  	
  lamhi	
  =	
  	
  parmbnd(1,1);	
  
	
  	
  	
  	
  	
  	
  	
  	
  klw	
  =	
  parmbnd(2,2);	
  
	
  	
  	
  	
  	
  	
  	
  	
  lamlw	
  =	
  parmbnd(2,1);	
  
	
  	
  	
  	
  	
  	
  	
  	
  pr	
  =	
  0;	
  
	
  	
  	
  	
  end	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  y	
  =	
  linspace(0,actual,100);	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  rul	
  =	
  zeros(1,100);	
  
	
  	
  	
  	
  rulHi	
  =	
  rul;	
  
	
  	
  	
  	
  rulLw	
  =	
  rul;	
  
	
  	
  	
  	
  life	
  =	
  rul;	
  
	
  	
  	
  	
  hi	
  =	
  rul;	
  
	
  	
  	
  	
  hlw	
  =	
  rul;	
  
	
  	
  	
  	
  hhi	
  =	
  rul;	
  
	
  	
  	
  	
  	
  
	
  	
  	
  	
  for	
  i	
  =	
  1:100	
  
	
  	
  	
  	
  	
  	
  	
  	
  crt	
  =	
  y(i);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  e	
  =	
  invLowTrunCDF(crt,lam,k,.1)/1.2;	
  
	
  	
  	
  	
  	
  	
  	
  	
  elw	
  =	
  	
  invLowTrunCDF(crt,lamlw,klw,.1)/1.2;	
  
	
  	
  	
  	
  	
  	
  	
  	
  ehi	
  =	
  	
  invLowTrunCDF(crt,lamhi,khi,.1)/1.2;	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  rul(i)	
  =	
  e-­‐crt;	
  
	
  	
  	
  	
  	
  	
  	
  	
  rulHi(i)	
  =	
  ehi-­‐crt;	
  
	
  	
  	
  	
  	
  	
  	
  	
  rulLw(i)	
  =	
  elw-­‐crt;	
  
	
  	
  	
  	
  	
  	
  	
  	
  life(i)	
  =	
  e;	
  
	
  	
  	
  	
  	
  	
  	
  	
  hi(i)	
  =	
  crt/e;	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  hi(i)	
  >	
  1,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  break;	
  
	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  	
  	
  	
  	
  hlw(i)	
  =	
  crt/elw;	
  
	
  	
  	
  	
  	
  	
  	
  	
  hhi(i)	
  =	
  crt/ehi;	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  pr	
  ==	
  1,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  plot([0	
   rul(i)],[hi(i)	
   1],[0	
   rulLw(i)],[hlw(i)	
   1],'m',y(1:i)-­‐
crt,hi(1:i),actual-­‐crt,1,'r*',[0	
  rulHi(i)],[hhi(i)	
  1],'m','LineWidth',2)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  axis([-­‐8	
  5	
  0	
  1])	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  xlabel('Usage:	
  RUL	
  (Years)','FontSize',14)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ylabel('Component	
  Health','FontSize',14)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  legend('Expected	
   RUL','Bound	
   on	
   RUL','Current	
   Usage','Actual	
  
Failure')	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pause(.1)	
  
	
  	
  	
  	
  	
  	
  	
  	
  end	
  
	
  	
  	
  	
  end	
  
	
  	
  	
  	
  safety(j)	
  =	
  actual	
  -­‐	
  crt;	
  
	
  	
  	
  	
  error(j)	
  =	
  rul(i);	
  
	
  	
  	
  	
  fHI(j)	
  =	
  hi(i);	
  
	
  	
  	
  	
  if	
  hi(i)	
  <	
  1,	
  
	
  	
  	
  	
  	
  	
  	
  	
  disp(['Failed	
   prior	
   to	
   repair:	
   rul	
   =	
   '	
   num2str(rul(i))	
   ',	
   HI	
   '	
  
num2str(hi(i))])	
  
	
  	
  	
  	
  end	
  
	
  	
  	
  	
  	
  
end	
  
	
  	
  
figure(1)	
  
hist(safety);	
  
	
  	
  
title('Safety	
  Factor')	
  
figure(2)	
  
hist(error)	
  
title('Error	
  in	
  RUL')	
  
figure(3)	
  
hist(fHI)	
  
title('Final	
  HI')	
  
	
  
function	
  n	
  =	
  invLowTrunCDF(x,lam,k,p)	
  
	
  	
  
global	
  kl;	
  
global	
  laml;	
  
global	
  pTarget;	
  
global	
  xl;	
  
	
  	
  
small	
  =	
  1	
  -­‐1e-­‐5;	
  
upper	
  =	
  wblinv(small,lam,k);	
  
kl	
  =	
  k;	
  
laml	
  =	
  lam;	
  
xl	
  =	
  x;	
  
	
  	
  
pTarget	
  =	
  1-­‐p;	
  
	
  	
  
n	
  =	
  fminbnd('setLowTurnCDF',x,upper);	
  
	
  
	
  
function	
  x	
  =	
  setLowTurnCDF(val)	
  
global	
  kl;	
  
global	
  laml;	
  
global	
  pTarget;	
  
global	
  xl;	
  
	
  	
  
p	
  =	
  lowTrunCDF(xl,val,laml,kl);	
  
	
  	
  
x	
  =	
  (p-­‐pTarget)^2;	
  
	
  
function	
  p	
  =	
  lowTrunCDF(x,n,lam,k)	
  
	
  	
  
F	
  =	
  wblcdf(x,lam,k);	
  
	
  	
  
S	
  =	
  1-­‐F;	
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Sn	
  =	
  1-­‐wblcdf(n,lam,k);	
  
	
  	
  
p	
  =	
  Sn./S;	
  

	
  	
  
p(p<0)	
  =	
  0;	
  
 

 


