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ABSTRACT 

Quality control and tool condition monitoring are two most 
important aspects of machining process. This paper studies 

the correlation between tool wear and surface roughness to 

explore the possibility of modelling the interdependencies 

between these two aspects. An experimental study is 

presented in this paper to model the relationship between 

product quality parameter i.e. average surface roughness and 

tool wear. Current study reveals that there is a strong 

positive correlation between surface roughness and tool 

wear. To map this relationship an ensemble (random forest) 

fault estimation model is developed for identification and 

estimation of cutting tool health state. The results from fault 

estimation model are then used to provide guidelines for 
future process monitoring and developing dynamic quality 

control policy. 

Keywords: Quality control, tool condition monitoring, 

surface roughness, tool wear, random forest. 

1. INTRODUCTION 

Advancement in intelligent manufacturing process has led to 

better product quality, increased flexibility and higher 

productivity (Wiendahl, Elmaraghy, Nyhuis, Zäh, 

Wiendahl, Duffie, and Brieke, 2007, Wang, Wang, and Gao, 

2013). Mainly these benefits are highly dependent on 

smooth operations of the various machine elements. Cutting 
tool is one such important element of the machining system 

(Zhou, Chen, Fuh, and Nee, 2000). In high speed machining 

process cutting tool usually suffers from rapidly increasing 

tool wear rate and the consequent degradation of workpiece 

surface finish as well as the drop in machined part 

dimensional accuracy. Also, in machining industry, 20% of 

the downtime of a machine tool is attributed to cutting tool 

failures (Kurada & Bradley, 1997). Therefore, Tool 

Condition Monitoring (TCM) plays a significant role in 

improving machine productivity, maintaining the quality 

and integrity of the machined part, minimizing material 

waste, and reducing manufacturing cost. Being the major 

cause of tool failure, identification and estimation of cutting 

tool health state is very important in the machining process 

(Zhong, Zhou, & Win, 2013). Many research works have 

been devoted to the methods that rely on the relationships 

between tool conditions and measurable signals of cutting 

forces, acoustic emission, vibration, current, etc. for tool 

wear detection. For example, Dimla and Lister (2000) 
analysed a relationship between measured signals (cutting 

force and vibration signals) and tool wear. Haber, Jiménez, 

Peres, and Alique, (2004) conducted an examination of tool 

wear monitoring in a machining process based on 

investigation of multiple signals. The analysis results 

discovered the relevance of cutting force and vibration 

signals signatures for tool wear development in high speed 

machining processes. Dimla (2000) carried out a 

comprehensive review of several methodologies for tool 

wear monitoring in machining using different sensor 

measurements. 

In milling, “the cutting dynamics is governed by the 

interaction between tool structural vibrations and cutting 

forces” (Ruxu, Elbestawi, & Ullagaddi, 1992). Thus, the 

cutting force signal is reported to be the best indicator of 

tool conditions (Li, Lim, Zhou, Huang, Phua, Shaw, & Er, 

2009). Although using cutting force signal is a promising 

method to monitor the tool condition, but it has some 

disadvantages. The major drawback of using force signals is 

the cost of the measurement device of a dynamometer and 

the big size of the dynamometer, which is not practical to 

mount with the workpiece (Zhong et al. 2013). Iulian and 

Dragos (2008) pointed out that “the dynamometer is costly, 
and the installation is rather inconvenient and can weaken 

the machine structure”. Similar types of disadvantages are 

with other measurable signals like acoustic emission, 

vibration etc. Also, use of any type of monitoring technique 

adds extra cost on the overall manufacturing cost, which is 

considerably high. An online methodology for tool 

condition monitoring without the application of measurable 

signals will cut down the complexity with its assembly, as 

well as the added expense of measurable signal monitoring 

system. Such type of methodology is not reported in the 

literature. 
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The other important aspect of machining process is quality 

control, as maintaining the quality of the machined surface 

is of prime importance. For this quality control tools (viz. 

control charts) are designed and used regularly to monitor 

the process. For example, Yang and Jeang (1994) developed 

a surface roughness monitoring and quality control method, 
combining statistical analysis and physics of the tool wear. 

Tangjitsitcharoen and Damrongthaveesak (2013) developed 

a methodology for online surface roughness and quality 

control of the estimated surface roughness in turning 

operation. Colosimo, Moroni, and Grasso (2010) proposed a 

methodology for modelling of a machining process and 

ongoing monitoring of its stability that is based on online 

collected data. However, implementation of quality control 

is time consuming, which decreases the profitability and 

expands the expense.  

Quality control and tool condition monitoring are important 

part of machining process. Thus, developing a joint 
methodology, that not only maintains the quality but also 

performs tool condition monitoring, will be a highly 

profitable option. Identifying and mapping the correlation 

between tool wear and surface roughness will help in getting 

rid of measurable signal monitoring system and its 

associated expenses, the only expense associated will be the 

cost of quality control. The results from such relationship 

can be used to provide guidelines for efficient process 

monitoring and dynamic quality control. Thus, in a single 

expense, both the purpose of quality control and tool 

condition monitoring will be accomplished. Such type of 
methodology is not reported in the existing literature of 

current research. Therefore, the main contribution of this 

paper is in an attempt to explore the correlation between 

tool wear and surface roughness, and developing a 

methodology for joint consideration of quality control and 

tool condition monitoring. Such, quality control based tool 

condition monitoring methodology will lead to greater cost 

savings in overall manufacturing cost. Since, milling is one 

of the most complex and widely used machining operations; 

the same is selected in this study.  

2. THEORETICAL PRELIMINARIES 

2.1. Tool Wear 

Tool wear can be stated as “the change in the shape from its 

original shape during a cutting process by gradual loss of 

the tool material” (Zhong et al. 2013). Tool wear in milling 

occurs at higher rate as the tool becomes dull. Due to which 

cutting forces and temperature increases and immediate loss 

of sharp edges occurs. After a certain point, tool wear can 

cause sudden failure of the cutting tool. (Tansel & 

McLaughlin 1993, Ertunc & Oysu, 2004). It can be 

illustrated in figure 1 by separating the wear stages as slight 

wear (regular stage of wear), moderate wear (micro 

breakage stage of wear) and worn-out as a function of tool 
life (Al-jonid, Jiayang, & Nurudeen, 2013, Wang, Yang, & 

Li, 2014). Tool wear affects the surface roughness of the 

workpiece, which is the main concern of a machining 

process. The power consumption from motors may also 

increase due to tool wear (Altintas & Yellowley, 1989, 

Zhang, Han & Chen, 1995). Thus, it is important to monitor 

and prevent the tool failure during cutting to achieve high 

product quality and efficient production.  

 
Figure 1.  Tool wear stages. 

2.2. Surface Roughness  

Surface roughness is defined as “the result of irregularities 

arising from the plastic flow of chips during the machining” 

(Lou, Chen & Li, 1999). The most widely used parameters 

for surface roughness measurements are average surface 
roughness (Ra), ten point height of irregularities (Rz) and 

maximum profile peak height (Rp) (Zhong et al. 2013). In 

this work, average surface roughness is mainly used to 

measure the surface roughness of workpieces. Average 

surface roughness (Ra) can be calculated using equation 1 

(Lou et al. 1999). 

 
𝑅𝑎 =  

1

𝐿
   𝑌(𝑥) 

𝐿

0

𝑑𝑥 
(1) 

where, L = sampling length, and Y(x) = coordinate of the 

roughness profile curve. 

2.3. Quality Control  

Quality control is an important methodology for asserting 

standards in manufactured products by testing some samples 

from output against the specification. Techniques provided 

in quality control are online quality control methodology to 

screen an on-going production process. Control charts are 

most essential techniques of statistical process control. 

Figure 2 illustrates a typical quality control chart. “The 

control chart is a graphical display of a quality characteristic 

that has been measured from the sample versus the sample 

number or time” (Montgomery, 2007). The chart has a 

center line that presents mean value of the quality 

characteristics corresponding to the in-control state. Two 
other horizontal lines, called the Upper Control Limit (UCL) 

and the Lower Control Limit (LCL). These limits are set so 

that if the process is in control, all of the sample points will 

fall between them. As long as the point plots within the 

control limits, the process is assumed to be in control, and 
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no action is necessary. However, points that plot outside of 

the control limits is interpreted as evidence that the process 

is out of control, and investigation and corrective action are 

needed to detect and terminate the assignable cause for this 

behaviour.  

In this study, the 𝑥  and R control charts are used, which are 
widely used to monitor the mean and variability of 

variables. In 𝑥  chart mean of samples are plotted in order to 

control the mean value of a variable. In R chart range of 

samples are plotted in order to control the variability of a 

variable. 

 

Figure 2. A typical control chart. 

3. METHODOLOGY 

Details of the proposed methodology are given in following 

sub-sections. 

3.1. Experimental Setup 

In practice, tests and verifications of fault detection methods 

are easy to perform, because the faults can be easily 

simulated or introduced on the real industrial system. 

However, this is not the case for quality control methods 

where the change in quality characteristics is generally a 
consequence of a long and slow degradation of one or more 

components of the system. Thus, to test these methods, it is 

necessary to create the degradation through accelerated 

degradation tests of physical components and measure the 

quality characteristics throughout the life. For this purpose, 

an experimental setup is developed (see, figure 3). In the 

experiment, EMCO MILL E350 vertical milling machine is 

used as the test bed. A high speed steel 6mm flat end mill 

cutter with four cutting edges is selected for testing. 

Machining operation employed was face milling to create a 

flat plane surface on the workpiece, with constant operating 
conditions (feed = 300mm/min, speed =1000RPM, depth of 

cut = 0.25mm) in dry state. After every cutting process, 

surface roughness of the finished surface and tool wear is 

measured. A HANDYSURF E-25A/B tester was used to 

measure the surface roughness. Toolmakers’ microscopy 

system was used to measure the tool wear of the milling 

cutter. During experiments utmost care has been taken while 

resetting the cutter, to minimize its effect on surface 

roughness. The setup is capable of providing real life data 

for quality control, as it covers in-depth quality aspects of 

machined products developed throughout the life of milling 

cutters. 

3.2. Correlation between Surface Roughness and Tool 

Wear  

Identification of correlation between surface roughness and 

tool wear will be of high significance. Thus, life tests are 

carried out to study the wear behaviour of milling cutters, 

i.e. all the cutters are run till it reaches a pre-defined level of 

wear. Two failure modes have been observed and recorded, 

viz. tool worn-out (if average wear value from four cutting 

edges reaches 0.746mm) and tool breakage. Figure 4 shows 

the tool wear measured in experiment with two different 

failure modes (worn-out and breakage) cutting tool. 

Average surface roughness (Ra) was also measured for each 

surface during the cutting processes. Figure 5 shows the 

average surface roughness of the workpiece and tool life of 
two cutters with different failure mode. The surface 

roughness value remains stable and small when the tool has 

very less wear. When the cutting tool reaches the failure 

state, the surface roughness value gradually increases, and 

then it significantly increases when the critical tool failure 

occurs.  

From the experiments it is observed that identical cutting 

tools, even operated at same operating conditions, show 

different behaviour (because of inherent design variations), 

and may fail with different failure modes (worn-out and 

breakage). Such types of conditions significantly affect the 
performance of the process, for example see figure 5. It 

shows that average surface roughness values obtained from 

the two different cutters with different failure modes. The 

tool which failed from breakage is producing products with 

high average surface roughness from its initial age, while 

the worn-out tool is producing less rough products in its 

initial age and roughness increases as the tool reaches its 

end of life. If we see the wear pattern of both the tools in 

figure 4, it is clear that both the tools are having different 

wear behaviour. Thus, a correlation analysis is carried out; 

correlation measures the relationship between two variables 

(say, a and b). Correlation is used to determine whether the 
large values of first variables (say, a) are associated with the 

large values of second variables (say, b), and vice versa. 

Correlation coefficient is used to measure the strength of the 

relationship between two variables; this can be calculated 

using equation 2 (Zhong et al. 2013). The Pearson 

correlation coefficient (𝑟) between the surface roughness 

and tool wear in case of tool breakage is found to be 0.859 

and in case of worn-out tool is 0.807. This correlation study 

reveals that there is a strong positive relationship between 

the surface roughness and tool wear.  

 𝑟 =
 (𝑎𝑖−𝑎 )(𝑏𝑖−𝑏 )

  (𝑎𝑖−𝑎 )2(𝑏𝑖−𝑏 )2
    (2) 

Sample number or time 

S
a
m

p
le

 q
u

a
li

ty
 

c
h

a
r
a
c
te

r
is

ti
c 

Center 

line 

UCL 

LCL 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

 
 

4 
 

where, 𝑎  is the mean value of variable a (Average surface 

roughness), 𝑏  is the mean value of variable  b (Tool wear). 

3.3. Fault Estimation Model 

As tool wear is the major cause of tool failure, identification 

and estimation of cutting tool health state is very important 

in the machining process, so that it can be replaced on 

timely manner. As shown from figure 4 and 5, tool wear and 

surface roughness exhibit a strong positive correlation. 
Thus, if we develop a relationship between surface 

roughness and tool wear, it will be of great interest. This 

relationship can be used for tool condition monitoring. A 

Fault Estimation Model (FEM) is developed to link one or 

more of the quality parameters like Ra, Rz and Rp with the 

health state of the tool. Input to this fault estimation model 

will be quality parameters and output will be the current 

health state (stage I, stage II or stage III) of the tool. The 

prediction of current health stage will help in tool 

replacement decisions. 

To develop an efficient fault estimation model, an ensemble 
classifier is needed. As a result, Random Forest (RF) is used 

to develop the fault estimation model. RF is utilized because 

of its high performance in modeling complex processes, 

unbiased estimate of the generalization error, high accuracy 

and fast build time (Liaw & Wiener, 2002). Originally 

proposed by Breiman (2001), the method adds an extra layer 

of randomness to the original bagging algorithm. It is more 

user friendly, intuitive, and is based on two parameters (the 

number of variables in the random subset at each node and 

the number of trees in the forest) only. Further, in contrast to 

most algorithms in literature (including discriminant 

analysis, support vector machines and artificial neural 
networks), it is dependent on the data values and is less 

sensitive to the values of the two parameters (Liaw & 

Wiener, 2002). Consequently, it is perfectly aligned to our 

needs, thus, we use this method to formulate the fault 

estimation model for cutting tools. In RF classifier each tree 

is constructed using the following methodology: Firstly, N 

number of training cases and M number of variables are 

taken in the classifier. m number of input variables are used 

to take decision at the node of the tree, here, m is kept lesser 

than M. A training set is selected for this tree by choosing n 

times with replacement from all N available training cases. 
Rests of the cases are used to estimate the error of the tree, 

by predicting their classes. For each node of the tree, 

randomly m variables are selected, on which to base the 

decision at that node. Then, the best split based on these m 

variables in the training set is calculated. Each tree is fully 

grown and not pruned. For prediction, a new sample is 

pushed down the tree. It is assigned the label of the training 

sample in the terminal node it ends up in. This procedure is 

iterated over all trees in the ensemble, and the average vote 

of all trees is reported as random forest prediction. For more 

details regarding RFs, the interested reader can refer to 

Breiman (2001). 

For the current study, random forest of 100 trees, each 

constructed while considering 1 random feature is used. The 

life data used here is drawn from experiments conducted on 

five milling cutters. Health states of the milling cutters are 
classified in three stages and their wear scopes are shown in 

table 1. No specific method or technique is available to 

decide wear scope. In the present work health states are 

defined based on the literature (Wang et al. 2014, Al-jonid 

et al. 2013) and physical observation of change in the 

surface roughness of the produced surface with tool 

degradation during experiments.  The complete life dataset 

from milling cutters comprises of 321 numbers of the 

samples. Model should not be validated on the same data 

used to create the classifier. Accordingly, the K-fold cross-

validation method was chosen (Stone, 1974) in this study. 

The original sample is partitioned into K disjoint 
subsamples. Of the K subsamples, a single subsample is 

retained as the validation data for testing the model, and the 

remaining (K-1) subsamples are used as training data. The 

cross validation process is then repeated K times (the folds), 

with each of the K subsamples used exactly once as the 

validation data. Then, the K results from the folds are 

averaged to produce a single estimate of the classifier 

accuracy (Correa, Bielza, & Pamies-Teixeira, 2009). In our 

model we chose K=10. For performance assessment, 

accuracy of the testing results is calculated. Accuracy of a 

classification model is calculated as, the proportion of the 
total number of predictions that were correct (Wang et al. 

2014). To check the applicability of developed model; 

computational time, that is the required time to learn and 

test the dataset is also computed. Moreover, to improve 

relevance and accuracy of prediction, an Advance Fault 

Estimation Model (AFEM) is also developed. In the 

advance model, with average surface roughness value two 

more parameters (Rz and Rp) are given as input. This 

advance fault estimation model can be used in the presence 

of extra information in terms of Rz and Rp in place of the 

fault estimation model to update the accuracy of the 

prediction. Table 2 shows the performance of both the 
developed models. Open source tool Weka (Version: 3.7.12) 

is used for training and testing the developed fault 

estimation models. 

Table 1. Tool health states and its corresponding wear 

scope. 

Tool Wear 

Classification 

Stage I 

(slight 

wear) 

Stage II 

(moderate 

wear) 

Stage III 

(worn-

out) 

Wear value 

(mm) 

< 0.27750 0.27750-

0.56775 

> 0.56775 
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Figure 3. Experimental setup (line diagram). 

 

Figure 4. Tool wear versus tool life.

 

Figure 5. Average surface roughness versus tool life.

Table 2. Performance of fault estimation models. 

Model Accuracy 

(%) 

Time 

(sec) 

Fault Estimation Model 70 0.13 

Advance Fault Estimation Model 82 0.17 

The results from developed fault estimation models are 

promising and show potential to be practically applied under 

industrial constraints in reasonable computational time.  

3.4. Process Monitoring and Quality Control Policy 

A CNC milling process is used for Mild Steel (MS) plate 

manufacturing with fixed dimensions (165x100x20mm). 
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Average surface roughness (Ra) of the plate in horizontal 

direction is an important quality characteristic. The average 

surface roughness value is in micron. We wish to establish a 

statistical control of the average surface roughness of the 

plate in this process using 𝑥  and R control charts. This will 

require setting of control charts limits. This is explained in 
the following sub-section. 

3.4.1 Setting of 𝒙  and R Charts 

In order to get statistical control limits for 𝑥  and R charts, 

common approach is to take some initial samples from the 

process considering the process was in control. In the 

current experiments, all the process related variables are 

kept constant, for example the operating conditions are kept 

constant throughout the process to achieve the desired 

dimensions. Similarly machine tool, workpiece material and 

the work environment etc. are same throughout the process. 
The only variable which changes periodically is the cutting 

tool, as it degrades with the time and eventually fails, thus it 

is to be replaced periodically.  In order to get safe statistical 

control limit for 𝑥  and R charts for future use, data from in 

control process are required. In the current manufacturing 

scenario cutting tool is the only variable in the whole 

process which changes periodically (because of failures). 

The current study revealed that different failure modes of 

the cutting tools have significant effect on the product 

produced from them (see, figure 4 and 5). This behaviour of 
different failure modes on the product quality is very 

important to be considered while setting the control charts. 

As in production process, the tool will vary timely, and will 

fail from different failure modes. Thus, initial samples taken 

for control chart setting are to be selected from different 

tools failed with multiple failure modes. With the help of 

developed experimental setup six milling cutters are run till 

failure, the life data generated from the experimental setup 

is important in the sense that they correspond to “normally” 

degraded milling cutters. This means that the defects were 

not initially initiated on the cutters and that each degraded 

cutter contains almost all the types of defects (worn-out and 
breakage). Three cutters from both the failure modes (worn-

out and breakage) are observed.  

Twenty five initial samples, each of size five; have been 

taken from six milling cutters samples with different failure 

modes, when the cutter was operating in its healthy stage 

(considering the process was in control). The interval of 

time between samples is one hour. These samples are used 

for setting the 𝑥  and R charts. When setting up the control 

charts, it is recommended to start with the R chart. Because 

the control limits on the 𝑥  chart depend on the process 
variability, unless process variability is in control, these 

limits will not have much meaning (Montgomery, 2007). 

Using the initial samples from different cutting tools, we 

find the center line for the R chart as shown in equation 3. 

 𝑅  =
 𝑅𝑖

𝑛
𝑖=1

𝑛
    (3) 

 
𝑅  =

 𝑅𝑖
25
𝑖=1

25
=

20.034

25
= 0.801 

 

where, n = total number of samples, 𝑅𝑖  = Range of the ith 

sample. 

The control limits of the R chart are calculated as follows: 

 𝑈𝐶𝐿 =  𝐷4𝑅  (4) 

 𝑈𝐶𝐿 =  𝐷4𝑅 =  0.3251 0.801 = 1.694  

 𝐿𝐶𝐿 =  𝐷3𝑅  (5) 

 𝐿𝐶𝐿 =  𝐷3𝑅  = (0)0.801 = 0  

where, the constants D3 and D4 are tabulated based on 

sample size (for sample size of 5, 𝐷3 = 0 and 𝐷4 = 0.3251) 

(Montgomery, 2007). 

Since, the R chart indicates that the process variability is in 

control (see, figure 6); we may now construct the 𝑥  chart. 

The center line is calculated as shown in equation 6. 

 
𝑥 =

 𝑥 𝑖
𝑛
𝑖=1

𝑛
 

(6) 

 
𝑥 =

 𝑥 𝑖
25
𝑖=1

25
=

105.441

25
= 4.218 

 

where, 𝑥 𝑖  = Mean of the ith sample. 

The control limits of the 𝑥  chart can be found out as 

follows:  

 𝑈𝐶𝐿 = 𝑥 + 𝐴2𝑅     (7) 

 𝑈𝐶𝐿 = 4.218 +  0.577  0.801 =  4.680  

 𝐿𝐶𝐿 =  𝑥 −  𝐴2𝑅  (8) 

 𝐿𝐶𝐿 =  4.218 −  0.577  0.801 =  3.755  

where, the constant A2 is tabulated based on sample size (for 

sample size of 5,  𝐴2 = 0.577) (Montgomery, 2007). 

When the preliminary sample means are plotted on this 
chart as shown in figure 6, all the points are inside the 

control limits. Since, both the 𝑥  and R charts depict control, 

it means that the process is in control under stated levels. 

This set of safe control limits are adopted for monitoring 

future production. This completes the setting of 𝑥  and R 

charts limits for future use. The control charts shown here 

are made using Minitab (Version: 17.2.1). The conventional 

usage of the 𝑥  and R control charts is explained in the next 

section. 

3.4.2 Conventional Process Monitoring and Quality 

Control Policy 
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Once a set of safe control limit is established, the 

conventional way is to use the control charts for monitoring 

future production.  Figure 7 illustrates the working of 

conventional process monitoring and quality control policy. 

Additional samples from the process, each of sample size 

five from the process (with a new cutting tool) were 
collected after the control charts were established and the 

sample values of 𝑥  and R are plotted on the control charts 

with sampling frequency of one hour. The control chart 

detected out of control process at 6th sample. As the control 

chart shows an out of control process, it means that an 

assignable cause has occurred at that time. Conventionally, 

the operator is directed to check process variables viz. 

cutting tool, process settings, calibration etc. and then make 

the adjustments in an effort to bring the process back into 

state of control. This conventional usage of control chart 

will only detect occurrence of assignable causes, also fixed 
sampling frequency or sample size were used throughout the 

monitoring. It will be of great interest if we are able to 

detect the reason for assignable cause and simultaneously 

able to vary the sampling frequency or sample size while 

monitoring the process for early detection of out of control 

process.  

3.4.3 Fault Estimation Model Based Process Monitoring 

and Dynamic Quality Control Policy 

For early detection of out of control process, fault 

estimation model based process monitoring and dynamic 

quality control policy is proposed. In this process, the mean 

surface roughness is monitored with a  𝑥  control chart, and 
the process variability is monitored by R chart. Notice that if 

the R chart displays an out of control point, operating 

personnel are coordinated to contact process engineering 

instantly. The current manufacturing process is having only 

one controllable variable, cutting tool. In this scenario, the 

high chance of assignable cause may be tool health. Thus, 

the developed fault estimation model is linked with the 

control chart in such a way; the sample quality data is fed as 

input to the fault estimation model to know the current 

health state of the tool without stopping the production. The 

fault estimation model can give three types of indication 

about the health of cutting tool: 

1. Tool is in stage I (Safe Zone)  

2. Tool is in stage II (Partial Safe Zone)  

3. Tool is in stage III (Worn-out Zone).  

Based on the output from fault estimation model some 

guidelines are proposed for each health stage of the cutting 

tool for process monitoring and dynamic quality control. 

When the health state of the cutting tool is identified as 

stage I (the stage I of the cutting tool indicates only slight 

wear have been occurred in the tool, and the tool is in safe 

zone), the process monitoring is continued with initial 

sampling frequency or sample size. As the fault estimation 

model indicate the shift in the health state of cutting tool 

from stage I to stage II, it means that moderate wear is now 
present in the tool and this can be the reason of assignable 

cause in near future. Being in partial safe zone, it’s not wise 

to discard the tool, here the decision on varying the 

sampling frequency or sample size is needed to be taken for 

early detection of out of control process in future.  As the 

tool health state is identified as stage III (tool is now in 

worn-out zone), this indicate that tool wear will soon can 

cause out of control process, thus here further decision on 

varying the sampling frequency or sample size can be made 

for very early detection of out of control process. Also, as 

the tool is reached to its failure zone, tool replacement 
decision can be taken in a timely manner, and this will also 

eliminate the faulty product development and reduce losses 

because of tool failure viz. power consumption etc. Based 

on these guidelines smart decisions on quality improvement 

(cost of inspection can be managed efficiently), and timely 

tool replacement can be taken efficiently before tool failure. 

 
Figure 6. 𝑥  and R charts. 
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Figure 7 illustrates the working of fault estimation model 

based process monitoring and quality control policy, applied 

on the same process data as used for conventional process 

monitoring and quality control policy. Additional samples 

from the process, each of sample size five from the process 

are fed as input to the fault estimation model to know the 
current health state of the cutting tool. From the results of 

fault estimation model it is identified that the current health 

state of the cutting tool is reached to stage II at third sample. 

According to the proposed guidelines, the decision on 

varying the sampling frequency is taken for future 

monitoring. Sampling frequency from the fourth sample is 

changed to half an hour from one hour for early detection of 

out of control process. With this change the control chart is 

now able to detect the out of control process early. The 

control chart detected out of control process at fourth 

sample. Table 3 shows the performance of fault estimation 

model based usage of control chart. 

Table 3 Fault estimation model based usage of control chart. 

Sampling frequency 1 hour 

Fault estimation model 

Input Output 

1st  sample  Stage I 

2nd sample Stage I 

3rd sample Stage II 

Decision on change in sample frequency from 4th sample 

onwards 

New Sampling frequency 1/2 hour 

Out of control process detection 4th sample 

4. COMPARISON OF CONVENTIONAL AND FAULT 

ESTIMATION MODEL BASED PROCESS MONITORING AND 

QUALITY CONTROL POLICY 

Table 4 and figure 7 shows the comparison of performance 

of conventional and fault estimation model based control 

chart policy in terms of product produced till detection of 

the out of control process. Till actual occurrence of out of 

control process twenty nine products were produced. 

Whereas, in conventional usage of control chart, total sixty 

products were produced from the process till the detection 
of out of control process. However, only thirty five products 

were produced from the process till the detection of out of 

control process through fault estimation model based usage 

of control chart. It is clear that the fault estimation model 

based process monitoring and dynamic quality control 

policy is capable of detecting out of control process very 

early than conventional policy. With the help of fault 

estimation model based control chart usage, we are able to 

reduce the number of faulty product development. As the 

difference between the products produced before the 

detection of out of control process is thirty one from 
conventional policy with actual occurrence, this is 

considerably high. Consequently, only six products were 

produced till the detection of out of control process from the 

fault estimation model based usage of control chart.   

 
Figure 7. Illustration of conventional and fault estimation 

based process monitoring and quality control polices. 
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Table 4 Comparison of performance of conventional and 

fault estimation model based usage of control chart. 

 Actual 

occurrence 

of out of 

control 

process 

Conventional 

way of usage 

of control 

chart 

Fault 

estimation 

model based 

usage of 

control chart 

Products 
produced 

till out of 

control 

process 

detection 

29 60 35 

This joint methodology will lead to online monitoring of the 

production process as well as serve the purpose of tool 

condition monitoring. The developed quality control based 

tool condition monitoring methodology is of high 

importance for manufacturing industries in improving the 

performance of their machining process as well as reducing 

the overall manufacturing cost. 

5. CONCLUSION 

This paper explores the correlation between tool wear and 

surface roughness and utilizes the same for dynamic quality 

control and efficient tool replacement decisions. The major 

contributions of this paper are as follows: 

1. An experimental study is carried out, which revealed that 

strong positive correlation exists between tool wear and 

surface roughness.  

2. An ensemble (random forest) based fault estimation 

model is developed to map the relationship between surface 

roughness and tool wear.  

3. Guidelines for process monitoring and quality control 
based on the results of fault estimation model are proposed. 

These guidelines will lead to efficient quality improvement 

as well as timely tool replacement decisions. 

4. The fault estimation model based process monitoring and 

dynamic quality control policy is capable for early detection 

of out of control process than conventional usage of control 

charts. 

The results of this study will promote and enable the 

establishment of a quality control based intelligent 

predictive monitoring system to estimate the useful life of 

the tools and detect the surface degradation prior to costly 

failure and damage to high valued workpieces.  
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