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ABSTRACT 1. INTRODUCTION

Combustion instability, characterized by self-sustajnedCombustion instability is a very undesirable phenomenon
large-amplitude pressure oscillations and periodic shedeharacterized by high-amplitude flame oscillations atreisc

ding of coherent vortex structures at varied spatial scaledrequencies. These frequencies typically represent the na
has many detrimental effects on flight-propulsion dynamicgal duct/resonator acoustic modes. Combustion instgkitit

and structural integrity of gas turbine engines. Hence, itsts most basic form arises when there is a positive coupling
early detection is one of the important tasks in engine healtbetween the heat release rate oscillations and the pressure
monitoring and prognostics. This paper proposes a dynamicillations, provided this driving force is higher than theenalp-
data-driven approach, where a large volume of sequentiahg present in the system. The mechanisms of pressure-heat
hi-speed (greyscale) images is used to analyze the tempornadlease rate coupling are system dependent and thus, tie pro
evolution of coherent structures in combustion chamber folem of combustion instability becomes very system specific.

early detection of combustion instability at various opieig The underlying principle of heat release rate oscillatjd

conditions. The proposed hierarchical approach involves, . A . ; .
) . . . . drives the pressure oscillations-which result in velodsy
extracting low-dimensional semantic features from images

: . cillations and in turn modulate heat release rate osa@iteti
using Deep Neural Networks followed by capturing the tem-_ ™ : .
. . . all in a turbulent background in case of actual gas turbine
poral evolution of the extracted features using Symbolic S P -
. . . . . combustors pose significant complexities in determinirgy th
Time Series Analysis (STSA). Extensive experimental data : S .
mechanisms of combustion instability. Crocco (Mcmanus,

hav_e been coll_ected n a swwl-stabll_lzed_ dump combustor aﬁoinsot, & Candel, 1993) modeled unsteady heat release rate
various operating conditions for validation of the propbse as a function of unsteady velocity to determine stabilityof

approach. Intermediate layer visualization of deep leayni ducted zero-mean flow flame. Subsequently, a whole class
reveals that meaningful shape-features from the flame image - -

. . of reduced order modeling-Flame Transfer/Describing func
are extracted, which enables the temporal modeling layer t

enhance the class separability between stable and unstable tions were theoretlcally.and_ experimentally (Palies, Slehu
. . . . ._ Durox, & Candel, 2011; Noiray, Durox, Schuller, & Candel,
gions. At the same time, the semantic nature of intermediat

features enables expert-guided data exploration thatezah | ?oor?nsLilaBtzlcljotvc\)l Su’n?ice)?sbtz’ngct)rr]t:’stiﬁliﬁm;nt’hi sletL:avr\fE' ’fé)eo;r:
to better understanding of the underlying physics. To tst be Y y y

) f solving the dispersion relation. In addition, flame oscil

of the authors knowledge, this paper presents one of thg ear|__. : . ! .
o ; . lation saturation mechanisms were also experimentally-dia
applications of the recently reported Deep Learning tools i

the area of prognostics and health management (PHM). nosed which in addition to experiments based on turbulent

non reacting and reacting flows led to the universal feature
Soumalya Sarkar et al. This is an open-access articletuliséd under the of combustion instability- heat release rate oscillatiorieen
terms of the Creative Commons Attribution 3.0 United Stafesnse, which DY coherent structures.

permits unrestricted use, distribution, and reprodudiioany medium, pro-
vided the original author and source are credited.

Coherent structures are fluid mechanical structures associ
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ated with coherent phase of vorticity, high levels of vortic From the above perspectives major contributions of thempape
ity among other definitions (Hussain, 1983). These strucare delineated below.
tures, whose generation mechanisms vary system wise, cause . .
large scale velocity oscillations and overall flame shape os * Anoveldata-driven frame\{vork, with DBN at lower Iaye-_r
e . . and STSA at upper layer, is proposed for early detection
cillations by curling and stretching. These structures loan of thermo-acoustic instability from hi-speed images
caused to shed/generated at the duct acoustic modes when the ustict y -sp IMages.
forcing (pressure) amplitudes are high. The interestirpca ® In the above framework, the DBN layers extract mean-
of the natural shedding frequency of these structuresijrgus ingful shape-features to represent the coherent strugcture
acoustic oscillations, has been observed by Chakravatthy e  in the flame images. This phenomenon enables STSA at

al. (Chakravarthy, Shreenivasan, Bhm, Dreizler, & Janicka  the temporal modeling layer to enhance the class separa-
2007). bility between stable and unstable modes of combustion,

which implies higher precision for early detection of the
onset of combustion instability.

The proposed theory and the associated algorithms have
been experimentally validated at multiple operating con-
ditions in a swirl-stabilized combustor by characterizing
the stable and unstable states of combustion.

Recently, a swirl combustor has been characterized and
a wide range of experiments relating swirl flows and co-
herent structures associated with swirl flows has been re®
ported (Syred, 2006; Paschereit, Gutmark, , & Weisenstein,
1998). The presence of Precessing vortex core as the domi-
nant coherent structure has been reported and non linear int
actions between heat release rate oscillations and PV@as te  Training and testing of the proposed framework have
cause of superposed frequencies in time series data has also been performed on different operating conditions (e.g.,
been reported (Moeck, Bourgouin, Durox, Schuller, & Can- ~ Reynolds numberRe), fuel flow rate, and air-fuel pre-
del, 2012). Much of the literature is dedicated to detection ~ mixing level) of the combustion process to test the trans-
and correlation of these coherent structures to heat eeleas  ferability of the approach. Performance of the proposed
rate and unsteady pressure. The popular methods resorted framework (DBN+STSA) have been evaluated by com-
for detection of coherent structures are proper orthogdeal parison with that of a framework, where DBN is re-
composition (POD) (Berkooz, Holmes, & Lumley, 1993) and placed by another extensively used dimensionality reduc-
dynamic mode decomposition (DMD) (Schmid, 2010), which ~ tion tool, principal component analysis (PCA) (Bishop,
use tools from spectral theory to derive spatial coherentst 2006).

ture modes. DMD has been used to estimate the growth rat@g,e haner is organized in five sections, including the presen
and frequencies from experimental data and thus offered t8,¢ * gection 2 describes a laboratory-scale swirl-stll
perform stability analysis on experimental data. combustor, which serves as a test apparatus for experimenta
This paper proposes a data-driven hierarchical frameworkalidation of the proposed architecture for early detectd

for early detection of thermo-acoustic instability fromr hi thermo-acoustic instability. Section 3 describes the psepl
speed greyscale images. In the lower layer, large volum&amework along with its building blocks via explaining the
of hi-speed sequential images are used to train a deep ne@oncepts of DBN and STSA. Section 4 presents the capability
ral network model that extracts hierarchical features fromand advantages of the proposed approach along with the fea-
the training data (G. E. Hinton & Salakhutdinov, 2006) ture visualization at intermediate layers of DBN. Finathe
through the use of multiple layers of latent variables. An un paper is summarized and concluded in Section 5 with selected
supervised pre-training approach with deep-belief nétaor recommendations for future research.

(DBN) (G. E. Hinton, 2009) is used in particular to auto-

matically learn the coherent structures while reducing the2. EXPERIMENTAL SETUP

dimension of the images for temporal modeling at the t0Prpe syirl combustor test bed used in this study has a swirler
layer (Erhan, Bengio, etal., 2010). Symbolic time seried-an ¢ giameter 30 mm with 60 degree vane angles, thus yield-

ysis (STSA) (Ray, 2004), a fast probabilistic graphical ®lod 4 5 geometric swirl number of 1.28. Air to the combustor

is placed at the top layer to extract temporal feature fromg foq through a settling chamber of diameter 280 mm with a
the output of deep learning model. The concept of STS udden contraction leading to a square cross section of side

has been used for anomaly detection in physical SyStems g \m_ This provides an area ratio of around 17, which thus

reported in (Ray, 2004; Rao, Ray, Sarkar, & Yasar, 2009, a5 an acoustically open condition at the contraction. A
Sarkar, Jin, & Ray, August, 2011). Recently,

il , STSA]: is apﬁ“e%esh and honeycomb are mounted in immediate downstream
on pressure and chemiluminescence time series for early dgg i contraction to provide uniform flow to the swirler. The
tection of Lean-blow out (Mukhopadhyay, Chaudhari, Paul,.mp stor, shown in figure 1(a) consists of an inlet section

Sen, & Ray, 2013; Sarkar, Ray, Mukhopadhyay, Chaudys ength 200 mm, an inlet optical access module(IOAM) of

hari, & Sen, 2014) and thermo-acoustic instability (Rammana |+ 100 mm to provide optical access to the fuel tube -a pri
Chakravarthy, Sarkar, & Ray, 2014). mary combustion chamber of length 370 mm, and secondary
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Figure 1. (a)Schematic of the experimental setup. 1 - sgtthamber, 2 - inlet duct, 3 - IOAM, 4 - test section, 5 - bigeerdion
duct, 6 - small extension ducts, 7 - pressure transdugersswirler location measured downstream from settling chamekit,
X, - transducer port location measured downstream frommsgitlhamber exitX; - fuel injection location measured upstream
from swirler exit, (b) Swirler assembly used in the combusto

duct of the same length. Extension ducts of the same cros-Eab“?[. 1. Desc[]ilp;tiotr;] (thogiarating C?”bdliti)%”s ﬁllong ch.h re-

: : Qo spective ground truth (stable or unstable) for hi-speedygna
section are added to provide length flexibility. The overalldata collection.3s of greyscale image sequence3atH - is
length of the constant area ducts was chosen to be 1340 mraq|iected for each condition

The fuel injection is done by injecting it coaxially with the

Premixin FFR (g/s Re Ground truth
air in a fuel injection tube with slots on the surface as shown ing (g/s) d s

in Figure 1(b). The fuel injection tube is coaxial to a mixing 7,971 Stable

i i i . 4
tube Whlgh has the same diameter a_ls.that of the swirler. The Partial 0.495 15,942 Unstable
bypass air that does not enter the mixing tube passes through
slots on the swirl plate. The slots on the fuel injection tube (X, = 90mm) 0.308 Unstable
are drilled at designated distance upstream of the swiltes. 10,628

o . . : o 0.66 Stable
larger this distance, more fuel mixes with the primary air in
the mixing tube thus leading to more premixedness. Two up- 7,971 Stable
stream distances of; = 90mm and Xy = 120mm were 0.495
chosen for this work. The upstream distance of 120 mm pro- Full 15,942 Unstable
vides for full premixing of the fuel with the air thus hence- 0.308 Unstable

it wi i . 10,62

forth, it will be referred to as the premixed case. The 90 mm (X5 = 120mm) 066 0,628 Stable

upstream injection case causes partial premixing of the fue
with air and thus will be referred to as the partially prentixe 0.083 1,771 | Relatively stable
case. The images were acquired at 3 kHz using Photron High
speed star with a spatial resolutionl®24 x 1024 pixels. The

data acquisition was triggered simultaneously using Ndl car Figure 2 presents sequences of images of dimeriank
and taken for a duration &fs yielding in a sequence of 9,000 1 pixels for both stableRe = 7,971, FFR = 0.495g/s

images for every operating condition. and full premixing) and unstableRe = 15,942, FFR =

Two inlet Reynolds numbers (Re), based on the swirler di0-495¢/s and full premixing) states. The flame inlet is on
ameter were chosen, the lower Re having stable combustidhe right side of each image and the flame flows downstream
behavior and higher Re having exhibiting unstable behaviotto the left. It can be observed that the flame does not have
The Re’s were chosen to be 7,971 and the higher Re beingy Prominent coherent structure when the combustion-is sta
15,942 for a fuel flow rate (FFR) of 0.495 g/s. Another proto-ble. While the combustion is unstable, vortex sheddingglon
col followed was keeping the inlet Re constant at 10,628 andhe flow is observed. Bottom segment of the figure 2 shows
having two different fuel flow rates. The higher FFRs exhib-formation of mushroom-shaped vortextat= 0,0.001s and

ited stable combustion, whereas the leaner configuratien wahe shedding of that towards downstream froe 0.002s to
unstable. The two FFRs were chosen to be 0.66 g/s and 0.3¢8= 0.004s.

g/s. These corresponded to equivalence ratios of 0.955 and

0.445 respectively. Besides these conditions, 3 seconds 0$- DECISION FRAMEWORK AND TOOLS

images are also collected e = 1,771 andF'F'R = 0.083  Thjs section describes the proposed architecture for darly
atrelatively stable state of combustion. The details obihe  (action of thermo-acoustic instability in a combustor via a
erating conditions along WI'.[h their ground truth (e.g.b#ta alyzing a sequence of hi-speed images. Figure 3 presents
or unstable) are presented in table 1. the schematics of the framework where a deep belief net-




ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2015

t=0

t=0.001s t=0.002s t=0.003s t=0.004s
t=0 t=0.001s t=0.002s t=0.003s t=0.004s

Figure 2. Top: greyscale imagest = 7,971 and full premixing for a fuel flow rate of 0.495 g/s, bottomeygscale images
at Re = 15,942 and full premixing for a fuel flow rate of 0.495 g/s

work (DBN) is stacked with symbolic time series analysis2006), collaborative filtering (Salakhutdinov, Mnih, & Hin
(STSA). In the training phase, images (or a segment of théon, 2007), feature learning (Coates, Ng, & Lee, 2011),dopi
images) from both stable and unstable states for various opnodeling (G. E. Hinton & Salakhutdinov, 2009), and solving
erating conditions are used as the visible layeof a DBN.  classification problems (Larochelle & Bengio, 2008). Saler
Multiple hidden layers (i.e.h; to h,) with reducing dimen-  other deep learning architectures such as Convolutional Ne
sions (G. E. Hinton & Salakhutdinov, 2006) are stacked afteral Networks, Stacked Denoising Autoencoders, and Deep
the visible layer.The weights (i.84; to W,,), connectingad- Recurrent Neural Networks have also gained immense trac-
jacent layers, are learned first via greedy layer-wise giretr  tion recently as they have been shown to outperform all other
ing (G. E. Hinton & Salakhutdinov, 2009) and then they arestate-of-the-art machine learning tools for handling \large
fine-tuned in a supervised manner. In this paper, unsugetvis dimensional data spaces to learn features in order to perfor
pre-training step is emphasized more for capturing thereohedetection, classification and prediction. The basic bogdi
ent structures in flame images at unstable state. The vectbfock of DBN is the Restricted Boltzmann Machine (RBM),
of activation probabilities of the hidden units at the tomino where multiple RBMs are stacked on top of another to form a
hidden layer is used as input to the STSA module. deep network. An RBM is essentially a generative probabilis
tic graphical model that is capable of learning a probabilit

While testing, sequence of Images are passeq through trEﬁstribution over the inputs to best explain the observad.da
learned DBN and a time series &f norm (equivalent to

i T . . Individual RBMs consists of visible units (the inputs) whic
signal energy) of the activation probability vectors is ob- . . . :

- . o . ._are connected to latent variables in the hidden units. Note
tained. In STSA module, the time-series is symbolized vi

oo . 9 VI3 at connections exist only between the visible layer aerd th
partitioning the signal space and a symbol sequence is cre-

ated as shown in the figure 3. A probabilistic finite state idden layer but not among visible units and hidden units—

automata (PFSA) (Ray, 2004) is constructed from the symhence termeﬂ?estncted While a single layer O.f R.BM.'S al—.
. o ready quite powerful to represent complex distributions, i
bol sequence, which models the transition from one state tQ

- : . ... Creasing the number of hidden layers greatly improves mod-
another as state transition matrix. State transition masri . ; .
. . eling capacity where the output of one hidden layer becomes
the extracted feature which represents the sequence of in}-

ages, essentially capturing the temporal evolution of pertite nghe input of another placed over it
structures in the flame. DBN and STSA are explained in deDeep Belief Networks can be trained in an unsupervised

tail later in this section. greedy layer-wise manner. In simpler terms, the first RBM
layer is trained with the raw input as the visible layer. Dgri
3.1. Deep Learning techniques training, the first layer acquires a representation of tipeiin

by updating its weights and biases between the visible and

D_eep Learning is an emerging br_anch of _machme Ie"’“nm%idden layers (usually through computing the mean activa-
with a strong emphasis on modeling multiple levels of ab-

. . tions or by sampling) which in turn becomes the input of the
straction (from low-level features to higher-order repres ; . .
. . second layer (G. Hinton, Osindero, & Teh, 2006). The objec-
tations, i.e., features of features) from data (Deng & Dong

) . . X .~ Ztive during layer-wise training is to find the weight veciéf
201.4’ Benglo, Courwll_e, &Vmpen_t, 2013’.)' For example, ina (and biases for both visible and hidden units) that maximize
typical image processing application while low-level feats

can be partial edges and corners, high-level features may %ge expected log likelihood of the training data(Fischer &

S . gel, 2014). More formally, the optimization problem can be
combination of edges and corners to form parts of an image, . . . )
represented (ignoring the biases) as:

Among various deep learning techniques, Deep Belief Net-
works (DBNs) have become an attractive option for data arg max E Z log P(v)
dimensionality reduction (G. E. Hinton & Salakhutdinov, w

veV
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Figure 3. Framework for early detection of combustion ib#ity from hi-speed flame images via semantic feature etia
using deep belief network (DBN) followed by symbolic timeies analysis (STSA)

Typically, the optimization is solved in a gradient descentFor the lowest RBM layer, simply plotting the weight matrix
manner. Keeping the weights and biases of the first layer cormay be sufficient to visualize the features learned by the firs
stant after it is trained, the transformed input from thestay hidden layer. Since the dimensionality of the input and the
is utilized to train the next layer. This process is repefded weights are in the same order, the vectors of weights for each
the desired number of layers in the network with each iterinput can be reshaped into the dimension equal to the reso-
ation propagating either the samples or mean activations tlution of the input image. Thus, the visualizations are usu-
higher levels. As training continues, the product of prabab ally intelligible. Complexity arises for visualizing faaes

ities assigned to the input is maximized. Once all the layerdearnt at deeper layers because they lie in a different space
are trained, th@re-trainedmodel is finetuned via supervised from the visible data space. At the same time, the dimen-
backpropagation. It is important to note that layer-wisénr  sion of weight matrix depends on the number of hidden units
ing helps with initializing weights and biases in the netivor between the layer and the layer before. Thus, plotting the
prior to the actual supervised training. Taking classifmat weight matrix will resultin an incomprehensible visuatioa

as an example, a logistic classifier is used to classify thetin  which typically resembles the appearance of white noise. To
based on the output of the final hidden layer of the DBN. Aobtain filter-like representations of hidden units in theNDB
predefined error metric is computed between the class labetsrecent technique known as Activation Maximization (AM)
and the resultant output of the DBN (after applying the legis is used (Erhan, Courville, & Bengio, 2010). This technique
tic classifier) and then the error is backpropagated down theeeks to find inputs that maximize the activation of a specific
network to further adjust and optimize the weights and lsiase hidden unit in a particular layer and the technique is trtate
as an optimization problem. Létdenote the parameters of
the network (weights and biases) alagd(¢, ) be the value

One of the main claim of a hierarchical semantic feature ex—Of the activation functiork;; (-) (usually the logistic sigmoid

traction tool such as DBN is that it learns meaningful pat_functlon) of hidden un_|t n Iayer]_ on inputz. Assuming the
terns in the data that can signify the underlying charasties netyvqu has been trame@l,remglns constant. Therefore, the
of the process. Therefore, visualizing the learned featigre optimization process aims to find

crucial to both understand and verify the performance of the x* = argmax hy; (0, x)

feature extractor. Furthermore, intermediate featuraalis @s.t.||z||=p

ization may lead domain experts to scientific discoverias th
are not easy to figure out via manual exploration of large vo
ume of data.

Visualization of Learned Features

|wherex* denotes the inputs that maximizes the hidden unit
activation. Although the problem is a non-convex optimiza-
tion problem, it is still useful to find the local optimum by
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performing a simple gradient ascent along the gradient o$tate transition matixI{) and probability morph matrix.
hi; (0, z) because in many cases, the solutions after conveepth greater than one can also be chosen via applying gen-
gence are able to visualize the patterns of the inputs tieat aeralizedD-Markov machine construction (Sarkar et al., 2014;

being learned by the hidden units. Mukherjee & Ray, 2014)I1 is considered as the output fea-
ture of the D-Markov machine, which represents the time-
3.2. Symbolic Time Series Analysis (STSA) series in reduced dimension. More details on STSA can be

STSA is a fast time series feature extraction tool that modfounOI in (Ray, 2004; Sarkar et al., 2014).

els the temporal evolution of a quasi-stationary time serie
via symbolization (Ray, 2004).The algorithms of STSA are
formulated via symbolization of the time series generatedrhe DBN used for the study is comprised of three hidden lay-
from dynamical systems along with subsequent state machirexs with 1000, 100, and 10 hidden units for the first, second,
construction. First, the time series data are partitiongd band third hidden layer respectively. The inputimage has a di
maximum-entropy partitioning (MEP) (Rajagopalan & Ray, mension o6 x 98 pixels flattened to & x 5488 row vector.
2006) to construct the symbol alphabetor generating sym- The input image segments are taken from respective images
bol sequences. MEP maximizes the Shannon entropy (Covett the flame entry (right end of the images) zone after scaling
& Thomas, 2006) of the symbol sequence via generatinghe original images down by 4 times.

more partitions at the information-dense zones in the range

domain than information-sparse zones. Once the partitiongl.1. DBN feature visualization

are obtained, each data point of the time series is as&gnq._dor visualization, the training set consists of 54,000ntrai

a symbols; € X same as the partition it belongs to.Then, a. . - - .

D-Markov machine, based on the algebraic structure of prob'-ng Images containing 6,000 images each from 9 conditions,
abilistic finite state,automata (PFSA) (Ray, 2004), is Ccm_9,000 validation images containing 1,000 images each from 9
structed from the symbol sequencé)-Mark)(;,v machine is conditions, and 18,000 test images containing 2,000 images

: each from 9 conditions. A learning rate of 0.01 is used for the
defined as follows. . . -
gradient descent algorithm for both pre-training and super
vised finetuning. Pre-training is performed in batches of 50
samples and each layer undergoes 30 complete iterations of
pre-training before moving onto the next layer. During supe
vised finetuning, classification errors on the validatioagmes
is compared against the errors from training set as a measure
e Y is a non-empty finite set, called the symbol alphabett0 prevent overtraining the network and consequently dverfi
with cardinality || < oo; ting the data. The optimized model is obtained prior to the
point when the validation error becomes consistently highe
t&an the training error in subsequent training iterations.

4, RESULTS AND DISCUSSIONS

Definition 3.1 (Ray, 2004; Sarkar et al., 2014)¢-Markov)
A D-Markov machine is a 4-tuple PFSKA(= (X, Q, 0, 7)),
in which each state is represented by a finite historyDof
symbols as defined by:

e (Q is the finite set of states with cardinalit| < |3|”,
i.e., the states are represented by equivalence classes
symbol strings of maximum lengthwhere each symbol Figure 4 (d) shows the visualization of weights from the first
belongs to the alphabét; D is the depth of the Markov layer with each tile representing a hidden unit in the layer
machine; immediately after pre-training. Values of weights coniregt
§:QxY — Qis the state transition function that from all visible units to this single hidden unit are represel
satisfies the following condition[)] = ||, thenthere @S Pixel intensities. Panels (c), (b), and (a) visualizenpat
exista, 3 € ¥ andx € ¥* such thav(az, ) = =43 and that maximizes the_actlvanon of the hld_den units in the first
az, 28 € Q. second, and third hidden layers respectively. As expetied,
- . . . weights and the inputs that maximizes the activation of the
o T:QxX 0, 1].'.5 the symbol genera’uon .fu.nctlon first hidden layer are similar except that the pixel intéasit
(also_c_:alled pr0b~ablllty morph matrix) that sat|_sf|es the are inverted. For higher layers, the network is able to aaptu
°°”d't'9f‘ 2oex@(g,0) = 1 Vg € Q, andm; is the the whole mushroom-shaped features from the input images.
probability of occurrence of a symbej € . at the state However, visualization for the third hidden layer (with pnl

¢ € Q. 10 hidden units) is not as clear due to the activation maxi-
mization algorithm converging to a non-ideal local optimum

State transition matrix, denoted By (Il £ [r;;], i = A faint mushroom shape is still visible, however. In gengral
1,2,---,|Q|, 5 = 1,2,---,]Q]), is obtained via combin- the pretrained model acquires a good representation ofithe i

ing 7 andd. Each element ofl, 7;; is the probability of  put. Prominent features serving as the key to distinguishin
moving from statey; to ¢; upon occurrence of a symbol at between stable and unstable flames can clearly be seen in the
the next time step.In this paper, depth of theMarkov ma-  visualized weight matrices.

chine is chosen to be one and it results in the equality of
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Figure 6.0.2s long time series of; norms of (i) 10 largest variance components of PCA perfororeithages at (a) stable and
(b) unstable states and (ii) activation probabilities ot lidden layer after pre-training a DBN on images at (c)lstabd (d)
unstable states

In Figure 5, visualization of weights from the first layer and 4.2. Performance of STSA module

Inputs that_ maximizes activations for all h|dden _Iayers_ af_ln this subsection, DBN is pre-trained with 36,000 training
ter supervised finetuning are shown. An immediate differ-. : . . =
images coming from 4 different operating conditions (see ta

ence can be clearly opseryed: V|suaI|z.ed weights are naw Ie%Ie 1) at partial premixing. Half of the training data is col-
noisy, whereas the third hidden layer is able to produce a vi:

e : . ) . _lected during stable combustion and other half during un-
sualization with more clarity compared to the weights prior . . 2
to finetuning. stable combustion. Two sequences of images, consisting of

one at stableRe = 7,971, FFR = 0.495¢/s and full pre-
For both cases, the learning rate used in the AM algorithmmixing) and another at unstabl&¢ = 15,942, FFR =

is 0.01. Results have also indicated that depending on th@495¢/s and full premixing) combustion states, are reduced
initial value of the input vector, the resulting visualimst ~ dimensionally via DBN with the parameters learned at pre-
from solving the optimization problem will be very differen training phase. It is to be noted that, pre-training andrtgst

in terms of clarity. Thus, initial values of the input ved@re  of DBN are done on data at different levels of premixing to
manually tuned by trial-and-error in order to obtain thetbestest the transferability of the proposed architecture.

result. However, random initialization of the input vestor
over a uniform distribution yielded undesirable resultssino
of the time, showing images that are completely noisy with-
out any perceivable features. Even if the results do comyerg
there are no significant differences between the solutiom fr
random initialization compared to the solution from tuning
the initial values manually.

Time series of; norm of 10 dimensional activation proba-
bility vectors from each image are obtained as shown in fig-
ure 6(c) and (d). For comparisaida,norm of 10 largest vari-
ance components of those images, based on principal com-
ponent analysis (PCA) (Bishop, 2006) coefficients learnmed o
same training images, are constructed as presented inghe to
half of the figure 6. It is observed that the difference in tex-
Remark: It is observed from the feature visualization that, tures of thel; time series between stable and unstable com-
though the DBN is trained on both stable and unstable flambéustion is amplified in the case of DBN feature learning.
images, the features gravitate more towards the cohere
structure which is a characteristic of thermo-acoustitains
bility. An expert can use this feature visualization as an im
portant tool to choose templates for unstable combust®n, e
pecially from the higher layer features. Those templates ca
be applied in post-processing of images to calculate the e
tent of instability via appropriate metrics that can effesly
replace the age-old need for hand-crafted visual feature.

%tTSA is performed with increasing alphabet size onithe
time series that are mentioned above. Time series for stable
and unstable combustion are partitioned separately via MEP
and respective state transition matrices are calculatatidy
method explained in subsection 3.2. Euclidean distance be-
{ween state transition matrices of stable and unstable com-
bustion is a measure of class separability between those. Th
more the class separability is the more would be the pretisio
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(b) | )

(d) (d)

Figure 4. (d) Visualization of weights from the first layeidan Figure 5. (d) Visualization of weights from 1st layer and in-
inputs that maximizes the hidden unit activations for the (c puts that maximizes the hidden unit activations for the é&t) 1
1st layer, (b) 2nd layer, and (a) 3rd layer after pre-trajnin layer, (b) 2nd layer, and (a) 3rd layer after superviseddimet
and prior to supervised finetuning. ing.

of detecting the intermediate states of the combustionewhil
shifting from stable to unstable state. Therefore, thimfa
work is better suited for early detection of onset of indtabi
Irtriluclr;[ rlms| %ﬁszﬂf:g.}g%;eg T:é Lhne ?ﬁfrsa;z%alga;;\:'%f_STSA module at the top can be used in supervised man-
9 pp b ner to detect instability from hi-speed image data. As the

tures than the PCA features. A probable rationale behirsd th"DBN+STSA’ architecture provides a large class-sepaitghil

observation is that, while PCA is averaging the image V€Chetween stable and unstable conditions, the state tramsiti

tor based on just maximum spatial variance, DBN is learnin : . - .
i atrix can help in early prediction of thermo-acoustic @ast
semantic features based on the coherent structures seen dur: . o . ]
llity. While the training of the proposed architecture &-c

ing unstable combustion. This rationale is also suppored bried out offline in a GPU, the testing in a PHM application

the DBN feature visualizations that are shown in the subsec- . . .
tion 4.1, can be performed online with a processing power of a regular

CPU. This is possible because the feed-forward computation
In a PHM context, the state transition matrix emerging fromof DBN along with STSA is feasible in real-time.
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(large) flame images to model coherent structure at vary-
)| ing scales and orientations.

e Dynamically tracking multiple coherent structures in the
flame to characterize the extent of instability.

e Multi-dimensional partitioning for direct usage of the
last hidden layers for the sequence of images to the STSA
module without converting it to time series @fnorm.

o STSA on Largest 10
components from PCA
STSA on Last hidden
layer after pretraining

Distance
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