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ABSTRACT

This paper presents the design and real-time experimental re-
sults of a fault diagnosis scheme for inertial measurement
unit (IMU) measurements of quadrotor unmanned air vehi-
cles (UAVs). The objective is to detect, isolate, and estimate
sensor bias fault in accelerometer and gyroscope measure-
ments. Based on the quadrotor dynamics and sensor mod-
els under consideration, the effects of sensor faults are repre-
sented as virtual actuator faults in the quadrotor state equa-
tions. Two nonlinear diagnostic estimators are designed to
provide structured residuals enabling the simultaneous detec-
tion and isolation of the sensor faults. Additionally, based on
the detection and isolation scheme, two nonlinear adaptive
estimators are employed for the estimation of the fault mag-
nitude. The performance of the diagnosis method is evaluated
and demonstrated through real-time flight experiments.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have attracted significant
attentions in recent years due to their potentials in various
military and civilian applications, including security patrol,
search and rescue in hazardous environment, surveillance and
classification, attack and rendezvous (Shima & Rasmussen,
2008). Most quadrotors used in research, are often equipped
with low-cost and lightweight micro-electro-mechanical sys-
tems (MEMS) inertial measurement units (IMU) including 3-
axis gyro, accelerometer and magnetometer. These sensors
serve an essential role in most quadrotor control schemes.
However, due to their intrinsic components and fabrication
process, IMUs are vulnerable to exogenous signals and prone
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to faults. Specifically, accelerometer and gyroscope measure-
ments are susceptible to bias and excessive noise as a result
of temperature variation, vibration, etc. The detection and
estimation of accelerometer and gyroscope faults plays a cru-
cial role in the safe operations of quadrotors. In this paper
we present a nonlinear method for detecting, isolating and
estimating sensor bias faults in accelerometer and gyroscope
measurements of quadrotor UAVs. Based on the fact that the
accelerometer and the gyroscope measure forces/torque act-
ing directly on the UAV body, the quadrotor dynamics are
expressed in terms of the IMU sensor measurements. Two ro-
bust diagnostic estimators are designed to provide structured
fault detection and isolation (FDI) residuals allowing simul-
taneous detection and isolation of gyroscope and accelerom-
eter sensor bias in the presence of measurement noise. In ad-
dition, by utilizing nonlinear adaptive estimation techniques
(Zhang, Polycarpou, & Parsini, 2001), adaptive estimators are
employed to provide an estimate of the unknown sensor bias.
The parameter convergence property of the adaptive estima-
tion scheme is analyzed.
The remainder of the paper is organized as follows. Sec-
tion 2 formulates the problem of sensor FDI for quadrotor
UAVs. The proposed fault detection and isolation method
is presented in Section 3. Section 4 describes the adaptive
estimator algorithms for estimating the unknown sensor bias
magnitude and provides conditions for parameter convergence.
Section 5 and 6 present experimental results and direction of
future research, respectively.

2. PROBLEM FORMULATION

As in (Leishman, Jr., Beard, & McLain, 2014) and (Martin &
Salaün, 2010), the dynamic model used in this paper consid-
ers the gravity, thrust generated by the rotors and drag forces
acting on the quadrotor body. The quadrotor nominal sys-
tem dynamics are derived from the Newton-Euler equations
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of motion and are given by:
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ṗq̇
ṙ
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where pE ∈ R3 is the inertial position, vE ∈ R3 is the ve-
locity expressed in the Earth frame, η = [φ, θ, ψ]T ∈ R3

are the roll, pitch and yaw Euler angles, respectively, and
ω = [p , q , r]T represents the angular rates, m is the mass
of the quadrotor, and g is the gravitational acceleration. The
terms Jx, Jy and Jz represent the quadrotor inertias about the
body x-, y- and z-axis, respectively. Note that the quadrotor
is assumed to be symmetric about the xz and yz planes (i.e.
the product of inertias is zero). U represents the total thrust
generated by the rotors, τφ, τθ, τψ are the torques acting on
the quadrotor around the body x-, y- and z-axis, respectively.
The term cdvB represents the drag force acting on the vehi-
cle frame, with cd being drag force coefficient and vB is the
velocity of the UAV relative to the body frame.

The system model described by Eq (1) - (4) is expressed with
the velocity relative to the inertial frame. The inertial coor-
dinate system is assumed to have the positive x-axis pointing
North, the positive y-axis pointing East and positive z-axis
pointing down towards the Earth’s center. The transforma-
tion from the body frame to inertial frame is given by the
rotation matrix REB and is defined based on a 3-2-1 rotation
sequence as follows:

REB(η) =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


where s· and c· are short hand notations for the sin(·) and
cos(·) functions, respectively. As in (Leishman et al., 2014),
by assuming that the nonlinear Coriolis terms are small enough
to be negligible, the quadrotor velocity dynamics relative to
the body frame are expressed asu̇v̇

ẇ

 =
1

m

 0
0
−T

− cdvB

+

 −g sin θ
g sinφ cos θ
g cosφ cos θ

 (5)

where vB = [u, v, w]T , represents the velocities along the
body x−, y− and z−direction. The relation between the in-
ertial velocity and body velocity is given by vE = REBvB .

As in (Ireland & Anderson, 2012) and (Lantos & Marton,
2011), it is assumed that Euler angles measurements are avail-
able. For instance, these measurements can be generated by
a camera-based motion capture system, a technology com-
monly employed for in-door UAV flight (Guenard, Hamel, &
Mahony, 2008).

MEMS sensors, such as accelerometers and gyroscopes, mea-
sure forces and moments acting in the body frame. The quan-
tity expressed inside the parenthesis in the inertial velocity
dynamics described by Eq (2), represents all the forces acting
on the body. Therefore, the inertial velocity dynamic equa-
tion can be adjusted to reflect accelerometer measurements.
Similarly, the evolution of Euler angles can be rewritten in
terms of gyroscope measurements. By considering IMU mea-
surement’s susceptibility to bias faults, the accelerometer and
gyroscope sensor measurements are given by:

ya = a+ ba + da

=
1

m

 0
0
−U

− cdvB

+ βa(t− Ta)ba + da (6)

yω = ω + bω + dω =

pq
r

+ βω(t− Tω)bω + dω (7)

where ya ∈ R3 and yω ∈ R3 are the accelerometer and gy-
roscope measurements, respectively, ba ∈ R3 and bω ∈ R3

represent the possible faults in accelerometer and gyroscope
measurements, respectively. The terms da and dω represent
the noise in the sensor measurements, and a represents the
nominal acceleration measurement without bias, that is:

a =
1

m

 0
0
−U

− cdvB

 (8)

The fault time profile functions βa(·) and βω(·) are assumed
to be step functions with unknown fault occurrence times Ta
and Tω , respectively. Specifically,

βa(t− Ta) =

{
0 , when t < Ta
1 , when t ≥ Ta

βω(t− Tω) =

{
0 , when t < Tω
1 , when t ≥ Tω

In addition, it is assumed that the position measurements in
the Earth frame available. Hence, the system model can be
augmented by the following output equation:

yp = pE + dp , (9)

where dp represents zero mean position measurement noise.

Assumption 1. The bias in accelerometer and gyroscope
measurements are assumed to be constant and bounded.
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Remark . It is worth noting that, in practical applications,
after the occurrence of an IMU sensor bias, its magnitude may
be time-varying and grow slowly over time. However, the
change in the bias is often small over a short time duration.
Therefore, the bias may be assumed to be constant during the
short time duration under consideration.

Assumption 2. The sensor measurement noise signals de-
noted by da, dω and dp are assumed to be bounded zero mean
signals. That is:

E(da) = 0, E(dω) = 0, E(dx) = 0,

where E represents the expectation operator.

The objective of this research focuses on the development and
demonstration of a robust fault detection, isolation and esti-
mation scheme for sensor faults in accelerometer and gyro-
scope measurements.

3. FAULT DETECTION AND ISOLATION

This section presents the proposed method for detecting and
isolating sensor faults in accelerometer and gyroscope mea-
surements. Substituting the sensor model given by Eq (6)-(7)
into the systems dynamics Eq (1)-(4), we obtain:

ṗE = vE (10)

v̇E = REB(η)ya +

0
0
g

−REB(η)βaba −REBda (11)

η̇ = Rη(φ, θ)yω −Rη(φ, θ)βωbω −Rη(φ, θ)dω (12)
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Jz

(yp − βωbp − dp)(yq − βωbq − dq)


+

 1
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1
Jy
τθ

1
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 (13)

where Rη(φ, θ) is the rotation matrix relating angular rates to
Euler angle rates and is given by:

Rη(φ, θ) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 .
As can be seen from Eq (10)-(13), a bias in accelerometer
measurements affects only the position and velocity states.
Conversely, gyroscope measurements affect only Euler an-
gles and angular rates states. Based on this observation, it
follows naturally to also divide the fault diagnosis of these
two sensor faults. The proposed fault detection, isolation and
estimation architecture is shown in Figure 1. As can be seen,
two FDI estimators monitor the system for fault occurrences
in accelerometer and gyroscope measurements. Once a fault

is detected and isolated, the corresponding nonlinear adaptive
estimator is activated for sensor bias estimation purposes.

Figure 1. Fault detection, isolation and estimation architec-
ture.

3.1. Gyroscope Fault Diagnostic Estimator

As can be seen from the dynamics of the quadrotor, given by
equations (10)-(13), the bias in the gyroscope measurements
only affects the attitude and rotation dynamics given by Eq
(12)-(13). Based on Eq (12) and adaptive estimation schemes
(Ioannou & Sun, 1996), the fault diagnostic estimator for the
gyroscope bias can be designed as follows:

˙̂η = −Λ(η̂ − η) +Rη(φ, θ)yω , (14)

where η̂ ∈ R3 are the Euler angle estimates, Λ ∈ R3×3 is a
positive-definite diagonal design matrix. Let the Euler angle
estimation error be defined as:

η̃ , η − η̂ . (15)

Based on Eq (12) and Eq (14), the dynamics of the attitude
angle estimation error are given by:

˙̃η = η̇ − ˙̂η = −Λη̃ −Rη(φ, θ)βωbω −Rη(φ, θ)dω . (16)

By design, the homogeneous part of Eq (16) is exponentially
stable. In the absence of a gyroscope fault (i.e. t < T0), the
attitude angle estimation error is given by:

η̃(t) = e−Λ(t−T0)η̃(0)−
∫ t

0

e−Λ(t−τ)Rη(φ, θ)dωdτ

= rω(t) + eω(t) , (17)

where rω(t) , e−Λ(t−T0)η̃(0) converges exponentially fast
to zero, and eω(t) represents an additive noise term generated
by filtering the measurement noise dω through the following
linear filter:

ėω = −Λeω −Rη(φ, θ)dω

In addition, in the presence of a non-zero bias bω , based on Eq
(16), it can be seen that the residual η̃ will deviate from zero.
Therefore, if any component of the state estimation error η̃ is
significantly different from zero, we can conclude that a fault
in the gyroscope measurements has occurred.
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3.2. Accelerometer Fault Diagnostic Estimator

The dynamics of UAV position and velocity relative to the
inertial frame given by Eq (10) and Eq (11) can be represented
by the following state space model:

ẋ = Ax+ f(η, ya) +Ga(η)βaba +Da(η, t)

y = Cx+ dp ,
(18)

where x = [pTE vTE ]T , y = pE , and

A =

[
03×3 I3
03×3 03×3

]
, Ga(η) =

[
03×3

−REB

]
,

f(η, ya) =


03×1

REBya +

0
0
g


 , Da(η, t) =

[
03×1

−REBda

]
,

and C = [I3, 03×3], where I3 is a 3× 3 identity matrix, 03×3

is a 3 × 3 matrix with all entries zero and 03×1 is a 3 × 1
zero vector. Based on this configuration, the following fault
diagnostic observer is chosen :

˙̂x = Ax̂+ f(η, ya) + L(y − ŷ)

ŷ = Cx̂ ,
(19)

where x̂ ∈ R6 represents the inertial position and velocity
estimation, ŷ ∈ R3 are the predicted position outputs, L is
a design matrix chosen such that the matrix Ā , (A − LC)
is stable. Let us define the position estimation error and the
state estimation error as:

ỹ , y − ŷ (20)

x̃ , x− x̂ . (21)

By using equations (18) - (19), the estimation error dynamics
are given by:

˙̃x = Āx̃+Ga(η)βaba +Da(η, t)− Ldp
ỹ = Cx̃+ dp

(22)

In the absence of accelerometer bias, the position estimation
error is given by:

ỹ=CeĀ(t−T0)x̃(0)+C

∫ t

0

eĀ(t−τ)(Da(η,t)−Ldp)dτ+dp

=ra(t)+ea(t)+dp, (23)

where ra(t),CeĀ(t−T0)x̃(0) converges exponentially fast to
zero, and ea(t) represents an additive noise term generated by
filtering da and dp through the following linear filter:

ėa=Āea+
(
Da(η,t)−Ldp

)
.

Clearly, the output estimation error ỹ reaches a small value,

centered around zero, exponentially fast in the absence of the
accelerometer bias ba. Furthermore it can be seen from Eq
(22) the residual ỹ is only sensitive to the bias ba. Therefore,
if any component of the position estimation error ỹ deviates
significantly from zero, we can conclude that a fault in the
accelerometer sensor measurement has occurred.

3.3. Fault Detection and Isolation Decision Scheme

As described in Section 3.1 and 3.2, the two fault diagnostic
estimators are designed such that each of them is only sensi-
tive to one type of sensor faults. Based on this observation,
the residuals η̃ and ỹ generated by Eq (17) and Eq (23) can
also be used as structured residuals for fault isolation. More
specifically, we have the following fault detection and isola-
tion decision scheme:

• In the absence of any faults, all components of the resid-
uals η̃ and ỹ should be close to zero.

• If all components of the residual η̃ remain around zero,
and at least one component of the residual ỹ is signifi-
cantly different from zero, then we conclude that an ac-
celerometer fault has occurred.

• If all components of the residual ỹ remain around zero,
and at least one component of the residual η̃ is signifi-
cantly different from zero, then we conclude that a gyro-
scope fault has occurred.

• If at least one component of the residual η̃ and at least
one component of the residuals ỹ are simultaneously sig-
nificantly different from zero, then we conclude that both
a gyroscope and accelerometer sensor measurement fault
has occurred.

The above FDI decision scheme is summarized in Table 1,
where “0” represents residuals with zero mean, and “1” rep-
resents significantly non-zero residuals.

Table 1. Fault Isolation Decision Truth Table.

No Fault Gyro Bias Accel Bias Accel & Gyro
Bias

η̃ 0 1 0 1
ỹ 0 0 1 1

4. FAULT ESTIMATION

After a sensor fault is detected and isolated, it is also cru-
cial to provide an estimation of the sensor bias to improve
the performance of the closed loop control system. As shown
in Figure 1, once a fault has been detected and isolated, the
corresponding nonlinear adaptive bias estimator is activated
with the purpose of estimating the fault magnitude in the ac-
celerometer and/or gyroscope measurements. In this section,
we describe the design of nonlinear adaptive estimators for
sensor bias estimation.
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4.1. Accelerometer Fault Estimation

Based on Eq (18), the adaptive observer for estimating the
accelerometer bias magnitude is chosen as:

˙̂x = Ax̂+ f(η, ya) + L(y − ŷ) +Ga(η)b̂a + Ω
˙̂
ba (24)

Ω̇ = (A− LC)Ω +Ga(η) (25)
ŷ = Cx̂ , (26)

where x̂ is the estimated position and velocity vector, ŷ is the
estimated position output, b̂a is the estimated sensor bias, and
L is the observer gain matrix. The adaptation in the above
adaptive estimator arises due to the unknown bias ba. The
adaptive law for updating b̂a is derived using Lyapunov syn-
thesis approach (Bastin & Gevers, 1988; Zhang, 2011) and is
given by:

˙̂
ba = PΘ{ΓΩTCT ỹ}. (27)

In order to guarantee the stability of the parameter estimation
in the presence of unknown modeling errors and measure-
ment noise (Ioannou & Sun, 1996), the projection operator
P restricts the parameter estimate to a known compact con-
vex region Θ, defined by b̂Ta b̂a < M2, where M is a positive
constant. Specifically, the adaptive algorithm is given by:

˙̂
ba =


ΓΩTCT ỹ, if ||b̂a|| = M and b̂Ta ΓΩTCT ỹ ≤ 0

or if ||b̂a|| < M

ΓΩTCT ỹ − Γ
b̂ab̂

T
a

b̂Ta Γb̂a
ΓΩTCT ỹ, otherwise

(28)
where Γ > 0 is a symmetric and positive-definite learning
rate matrix, and ỹa , ya − ŷa is the output estimation error.
Let us also define the state estimation error as x̃ , x− x̂, and
the parameter estimation error as b̃a , b̂a − ba. The stability
and performance properties of the above adaptive scheme are
described below.

Theorem 4.1. In the presence of an accelerometer measure-
ment bias, if there exists constants α1 ≥ α0 > 0 and T0 > 0,
such that

α1I ≥
1

T0

∫ t+T0

t

ΩTCTCΩdτ ≥ α0I , (29)

then, the adaptive scheme described by Eq (24) - (26) and Eq
(28) ensures that:

1. all signals in the adaptive estimator remain bounded,
2. E(x̃) and E(b̃a) converge exponentially to zero.

The proof of the above theorem is omitted here due to space
limitation. Interested readers please contact the correspond-
ing author for details (Avram, 2015).

4.2. Gyroscope Fault Estimation

Once a gyroscope bias fault is detected and isolated, the fol-
lowing adaptive estimator is activated in order to estimate the

bias in the gyroscope sensor:

˙̂η = −Λ(η̂ − η) +Rη(φ, θ)yω −Rη(φ, θ)b̂ω (30)
˙̂
bω = ΓRη(φ, θ)(η̂ − η) , (31)

where η̂ is the Euler angle estimate, b̂ω represents the estima-
tion of the sensor bias, Λ and Γ are positive definite design
matrices. The adaptive law for estimating the bias in gyro-
scope measurements in Eq (30)- (31) is derived using Lya-
punov synthesis approach (Ioannou & Sun, 1996). In ad-
dition, in order to ensure parameter convergence, Rη(φ, θ)
will also need to satisfy the persistence of excitation condi-
tion (Ioannou & Sun, 1996), that is:

α1I ≥
1

T0

∫ t+T0

t

Rη(φ, θ)TRη(φ, θ)dτ ≥ α0I (32)

for some constants α1 ≥ α0 > 0 and T0 > 0 and for all t ≥
0. Let us define the attitude angle estimation error as η̃ ,
η − η̂ and the bias estimation error as b̃ω , b̂ω − bω . The
stability and learning performance of the adaptive scheme Eq
(30)- (31) is summarized by the following theorem.

Theorem 4.2. In the presence of a gyroscope bias, if there
exists constants α1 ≥ α0 > 0 and T0 > 0 such that Eq (32) is
satisfied, then the adaptive scheme in Eq (30) - (31) ensures
that:

1. all signals in the adaptive scheme remain bounded
2. E(η̃) and E(b̃ω) converge exponentially to zero.

For the sake of space limitation, the complete proof of the
above theorem is purposely omitted. Interested readers please
contact the corresponding author for details (Avram, 2015).

5. EXPERIMENTAL RESULTS

In this section, experimental results using a real-time quadro-
tor test environment of Wright State University are described
to illustrate the effectiveness of the sensor fault diagnosis al-
gorithm. A block diagram of the experimental system setup
is shown in Figure 2. During flight tests, quadrotor position
and attitude information is obtained from a Vicon motion cap-
ture camera system. Position and Euler angle measurements
are collected every 10ms and relayed from a Vicon dedicated
PC via TCP/IP connection to a ground station computer. As
in (Macdonald, Leishman, Beard, & McLain, 2014), we cor-
rupted position measurements with normal noise. In this re-
search we chose the noise standard deviation to be 0.25m.
Additionally, position measurements are down sampled to
1Hz, in order to further simulate real world applications. The
fault diagnosis method is evaluated in real-time during au-
tonomous flight of a quadrotor built in-house with off-the-
shelf components. The quadrotor is equipped with the Qbrain
embedded control module from Quanser Inc. The control
module consists of a HiQ acquisition card providing real-
time IMU measurements, and a Gumstix Duo Vero micro-
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Figure 2. Experimental system architecture setup

controller running the real-time control software. An IEEE
802.11 connection between the ground station PC and the
Gumstix allows for fast and reliable wireless data transmis-
sion and on-line parameter tuning. Position and attitude in-
formation obtained from the Vicon system along with trajec-
tory commands generated by the ground station are sent to
the quadrotor in order to achieve real-time autonomous flight.
The control software executes on-board at 500Hz, and ac-
celerometer and gyroscope measurement are logged at 200Hz.
During the experimental stage, the quadrotor is commanded
to move in a circular trajectory, while maintaining constant
orientation and altitude. As previously shown, the fault di-
agnosis technique employed in this approach is independent
of the structure of the controller. Therefore, for brevity, the
discussion on the control design is purposely omitted.

In order to evaluate the proposed diagnosis method, we log
approximately 2.5 minutes of autonomous flight data. Sen-
sor bias is artificially injected into the accelerometer and gy-
roscope measurements, respectively, while the quadrotor is
airborne. Figure 3 shows the fault time profile of the two
sensor faults. As can be seen, an accelerometer fault is in-
jected approximately at time t = 35s until t = 60s. From
approximately t = 62s until t = 95s, a gyroscope bias is in-
troduced into the sensor measurements. Additionally, in order
to evaluate the performance of the proposed FDIE algorithm
in the presence of multiple faults, both accelerometer and gy-
roscope faults are injected at approximately t = 97s. Flight
data is processed on-line, and real-time sensor fault diagnos-
tic decision is provided by the diagnostic algorithm. In the
following sections, we present the evaluation results of the
diagnosis method using real-time flight data.

5.1. Case of Accelerometer Bias

The performance of the proposed FDIE in the presence of
accelerometer measurement bias fault is shown in this sec-
tion. At approximately time t = 35s, a constant bias ba =
[0.1, 0.15, 0.9]Tm/s2, is injected into the accelerometer mea-
surements. Figure 4 shows the residuals generated by the two
diagnostic estimators described by Eq (14) and Eq (19), re-
spectively. In order to enhance the diagnostic decision based

Figure 3. Sensor fault time profile

on the FDI logic given by Table 1, the two-sided cumulative
sum (CUSUM) test is applied to process the diagnostic resid-
uals (Gustafsson, 2000). Figure 5 shows the statistic property
generated by the CUSUM test. A fixed threshold is chosen for
the detection and isolation of sensor faults. As can be seen,
shortly after the occurrence of the fault, at least one compo-
nent of the test statistic corresponding to the residuals gen-
erated by the accelerometer diagnostic estimator exceeds the
detection threshold. On the other hand, all components of the
test statistic corresponding to the gyroscope bias remain well
below the detection threshold. Based on the detection and
isolation logic given in Table 1, we can conclude that a fault
has occurred in the accelerometer measurement. In addition,
Figure 6 shows the estimation of the bias in the accelerome-
ter for each axis, respectively. As can be seen, the estimate of
accelerometer converges closely to the actual value.

Figure 4. Sensor bias diagnostic raw residuals.

Figure 5. Accelerometer fault diagnosis using CUSUM.
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Figure 6. Accelerometer bias estimation.

5.2. Case of Gyroscope Bias

A gyroscope bias with bω = [5, −7, −10]T ◦/s is injected
into the sensor measurements at approximately time t = 62s.
Figure 7 shows the statistic property generated by the CUSUM
test when applied to the residuals generated by Eq (14) and
Eq (19), respectively. As can be seen, at least one compo-
nent of the test statistic corresponding to the residuals gener-
ated by the gyroscope diagnostic estimator exceeds the man-
ual chosen detection threshold shortly after the occurrence of
the gyroscope fault. On the other hand, all components of the
test statistic corresponding to the accelerometer bias remain
well below the detection threshold. Based on the detection
and isolation logic given in Table 1, we can conclude that a
fault has occurred in the gyroscope measurement. In addition,
Figure 8 shows the estimation of the bias in the gyroscope for
each axis, respectively. As can be seen, after a short time, the
estimate of gyroscope bias is reasonably close to its actual
value.

Figure 7. Gyroscope fault diagnosis using CUSUM.

5.3. Case of Simultaneous Faults

In this section, we present the results of the diagnostic method
in the presence of both accelerometer and gyroscope faults.
Specifically, at time t = 97s, biases ba = [0.1, 0.15, 0.9]Tm/s2

and bω = [5, −7, −10]T ◦/s are injected into accelerometer
and gyroscope measurements, respectively. Figure 9 shows
the statistic property generated by the CUSUM test. As can
be seen, shortly after the occurrence of the faults, the test
statistics corresponding to both diagnostic estimators, exceed

Figure 8. Gyroscope bias estimation.

their respective detection threshold. Hence, we can conclude
that faults have occurred in both accelerometer and gyroscope
measurements. Furthermore, Figure 10 and Figure 11 show
the estimation of the accelerometer and gyroscope biases, re-
spectively. As can be seen, estimation results are satisfactory.

Figure 9. CUSUM based fault detection of simultaneous sen-
sor faults.

Figure 10. Accelerometer bias estimation in the simultaneous
fault occurrence scenario.

6. CONCLUSION AND FUTURE WORK

In this paper, we present the design of a nonlinear fault di-
agnostic method for sensor bias faults in accelerometer and
gyroscope measurements of quadrotor UAVs. Based on the
idea that accelerometer and gyroscope measurements coin-
cide with translational and rotational forces acting on the body,
respectively, two FDI estimators are designed to generate struc-
tured residuals for fault detection and isolation. In addition,

7
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Figure 11. Gyroscope bias estimation in the simultaneous
fault occurrence scenario.

nonlinear adaptive estimation estimation schemes are presented
to provide an estimate of the sensor bias. The proposed diag-
nostic method is implemented on a quadrotor UAV test en-
vironment and is demonstrated during real-time autonomous
flight data. An interesting direction for future research is to
develop and demonstrate a systematic diagnostic method for
quadrotor actuator faults.
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