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ABSTRACT 

The detection of a linearly modulated signal is currently 

accomplished by applying the Bispectrum. This technique is 

capable of detecting quadratic phase coupled spectral 

components, and consequently, can be used in order to reveal 

a linearly modulated signal presence. However, a linear 

modulation by itself does not exhibit quadratic phase coupled 

spectral analysis. Then, the application of the Bispectrum for 

detecting linearly modulated signals could be unsuccessful. 

In this paper a general method for detection of linearly 

modulated signals, which can be applied whether the signals 

comprise quadratic phase coupled spectral components or 

not, is proposed. This method is evaluated through numerical 

simulations and it is applied for detecting a local fault in 

rolling element bearings. The achieved results are compared 

with those obtained by the traditional spectral analysis and 

the Bispectrum, revealing the effectiveness obtained by the 

application of the proposed method. 

1. INTRODUCTION 

Second-order signal interactions or transformations analysis 

is a common issue in Signal Processing (Chaari, Bartelmus, 

Zimroz, Fakhfakh, and Haddar (2012); Chen & Zuo, 2009). 

Second order interactions are characterized by Quadratic 

Phase Coupled (QPC) spectral components, and 

consequently by linear modulations. Although this paper is 

focused on linear modulation, the analysis proposed here can 

be extended to other kind of modulations (e.g., exponential 

modulations) whenever the phases of the spectral 

components at both sides around the frequency of the so 

called carrier signal are phase coupled. 

Some published papers have been focused on the problem of 

detection of phase coupled spectral components, in particular 

QPC spectral components. In these publications QPC 

detection has been applied to different signals; such as 

biological signals (Venkatakrishnan, Sukanesh, and 

Sangeetha (2011)), telecommunication signals (Sanaullah, 

2013), mechanical vibration signals (Bouillaut & Sidahmed, 

2001; Raad & Sidahmed, 2002), etc. In order to detect QPC 

spectral components, higher-order statistical signal 

processing, more specifically Bispectrum (Venkatakrishnan 

et al. (2011); Sanaullah, 2013; Fackrell & McLaughlin, 

1995), has been successfully applied. Bispectrum, by 

definition, detects the quadratic phase coupling among 

spectral components. However, a linearly modulated signal 

by itself is not a signal with QPC spectral components 

necessarily.  

This paper proposes a general method for detecting linearly 

modulated signals based on the analysis of phase coupling 

among spectral components located at both sides around a 

center frequency. 

The rest of the article is organized as follows. Section 2 

presents the well-known Bispectrum’s capability of detection 

of modulated signal once the QPC condition is fulfilled and 

the problem concerning the application of the Bispectrum on 

the detection of a linear modulation for a signal without QPC 

spectral components; in Section 3,  the theoretical 

foundations of the proposed method are explained; Section 4 

corroborates these theoretical foundations by numerical 

simulations; Section 5 presents the results of the application 

of this method on rolling element bearing fault detection and 

also a comparison with results obtained by the application of 

the traditional spectral analysis and the Bispectrum. 

2. BISPECTRUM AND THE DETECTION OF LINEARLY 

SIMULATED SIGNALS 

A QPC interaction is produced by a second-order 

transformation system as follows (Sanaullah, 2013; Gallego, 

Urdiales, and Ruiz (1999); Seydnejad, 2007): 

 𝑦(𝑡) = 𝑎𝑥2(𝑡) + 𝑏𝑥(𝑡) + 𝑐, (1) 

where 𝑥(𝑡) and 𝑦(𝑡) are the signals at the system input and 

output, respectively. 
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For example, let 

 𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 𝜑1) 

                         +cos(2𝜋𝑓2𝑡 + 𝜑2), 

 

(2) 

where 𝜑1  and 𝜑2  are independent random variables with 

uniform probability density function between – 𝜋  and 𝜋 . 

Then, 

 𝑦(𝑡) = 𝑐 + 𝑏 cos(2𝜋𝑓1𝑡 + 𝜑1) 

     +𝑏 cos(2𝜋𝑓2𝑡 + 𝜑2) 

     +2𝑎 cos(2𝜋𝑓1𝑡 + 𝜑1) cos(2𝜋𝑓2𝑡 + 𝜑2) 

     +𝑎 cos2(2𝜋𝑓1𝑡 + 𝜑1) 

     +𝑎 cos2(2𝜋𝑓2𝑡 + 𝜑2) 

 

 

 

 

(3) 

As a result of the second-order transformation process, a 

linearly modulated signal, given by the term    

2𝑎 cos(2𝜋𝑓1𝑡 + 𝜑1) cos(2𝜋𝑓2𝑡 + 𝜑2) in Eq. (3), is obtained 

at the system output. The signal 𝑦(𝑡)  comprises spectral 

components at frequencies 0, 𝑓1 , 𝑓2 , 𝑓1 + 𝑓2 ,  𝑓1 − 𝑓2 , 2𝑓1 

and 2𝑓2. Given that QPC spectral components are defined as 

spectral components at frequencies 𝑓𝑎 , 𝑓𝑏  and 𝑓𝑎 + 𝑓𝑏  with 

phases equal to 𝜑𝑎, 𝜑𝑏 and 𝜑𝑎 + 𝜑𝑏, respectively [3, 4, 5, 6, 

7, 9], then it can be stated that 𝑦(𝑡)  fulfills the QPC 

condition. 

Bispectrum (third-order spectral cumulant) is a common 

technique applied for detecting QPC spectral components. 

The Bispectrum of a signal 𝑧(𝑡) can be obtained as follows 

(Venkatakrishnan et al. (2011); Sanaullah, 2013; Fackrell & 

McLaughlin (1995); Rivola & White (1998)): 

 𝐵(𝑓𝑎, 𝑓𝑏) = 𝐸{𝑍(𝑓𝑎)𝑍(𝑓𝑏)𝑍
∗(𝑓𝑎 + 𝑓𝑏)} (4) 

where 𝑍(𝑓) is the Fourier transform of  𝑧(𝑡). 

Let 𝑧(𝑡) denote the signal obtained from Eq. (3) corrupted by 

a zero mean Gaussian noise, 𝑤(𝑡), as 

 𝑧(𝑡) = 𝑦(𝑡) + 𝑤(𝑡), (5) 

The Bispectrum of signal 𝑧(𝑡) is in theory different from zero 

only for the biespectral components (𝑓𝑎 − 𝑓𝑏 , 𝑓𝑏)  and 

(𝑓𝑎, 𝑓𝑏). Such nonzero bispectral components are indicating 

that certain spectral components in 𝑧(𝑡)  fulfill the QPC 

condition, and consequently the signal 𝑧(𝑡)  comprises a 

linearly modulated signal.  

An important question must be taken into consideration: a 

linearly modulated signal by itself does not necessarily 

comply with the QPC condition; then the application of 

Bispectrum for detecting linearly modulated signal can be 

unsuccessful. 

3. GENERAL METHOD PROPOSED FOR LINEARLY 

MODULATED SIGNAL DETECTION 

In order to detect a linearly modulated signal, the calculation 

of the phase coupling among spectral components at both 

sides around a center frequency can be carried out depending 

on the characteristics of the modulated signal to detect. For 

example, the following equations calculate the spectral 

components phase coupling for detecting a linearly 

modulated signal with unsuppressed carrier, a linearly 

modulated signal with suppressed carrier, and a linearly 

modulated signal with only odd spectral components around 

the carrier frequency, respectively: 

 𝐷0(𝑓, 𝛼)3 = 𝐸{𝑍(𝑓 − 𝛼)𝑍(𝑓 + 𝛼) 

∙ |𝑍(𝑓)|𝑒−𝑗2∙𝑎𝑛𝑔[𝑍(𝑓)]} 

 

(6) 

 𝐷2(𝑓, 𝛼)4 = 𝐸{𝑍(𝑓 − 𝛼)𝑍(𝑓 + 𝛼) 

                            ∙ 𝑍∗(𝑓 − 2𝛼)𝑍∗(𝑓 + 2𝛼)} 

 

(7) 

 𝐷3(𝑓, 𝛼)4 = 𝐸{𝑍(𝑓 − 𝛼)𝑍(𝑓 + 𝛼) 

                            ∙ 𝑍∗(𝑓 − 3𝛼)𝑍∗(𝑓 + 3𝛼)} 

 

(8) 

where 𝐸{. }  is the expected value operator, 𝑍(𝑓)  is the 

Fourier transform of the signal under study and “𝑎𝑛𝑔[𝑤]” is 

the angle of the complex number 𝑤. 

For example, given a linearly modulated signal with 

unsuppressed carrier at frequency equals to 𝑓𝑐, there will be 

an 𝛼 = 𝑓𝑚 , provided that 𝑓𝑐 + 𝑓𝑚  and 𝑓𝑐 − 𝑓𝑚  are the 

frequencies of two nonzero modulated signal spectral 

components, such that 𝐷0(𝑓𝑐 , 𝑓𝑚)3 ≠ 0 . An example of a 

linearly modulated signal spectrum is shown in Figure 1. 

 

Figure 1. Example of a linearly modulated signal spectrum. 

Moreover, the modulation signal detection algorithm is 

immune to the corrupting noise, then it can be applied under 

low signal-to-noise rates. For example, given a signal 𝑧(𝑡) 
comprising an amplitude modulation signal, 𝑎(𝑡) , with 

unsuppressed carrier at frequency equals to 𝑓𝑐  and 

modulating signal with frequency equal to 𝑓𝑚, plus a random 

signal (noise), 𝑎𝑛(𝑡), the Eq. (6), at frequencies 𝑓𝑐, 𝑓𝑚 can be 

written as follows: 

 𝐷0(𝑓𝑐 , 𝑓𝑚)3 = 𝐸{𝑍(𝑓𝑐 − 𝑓𝑚)𝑍(𝑓𝑐 + 𝑓𝑚) ∙ 

                |𝑍(𝑓𝑐)|𝑒
−𝑗2∙𝑎𝑛𝑔[𝑍(𝑓𝑐)]} 

 

(9) 
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The spectral components in 𝑧(𝑡)  at frequencies 𝑓𝑐 − 𝑓𝑚 , 

𝑓𝑐 + 𝑓𝑚  and 𝑓𝑐  correspond with spectral components of 

modulation signal and noise, then: 

 

 𝐷0(𝑓𝑐, 𝑓𝑚)3 = 𝐸{[𝐴−𝑚𝑒
𝑗(𝜑𝑐−𝜑𝑚) + 𝐴𝑛−𝑚

𝑒𝑗𝜃𝑛−𝑚] ∙ 

                            [𝐴+𝑚𝑒
𝑗(𝜑𝑐+𝜑𝑚) + 𝐴𝑛+𝑚

𝑒𝑗𝜃𝑛+𝑚] ∙ 

                            [𝐴𝑐𝑒
−𝑗2𝜑𝑐 + 𝐴𝑛𝑐

𝑒𝑗𝜃𝑛𝑐]} 

(10) 

where 𝐴−𝑚 and 𝜑𝑐 − 𝜑𝑚, 𝐴+𝑚 and 𝜑𝑐 + 𝜑𝑚, 𝐴𝑐 and 𝜑𝑐, are 

the amplitudes and phases of spectral components of the 

modulation signal at frequencies 𝑓𝑐 − 𝑓𝑚 , 𝑓𝑐 + 𝑓𝑚  and 𝑓𝑐 , 

respectively, and 𝐴𝑛−𝑚
 and 𝜃𝑛−𝑚 , 𝐴𝑛+𝑚

 and 𝜃𝑛+𝑚 , 𝐴𝑛𝑐
 and 

𝜃𝑛𝑐 , are the amplitudes and phases of spectral components of 

the random signal at frequencies 𝑓𝑐 − 𝑓𝑚, 𝑓𝑐 + 𝑓𝑚 and 𝑓𝑐, as 

well. 

The development of Eq. (10) results in  

 𝐷0(𝑓𝑐 , 𝑓𝑚)3 = 𝐸{𝐴−𝑚𝐴+𝑚𝐴𝑐} (11) 

the significant magnitude of which will be indicating the 

modulation signal presence. Futhermore, Eq. (11) reveals the 

independent nature of the algorithm with respect to the 

corrupting noise magnitude. 

4. NUMERICAL SIMULATIONS 

In order to evaluate the proposed method, 1000 realizations 

of a discrete linearly modulated signal with non-quadratic 

phase coupled spectral components, corrupted by a zero mean 

gaussian noise with variance equal to 4, are generated by 

using the software Matlab, according to the following 

equation: 

 𝑦[𝑛𝑇𝑠] = cos(2𝜋𝑓1𝑛𝑇𝑠 + 𝜑1) 

  +cos(2𝜋𝑓2𝑛𝑇𝑠 + 𝜑2) 

  +cos(2𝜋𝑓1𝑛𝑇𝑠 + 𝜑3) cos(2𝜋𝑓2𝑛𝑇𝑠 + 𝜑2) 

  +𝑤(𝑛𝑇𝑠) 

 

 

 

(7) 

where 𝑇𝑠 = 1 ms, 𝑓1 = 10 Hz, 𝑓2 = 200 Hz, and 𝜑1, 𝜑2, and 

𝜑3 are independent discrete random variables with uniform 

probabilistic density function between – 𝜋 and 𝜋. It should be 

noted that a linear modulation signal is produced but the 

spectral components are not quadratic phase coupled. 

The Bispectrum of 𝑦[𝑛𝑇𝑠] does not reveal any information 

about the linearly modulated signal. This can be observed in 

Figure 2. The magnitude of the bispectral components at 

frequencies   (𝑓1, 𝑓2 ) = (190,10) and (𝑓1, 𝑓2 ) = (200,10), 

calculated for the simulation signal, are shown in 

Figure 3. 

Figure 2. Amplitude Bispectrum of a linearly modulated 

signal with non-quadratic phase coupled spectral 

components. 

 

Figure 3. Sketch of function |𝐵(𝑓1, 10)| for a linearly 
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modulated signal with non-quadratic phase coupled spectral 

components. 

 

As expected, it can be observed in 

Figure 3 that the application of the Bispectrum for detecting 

a linearly modulated signal is not effective. 

If 𝐷0(𝑓, 𝛼)3 is computed for the simulation signal, a nonzero 

value at (𝑓, 𝛼)  = (200,10) , indicating that a modulated 

signal is present, is obtained (see  

 

Figure 4). The amplitude of the component at (𝑓, 𝛼)  = 

(200,10)  can be observed in 

 

Figure 5, where the magnitude of the function 𝐷0(𝑓, 𝛼)3, for 

𝛼 = 10 Hz, is plotted.  

 

 

 

 

 

Figure 4. Sketch of |𝐷0(𝑓, 𝛼)3| for a linearly modulated 

signal with non-quadratic phase coupled spectral 

components. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

5 

 

Figure 5. Sketch of function |𝐷0(𝑓, 10)3| for a linearly 

modulated signal with non-quadratic phase coupled spectral 

components. 

5. DETECTION OF A VIBRATION MODULATED SIGNAL 

PRODUCED BY A ROLLING ELEMENT BEARING WITH 

A LOCAL FAULT 

When a rolling element bearing has a local fault produces a 

vibration with an amplitude modulation waveform 

(Seydnejad, 2007). This signal does not satisfy the QPC 

condition necessarily. The modulating signal is periodic 

(with main frequency known as “fault characteristic 

frequency”, 𝑓𝑐𝑎), it depends on the physical characteristics of 

the bearing components, and it is proportional to the rotating 

frequency of the shaft supported by the bearing (Seydnejad, 

2007). The detection of this fault is performed by identifying 

the modulated signal spectral components, spaced in the fault 

characteristic frequency that arise around the frequencies 

associated to the natural frequencies of the mechanical 

system (Randall & Antoni (2011); Hernandez & Caveda 

(2008)). The accurate identification of such modulated signal 

can be affected either by spectral components of vibrations 

from sources unrelated to the bearing fault mechanism or the 

background noise. Under these conditions, the application of 

the proposed method represents a suitable tool. 

In order to test the effectiveness of the application of the 

proposed method on bearing fault detection, 𝐷0(𝑓, 𝛼)3  is 

employed for analyzing a vibration signal experimentally 

obtained from a rolling element bearing with a local fault. 

𝐷0(𝑓, 𝛼)3  is chosen because the modulated signal  has a 

significant spectral component magnitude at the carrier 

frequency. The Spectrum and the Bispectrum are also 

calculated for comparison purposes. 

A vibration signal produced by a rolling element bearing with 

an incipient local fault in the bearing outer race (𝑓𝑐𝑎 = 98 Hz), 

supporting a shaft rotating at 1500 RPM (25 Hz), is sampled 

at 50 kHz and analyzed. 

A portion of the amplitude spectrum of the vibration 

produced by the incipient local fault in the bearing outer race 

is shown in 

 

Figure 6. This section of the spectrum shows one of the 

spectral bands at which some natural frequencies of the 

mechanical system are excited. As it can be shown in     

 

Figure 6, the local fault is so weak that the associated spectral 

pattern (peaks spaced in 𝑓𝑐𝑎 = 98 Hz) is not possible to be 

distinguished. 
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Figure 6. Amplitude spectrum of the vibration produced by 

an incipient local fault in a bearing outer race (𝑓𝑐𝑎 = 98 Hz). 

 

 

 

The Amplitude Bispectrum of the vibration produced by the 

incipient local fault in the bearing outer race is shown in 

Figure 7a and the Amplitude Bispectrum contour is shown in 

Figure 7b. As it can be seen in Figure 7b, the modulated 

signal is not detected by the Bispectrum and the fault 

characteristic frequency, in this case 𝑓𝑐𝑎  = 98 Hz, is not 

identified either. The representation of the magnitude of the 

Bispectrum along de frequency  𝑓2 = 98 Hz (see Figure 7c) 

shows clearly the unsuccessful application of the Bispectrum 

for detecting the modulated signal. 

𝐷0(𝑓, 𝛼)3  is calculated for the vibration produced by the 

same incipient local fault in the bearing outer race. The 

absolute value of the computed 𝐷0(𝑓, 𝛼)3  and its 

corresponding contour are shown in Figure 8a and Figure 8b, 

respectively. As it can be seen in Figure 8a and Figure 8b, 

nonzero components at (𝑓, 𝑘 ∙ 98), 𝑘 = 1,2, …, are obtained, 

which indicates that several phase coupled spectral 

components, spaced in 98 Hz, have been excited. Therefore, 

it is possible to assure that the modulation has been detected 

and that the fault characteristic frequency has been identified. 

The sketch of the magnitude of the function 𝐷0(𝑓, 𝛼)3 along 

the frequency 𝛼 = 98 Hz is shown in Figure 8c, where the 

achieved effectiveness is better revealed in comparison with 

that obtained by the Bispectrum (see Figure 7c). 

6. CONCLUSION 

A method for detecting linearly modulated signals has been 

proposed. It was demonstrated that this method is suitable to 

be applied for detecting the distinct phase coupling among 

the modulated signal spectral components, whether such a 

coupling is quadratic or not. This method could also be 

applied for detecting other kind of modulations (e.g., 

exponential modulations) since spectral components at both 

sides of the carrier frequency are found to be phase coupled.  

The proposed method for detecting a linearly modulated 

signal is based on the phase relationships among spectral 

components around a center frequency.  

This method has been experimentally evaluated, and its 

applicability has been verified by detecting a local fault in 

rolling element bearings.  

It has been demonstrated through the numerical and 

experimental works that better results can be achieved by 

applying the proposed method, in comparison with the use of 

the conventional spectral analysis and the Bispectrum 

analysis. In fact, the Bispectrum analysis is one of the 

currently most used technique for detecting phase coupled 

spectral components. 

 

 

a) 

 

b) 
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c) 

Figure 7. Bispectrum of the vibration produced by an 

incipient local fault in a bearing outer race (𝑓𝑐𝑎 = 98 Hz).   

a) Amplitude Bispectrum. b) Amplitude Bispectrum 

contour. c) Amplitude Bispectrum along the frequency       

𝑓2 = 98 Hz. 

a) 

 

b) 

c) 

Figure 8. 𝐷0(𝑓, 𝛼)3 for the vibration produced by an 

incipient local fault in a bearing outer race (𝑓𝑐𝑎 = 98 Hz).    

a) Sketch of |𝐷0(𝑓, 𝛼)3|. b) Contour of the magnitude of 

𝐷0(𝑓, 𝛼)3. c) Sketch of |𝐷0(𝑓, 𝛼)3| along the frequency        

𝛼 = 98 Hz. 
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