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ABSTRACT 

Insulated Gate Bipolar Transistors (IGBTs) are one of the 

most used power semiconductor devices for energy 

conversion applications, due to their high performance. In 

this work we have developed a monitoring system for 

IGBTs installed in Fully Electric Vehicles (FEVs), which 

are operating under very variable working conditions. The 

monitoring system is based on a Self-Organizing Map 

(SOM), trained considering data collected from healthy 

IGBTs. An indicator of the IGBT degradation is defined as 

the distance between the measured SOM input vector, i.e., 

the signal measured on the monitored IGBT, and its SOM 

Best Matching Unit (BMU) representative of an healthy 

IGBT in similar working conditions. Then, a method based 

on the definition of a utility function for the identification of 

the threshold value to be used for the classification of the 

IGBT degradation state is proposed. The approach is 

verified with respect to experimental data collected from an 

inverter connected to an electric motor, and is shown able to 

identify the IGBTs degradation state regardless of the actual 

operating condition. 

1. INTRODUCTION 

Power semiconductor devices, such as Insulated Gate 

Bipolar Transistors (IGBTs), are currently used in a wide 

range of energy conversion applications due to their high 

performance. However, recent studies have shown that 

IGBT malfunctioning are responsible of several industrial 

failures: 38% of unscheduled maintenance actions in 

variable speed AC drives (Shaoyong, Bryant, Mawby, P., 

Dawei, Li, and Tavner, 2011) and 35% of power electronic 

systems faults are caused by IGBTs (Fuchs, 2003; Hudgins, 

2013). 

Condition-Based Monitoring (CBM) techniques have been 

developed over the last decade for IGBT monitoring (Lu & 

Sharma, 2009; Oh, Han, McCluskey, Han, and Youn, 2015). 

In Chokhawala and Kiraly (1995), IGBT degradation due to 

open- and short-circuit faults is considered, whereas in Ji, 

Pickert, Cao, and Zahawi (2013) and Smet, Forest, 

Huselstein, Rashed, and Richardeau (2013), the authors 

focus on IGBT degradation caused by wire bond faults. 

Although the proposed methods are efficient for monitoring 

IGBT degradation when it is caused by a single degradation 

mechanism, they are not apt for an overall monitoring of the 

component which is typically characterized by multiple and 

competing degradation mechanisms.  

The purpose of this work is to develop a method for the 

identification of the degradation state of IGBTs operating in 

Fully Electrical Vehicle (FEV) powertrains. The final 

objective is to develop an automatic system able to inform 

the FEV driver of the IGBT degradation state and, 

eventually, of the necessity of performing maintenance. The 

proposed monitoring system is expected to increase the 

safety of the FEV and to reduce the overall maintenance 

costs. 
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the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited. 
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The main difficulties to be addressed in order to effectively 

monitor FEV IGBTs are: 

i. several signals usually employed to monitor IGBT 

degradation, such as the current at the collector or the 

transconductance (Patil, Das, Goebel, & Pecht, 2008) are 

not measurable during FEV operation, due to the 

intrusiveness of the measurement device; 

ii. laboratories tests performed within the European FP7 

project HEMIS (Electrical powertrain Health Monitoring 

for Increased Safety of FEVs) at CEIT laboratories 

(Centro de Estudios e Investigaciones Técnicas – San 

Sebastian, Spain) have shown a great variability in the 

degradation behavior of different IGBTs, even if they 

are degrading in the same controlled test conditions. 

This is due to the fact that IGBTs are subject to 

different, possibly interacting and competing 

degradation mechanisms, such as  bond wire lift-off, 

solder joint fatigue, and bond wire heel cracking (Busca, 

Teodorescu, Blaabjerg, Munk-Nielsen, Helle, 

Abeyasekera, & Rodriguez, 2011).  

iii. FEV IGBTs are operating under continuously varying 

conditions. In particular, FEV speed and motor load 

variations cause modifications of the power, temperature 

and currents experienced by the IGBTS. This 

complicates the diagnostic task since the variations of 

the signals due to the degradation process are small if 

compared to those caused by the variations of the 

operational conditions. 

In order to overtake the difficulty in i), we consider the 

possibility of monitoring the IGBTs by using only signals 

which can be measured on FEV IGBTs, such as the Case 

temperature, T, the collector-emitter voltage, VCE, and the 

phase current, Ip. In order to measure the VCE when the 

inverter is connected to an electric motor, we have used the 

new IR25750 chip developed by International Rectifier (IR). 

The approach developed in this work for dealing with the 

inhomogeneous situation described in ii) and iii) is based on 

the use of Self-Organizing Maps (SOMs), which allow 

representing and clustering multidimensional data into a 

two-dimensional space (Kohonen, 2005; Gonçalves, 

Schneider, Henriques, Lubaszewski, Bosa, & Engel, 2010). 

A SOM is trained using signal measurements collected from 

healthy IGBTs and a degradation indicator is defined by 

considering the distance between the measured signal values 

and the corresponding SOM best matching unit (BMU). 

Finally, a method for setting the thresholds to be applied to 

the degradation indicator in order to classify the component 

degradation state is proposed. It is based on the 

identification of an optimal trade-off between degradation 

state misclassifications resulting in false and missed alarms, 

through the definition of a proper utility function which 

quantified the consequences of false and missed alarms in 

terms of safety and costs. 

The proposed approach has been verified considering 

experimental data collected at the Centro de Estudios e 

Investigaciones Técnicas (CEIT, San Sebastian, Spain) from 

an inverter providing the required three phases AC current 

to an electric power train. The remaining part of the paper is 

structured as follows: Section 2 identifies the problem 

statement and the aim of the methodology; Section 3 

illustrates the data pre-processing and the method; Section 4 

presents the experimental dataset and describes the data 

collection process; Section 5 discusses the application of the 

developed monitoring system; finally, Section 6 recalls the 

concluding remarks and results. 

2. PROBLEM STATEMENT 

The purpose of this work is to develop a method for the 

online identification of the degradation state of IGBTs 

working under continuously varying operating conditions, 

such as those characteristics of powertrains used in FEVs. 

The output of the monitoring system is expected to be one 

of the following three degradation classes: healthy (no need 

of maintenance), partially degraded (the component can still 

work, but a warning should be provided), and very degraded 

(maintenance is necessary in order to avoid the component 

failure). The information available for the development of 

the monitoring system is made by the measurements of S 

signals performed on C different IGBTs, characterized by 

different levels of degradation. The S signal values 

measured from the c-th IGBT, c= 1,2,…,C , at the generic 

time τ, will be indicated by the vector )(cx


 formed by the 

signal values  )(...)(1  c
S

c xx . 

The IGBTs considered in this work have undertaken an 

accelerated degradation process characterized by a series of 

prolonged on-cycles, which cause thermomechanical 

stresses and accelerate their degradation. For each one of the 

C IGBTs, we know the number of accelerated aging cycles 

performed at the time in which the signals have been 

measured. Notice that, given the stochasticity of the 

degradation process, this information is not directly related 

to the real degradation state of the component. 

3. METHOD 

In this Section the proposed approach is described; the SOM 

basic concepts are recalled in Section 3.1, the degradation 

indicator construction is described in Section 3.2, Section 

3.3 presents the data preprocessing procedure, and the 

developed strategy for setting the method parameters is 

discussed in Section 3.4. 

3.1. Self Organizing Maps 

A SOM is a neural network concept, used to classify and 

cluster S-dimensional vectors in a visually simple 2-

dimensional lattice. It is formed by an array of L neurons, or 

map units, each one represented by a characteristic S-
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dimensional vector  
Swww ...1 ,  =1…L, known 

as weight vector. Each neuron is connected to the other 

neurons of the map by a relationship based on a 

neighborhood function (Kohonen, 2005). 

 

 

Figure 1. Basic Architecture of a SOM (Goncalves et al, 

2010) 

Figure 1 shows a representation of a SOM where each 

neuron is connected to its adjacent neurons and to the input 

vector. Before the training process, the neurons are properly 

initialized according to the procedure suggested in 

(Kohonen, 2005): the weight vectors are selected as a 

regular array of values between the two largest eigenvectors 

of the training data. Then, during the training process, the 

generic r-th training step is based on: 

1.  a sample vector, 
Trainingy


, is randomly selected from the 

training dataset and its distance to the weight vectors of 

all the SOM neurons is computed;  

2.  the nearest neuron is identified. It will be referred to as 

Best Matching Unit (BMU); 

3.  the weight vector of the BMU and its neighbor vectors 

are updated in order to obtain weights more similar to 

that of the chosen random sample vector
Trainingy


. 

Weight vector updating between training step r and r+1 

is performed by applying: 

     ))()(,,()()()1( rwyrnnhrrwrw
Training

BMU 


         (1) 

where ),,( rnnh BMU   is the neighborhood function 

between the best matching neuron BMUn  and the  -th 

neighboring neuron, n , and )(r  is the learning rate, 

which decreases at each training step.  

Once the training phase is terminated, the SOM structure is 

caught by the unified distance matrix, distU , whose generic 

element 21,
distU  is defined as the Euclidean distance between 

the S·dimensional weight vectors 1

w  and 2


w , of the 

corresponding to neurons  1 and  2:  

 22
22

2
11

,
)(...)()( 1212121 

wwwwwwU Sdist      (2)  

The values of the unified distance provide a representation 

of how similar are the neighboring neurons of a SOM 

(Figure 2). 

 

Figure 2. Representation of the Unified Distance Matrix (U-

Matrix) of a randomly generated SOM 

Notice that clusters formed by neurons characterized by 

small inter-neuron distances can be easily identified from 

the observation of the U matrix. In this work, a SOM is 

trained using data collected from healthy IGBTs. The 

obtained SOM provides a two-dimensional representation of 

the training data which minimizes the influence of outliers 

and noisy data, and catches the characteristic behavior of a 

healthy component.  

3.2. Degradation indicator  

In order to identify the degradation state of a monitored 

IGBT which will be identified by the letter c
test

, we provide 

in input to the trained SOM the measured signal values,   
Testcy ,

, and we compute the Euclidean distance between the 

input vector and the corresponding SOM BMU, 

)( ,TestcyMQE


:  

2,2
1

,
1

, )(...)()( BMU
S

Testc
S

BMUTestcTestc wywyyMQE 


(3) 

This distance, which is referred to as Minimum 

Quantization Error (MQE), indicates how much the vector is 

different from the behavior represented by the data used for 

training the SOM (Qiu, & Lee, 2004; Huang, Xi, Li, 

Richard Liu, Qiu, & Lee, 2007), and can be interpreted as an 

indicator of the component degradation. Greater the MQE, 

more the component is behaving differently from an healthy 

one and, therefore, more the component is degraded. 

In this work, the indicator of the component degradation, 

)( ,TestcyQE


, is defined as the minimum quantization error, 

h

X1 X2 Xm

U-matrix

 

 

0.0115

0.862
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SOM 15-Mar-2015

IGBT 4 00%
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)( ,TestcyMQE


, divided by the average quantization error, 

healthyMQE , of a validation set made by healthy data: 

healthy

Testc
Testc

MQE

yMQE
yQE

)(
)(

,
,




  

with: 

  

(4) 





healthy

Test

N

c

Testc

healthy

healthy yMQE
N

MQE
1

2
, )(

1 
 

  

(5) 

This normalization allows obtaining a baseline reference 

value: healthy component will be characterized by a 

degradation indicator close to 1. 

3.3.  Data Pre-Processing  

The construction of the SOM is preceded by a phase of data 

preprocessing based on the following two steps: 

1.  the selection of data in a predefined range of values. In 

practice, in order to deal with the great variability of the 

signals in a FEV motor, the model is trained and tested 

by considering patterns )]()()([)(  cccc VceITx 


 

characterized by all signal values within properly 

selected ranges, i.e., whose phase current, Ip, is in the 

range [ UpperLimitLowerLimit II ; ], and whose collector-

emitter voltage is in the range [ UpperLimitLowerLimit VceVce ; ]. 

The ratio of this procedure is to eliminate outlier patterns 

that are caused by IGBT operational conditions different 

from those experienced in the training phase and, thus, 

characterized by high QE without corresponding to 

degraded IGBTs.  

2) the computation of the moving average of the signals. 

This step is performed in order to reduce the impact of 

the measurement noise on the signal values. The lengths, 

Lo, of the moving average window will be selected 

through the optimization procedure described in Section 

3.4. 

3.4. Degradation state identification 

The robustness of the method is improved by considering as 

indicator of the IGBT degradation the median 

)( ,Testcmedian yQE


of a number Lo of consecutive )( ,TestcyQE


 

values obtained from the SOM. The median has been 

chosen since it is more stable than the mean value in case of 

outliers. 

The classification of the IGBT degradation state is then 

based on the definition of two thresholds Th1-2 and Th2-3 

according to the following rules:  

 if )( ,Testcmedian yQE


< Th1-2, then the IGBT is healthy 

(class 1) 

 if Th1-2 ≤ )( ,Testcmedian yQE


≤Th2-3, then the IGBT is 

partially degraded (class 2) 

 )( ,Testcmedian yQE


>Th2-3, then the IGBT is very degraded 

(class 3) 

3.5. Setting of the method parameters  

The proposed method is based on the following four 

parameters: i) the length, Li, of the moving-average window 

used in the pre-processing phase, ii) the number, Lo, of QE 

consecutive values which are considered for calculating the 

median of the degradation indicator,  iii) and iv) the 

threshold values, Th1-2 and Th2-3, used for the classification 

of the degradation state. 

The setting of these parameters is performed considering a 

set of data (hereafter indicated by “optimization set”), taken 

from IGBTs not considered for the SOM training and for 

which the degradation state is known. The objective of the 

parameter setting is the minimization of the 

misclassification rates, i.e., the fraction of patterns assigned 

to an incorrect classification state. To this purpose, the 

numbers of patterns , jin , , of the optimization set whose 

correct class is i and are misclassified in class j are found for 

any combination of i and j with i ≠ j. Then, the fraction of 

misclassifications, 
i

ji

ji
N

n ,

,  , with iN  indicating the total 

number of patterns in the optimization set of class i is 

identified and the overall performance of a given parameters 

quadruplet (Li, Lo, Th1-2, Th2-3) is defined by the utility 

function: 



 



 




3

,1
,

3

1

3

,1
,,

ijj
ji

i ijj
jiji

IF

IF

P



 

                              

(6)                    

where IFi,j is a coefficient quantifying the consequences of 

the misclassification of a pattern whose true class is i and is 

assigned to class j in terms of safety and availability of the 

component. In this work, we assume that the most 

undesirable event, which can lead to the failure of the 

component, is that an IGBT whose true state is very 

degraded (class 3) is classified as healthy (class 1) or 

partially degraded (class 2). Thus, the highest impact factor 

is assigned to the coefficients IF3,1 and IF3,2 (Table 2). Since 

a preventive maintenance action is suggested only if the 

degradation state reaches ‘very degraded’ (class 3), the 

misclassifications with the less remarkable consequences 

are those between classes 1 and 2. For this reason, the 

lowest impact factors are assigned to IF1,2 and IF2,1. An 

intermediate impact factor value is assigned to the 

misclassifications which causes an unnecessary preventive 

maintenance action, i.e. when patterns of classes 1 and 2 are 

assigned to class 3.  
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Table 1. Impact factors for the calculation of parameter P 

 

ji,  jiIF ,  

2,1  1 

3,1  2 

1,2  1 

3,2  2 

1,3  5 

2,3  5 

The optimal values of the parameters Li, Lo, Th1-2, Th2-3 are 

identified by following a trail-and-error procedure, where 

different values of the four parameters are tested and the 

corresponding value of the utility function P is computed. 

The quadruplet with the associated lowest value of P is 

selected. Notice that, although the specific values of the 

coefficients IFi,j depend on the characteristics of the 

monitored component and the opinion of the expert, the 

proposed method for the parameter setting is general. 

4.  CASE STUDY 

The method described in Section 3 has been verified with 

respect to data collected in experimental tests performed on 

degraded FEV IGBTs at Centro de Estudios e 

Investigaciones Técnicas (CEIT). 

Since the average mean time to failure of an IGBT is around 

several thousand hours, IGBTs have been degraded by 

applying an accelerated aging process based on thermal 

fatigue cycles inducing mechanical deformations on the 

solder joints, that, in turn, cause an accumulation of 

microcracking and damage (Thébaud, Woirgard, Zardini, 

Azzopardi, Briat, & Vinassa, 2000). The IGBTs were 

connected to a generator, producing a direct current of 5A, 

and were kept closed (i.e. turned on) as long as the junction 

temperature reached 270°C. Once this temperature was 

reached, they were opened (i.e. turned off) until the 

temperature reached 258°C, and a new degradation cycle 

begun.  

Figure 3 shows the behavior of the collector current (Ic), the 

collector-emitter voltage (Vce) and the junction temperature 

(T) during the degradation cycles. Notice that these 

laboratory data are not used in this work for the 

development of the monitoring system, since they do not 

refer to IGBTs working in FEV inverters. 

 

Figure 3. Time evolution of the collector current Ic, the 

collector-emitter voltage Vce and the junction temperature T 

during the degradation cycles. The squares indicate a single 

degradation cycle. 

In order to obtain the data necessaries for the development 

of the monitoring system and its verification, 6 IGBTs have 

been degraded for a different number of cycles: 

- 2 IGBTs were aged for 900 cycles (they will be referred 

to as IGBT A and B); 

- 2 IGBTs were ages for 1800 cycles (they will be referred 

to as IGBT C and D); 

- 2 IGBTs were aged for 2700 cycles (they will be 

referred to as IGBT E and F). 

Then, each degraded IGBTs has been mounted on an 

inverter connected to a power train and the typical 

conditions of the IGBT operation in FEVs have been 

reproduced. In practice, each experiment has been carried 

out with the powertrain subject to a constant load of 1kW, a 

9Nm torque and operating at an average speed of 400rpm. 

Each experiment lasted on average 3 seconds, producing 

between 200000 and 380000 measurements. Stator phase 

current, collector-emitter voltage and the inverter case 

temperature have been measured at a frequency of 80kHz 

using low cost sensors which can be easily installed in FEV 

inverters. With respect to the collector-emitter voltage 

sensor, notice that it records 0.2V when the IGBT is off. 

Figure 4 shows an example of the three signal 

measurements collected during the test of an IGBT aged for 

900 cycles. Due to the high switching frequency of the 

IGBT in a FEV inverter, only few measurements are 

collected for each on cycle of the IGBT. Thus, the obtained 

data are very different from those typically used in literature 

(Patil et al., 2008) which refers to IGBT in laboratory tests 

and are similar to those of Figure 3.  
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T
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Figure 4. Time evolution of T, Ip and Vce during a 0.02s otor 

test. 

5.  RESULTS 

5.1.  Data Preprocessing 

The data acquired during the motor tests are characterized 

by a great variability of the measured signals. Since the 

methodology developed in this paper aims at assessing the 

IGBT level of degradation relying on the quantification of 

the deviation of the monitored component from its 

corresponding normal healthy state, it is necessary to limit 

the analysis on a proper operation region. In practice, the 

monitoring system is trained and tested only considering 

patterns whose phase current, Ip, and collector-emitter 

voltage, Vce, are in the range reported in Table 2.  

Table 2. Ranges used for data selection  

Variable Lower Limit Upper Limit 

Ip [A] -7.05 -6.95 

VCE [V] 1.1 1.7 

The data corresponding to the two IGBTs A and B aged for 

900 cycles, which have suffered the lowest number of 

degradation cycles, will be considered as a reference for the 

healthy behavior and used for developing the SOM. 

Although these data represent a quasi-healthy condition of 

the IGBT, they are preferred to data referring to new IGBTs, 

since data collected in experimental tests show that there is 

a period of IGBT running characterized by a modification of 

the IGBT behavior. 

The data from these two IGBTs are divided into a train set, 

for the training of the SOM, a validation set, used to 

calculate the normalization constant healthyMQE in Eq. (5), 

an optimization set, which will be used to optimize the 

quadruplet of the model parameters according to the 

procedure in Section 3.4, and, finally, a test set which will 

be used to verify the performance of the method. The data 

relative to the other four IGBTs (namely C, D, E and F) 

aged by 1800 and 2700 thermal cycles will be divided into 

an optimization set for the model parameters optimization 

and a test set. For ease of comprehension, Figure 5 shows 

how the available dataset has been divided. 

 
Figure 5. Schematic representation of the available dataset 

and its division into train, validation and test sets 

5.2. The SOM Diagnostic Model 

Figure 6 shows the Unified distance matrix of the obtained 

SOM, and Figure 7 the distribution of the values for the 

weight vectors associated to each neuron. In particular, it is 

possible to notice that the right upper corner of the map 

contains neurons characterized by high T, high Ip and high 

Vce, whereas the left lower corner neurons are characterized 

by low T, low Ip and low Vce. 

 

Figure 6. Representation of the unified distances of the 

SOM map trained with quasi-healthy data 

 

0.6 0.602 0.604 0.606 0.608 0.61 0.612 0.614 0.616 0.618 0.62
60

80

100

120

140

T
 [

°C
]

time [s]

0.6 0.602 0.604 0.606 0.608 0.61 0.612 0.614 0.616 0.618 0.62

-20

-10

0

10

20

I 
[A

]

time [s]

0.6 0.602 0.604 0.606 0.608 0.61 0.612 0.614 0.616 0.618 0.62

0

2

4

6

V
c
e
 [

V
]

time [s]

U-matrix

 

 

0.11

1.11

2.11

SOM 19-Feb-2015

IGBT 4 00%

Labels

Optimization Set 

M
Q

E
 

A and B 

C and D 

E and F 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015 

 

7 

 

Figure 7. Temperature (top left), Current (top, right) and 

Voltage (bottom) weights associated to the SOM neurons 

Once the SOM has been trained, the average MQE of the 

validation test has been computed in order to allow defining 

the degradation indicator QE according to Eq. (4).  

5.3. Model Parameters Setting 

The model parameters Li, Lo and the two thresholds Th1-2 

and Th2-3, have been set according to the procedure 

illustrated in Section 3.4. The first column of Table 3 

reports the considered range of variation of the parameters, 

whereas the identified optimum setting of the parameters, 

which leads to the best classification results is listed in the 

second column. Notice that values of Li and Lo greater than 

30 and 60, respectively, are not considered since they would 

require too long time for the collection of the necessary 

measurements. 

Table 3. Ranges and optimum values for the model 

parameter setting 

Parameter Range Optimum 

Th1-2 [0;1.4] 1 

Th2-3 [1;3] 2.75 

Li [0;30] 30 

Lo [0;60] 60 

5.4. Results 

The SOM-based methodology has been applied to test 

patterns extracted from the 6 IGBTs (A-F) and not used 

during the SOM training and parameters identification 

phases. 

 

Figure 8. Results of the classification of components, 

misclassifications are represented by filled in symbols 

Figure 8 shows the obtained results. The round markers 

represent healthy IGBTs (900 degradation cycles), the 

triangular markers represent partially degraded IGBTs 

(1800 degradation cycles), whereas the squared markers 

represent severely degraded IGBTs (2700 degradation 

cycles). Misclassifications provided by the SOM are 

represented by colored markers.  

Notice that: 

1- there are only two cases of missed alarms, i.e. patterns of 

class 3 (severely degraded) that have been erroneously 

assigned to class 2 (partially degraded). These patterns 

correspond to IGBT E, i.e. one of the two IGBTs which 

have undergone 2700 degradation cycles. It is also 

interesting to observe that the other patterns obtained 

from the same IGBT have QE values close to the 

threshold    Th2-3. This may indicate that IGBT E is less 

degraded than IGBT F, even if they have been aged by 

the same number of degradation cycles. 

2- 97% of the patterns corresponding to partially degraded 

IGBT C are assigned to class 1. Also in this case, we can 

interpret the results assuming that IGBT C has been 

more resistant to the degradation cycles than IGBT D. 

3- There are no misclassifications of patterns whose true 

class is 1 and no cases of false alarms in class 3. 

6. CONCLUSION  

The objective of this work has been the development of an 

online method for the classification of the degradation state 

of IGBTs operating under variable operating conditions. 

The application of this method is specifically designed for 

IGBTs used on FEVs, which are characterized by 

continuously varying temperature and current conditions. 

The developed method is based on the construction of a 

SOM, which is trained using only data corresponding to 

healthy IGBTs. Then, relying on the use of the SOM 
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quantization error as degradation indicator, a condition-

based-maintenance strategy has been proposed. The 

quantization error identified by the SOM is compared to two 

thresholds, Th1-2 and Th2-3, which are the limit values to 

identify the components as either healthy, partially degraded 

and severely degraded and thus needing maintenance. A 

general procedure for the optimum setting of these 

thresholds and of other parameters has been proposed. The 

procedure is based on the definition of an utility function 

which takes into account the consequences in terms of costs 

and unavailability of the component. 

The method has been applied to data representative of 

IGBTs characterized by different levels of degradation. The 

data have been collected performing laboratory test at CEIT 

on IGBTs degraded by means of thermal cycles. The 

obtained results have confirmed the ability of the proposed 

method to classify different IGBTs as new, partially 

degraded or needing maintenance, regardless of the inverter 

operating conditions. The errors performed by the method 

are satisfactory from the points of view of reliability and 

availability: in fact, only the 2% the IGBTs which are very 

degraded are identified as partially degraded (missed 

alarms), and no false alarms are provided. 
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