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ABSTRACT

The goal of this work is to bridge the gap between business
decision-making and real-time factory data. Beyond real-
time data collection, we aim to provide analysis capability
to obtain insights from the data and converting the learnings
into actionable recommendations.

For device health estimation, we focus on analyzing device
health conditions and propose a data fusion method that com-
bines sensor data with limited diagnostic signals with the de-
vice’s operating context. We propose a segmentation algo-
rithm that provides a temporal representation of the device’s
operation context, which is combined with sensor data to fa-
cilitate device health estimation. Sensor data is decomposed
into features by time-domain and frequency-domain analy-
sis. Principal component analysis is used to project the high-
dimensional feature space into a low-dimensional space fol-
lowed by a linear discriminant analysis to search the optimal
separation among different device health conditions. Our in-
dustrial experimental results show that by combining device
operating context with sensor data, our proposed segmenta-
tion and linear transformation approach can accurately iden-
tify various device imbalance conditions even for limited sen-
sor data which could not be used to diagnose imbalance on its
own.

For device health prediction, we propose a restricted Boltz-
mann machine based method to automatically generate fea-
tures that can be used for remaining useful life prediction,
which is performed by a random forest regression algorithm.
The proposed method was validated through run-to-failure
dataset of a machine tool spindle test-bed.

Linxia Liao et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. INTRODUCTION

The growing Internet of Things is predicted to connect 30 bil-
lion devices by 2020 (MacGillivray, Turner, & Lund, 2013).
This will bring in tremendous amounts of data and drive the
innovations needed to realize the vision of Industry 4.0—
Cyber-Physical systems monitoring physical processes, and
communicating and cooperating with each other and with hu-
mans in real time. One of the key challenges to be addressed
is how to analyze large amounts of data to provide useful and
actionable information for businesses intelligence and deci-
sion making. In particular, to prevent unexpected downtime
and its significant impact on overall equipment effectiveness
(OEE) and total cost of ownership (TCO) in many industries.
Continuous monitoring of equipment, early detection of in-
cipient faults, and prediction of failure before it happens can
support optimal maintenance strategies, prevent downtime,
increase productivity, and reduce costs.

A significant number of anomaly detection and diagnosis
methods have been proposed for device fault detection and
health condition estimation. Chandola et al. (Chandola,
Banerjee, & Kumar, 2009) discusses various categories of
anomaly detection technologies and their assumptions as well
as their computational complexity. Several approaches such
as statistical methods (Markou & Singh, 2003), neural net-
work methods (Markos & Singh, 2003) and reliability meth-
ods (Guo, Watson, Tavner, & Xiang, 2009), have been ap-
plied to detect anomalies for various types of equipment.
The philosophies and techniques of monitoring and predict-
ing machine health with the goal of improving reliability and
reducing unscheduled downtime of rotary machines are pre-
sented by Lee et al. (Lee et al., 2014).

Many of these methods focus on analyzing, combining, and
modeling sensor data (e.g. vibration, current, acoustics sig-
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nal) to detect machine faults. One issue that remains mostly
unaddressed in these methods is that they rarely consider the
varying operating context of the machine. In many cases,
false alarms are generated due to a change in machine op-
eration (e.g. rotational speed) rather than a change in ma-
chine condition. A major challenge in addressing this is-
sue is that most machine controllers are built with propri-
etary communication protocols, which leads to a barrier in
obtaining control parameters to understand the context under
which the machine is operating. Recently, the MTConnect
open protocol (Standard, 2009) was developed to connect var-
ious legacy machines independent of the controller providers.
MTConnect provides an unprecedented opportunity to moni-
tor machine operating context in real-time. In this paper, we
leverage MTConnect to diagnose machine health condition
by combining sensor data with operating context information.
Additionally, we investigate whether it is possible to diagnose
machine health condition using less sensor data when it is
combined with context information.

Many methods have been proposed in the literature for de-
vice remaining useful life (RUL) prediction. These methods
can be generally classified as data-driven method, physics-
based method, and hybrid method (Liao & Kottig, 2014).
Since detailed information of the assembled components is
not available in our case, physics-based modeling is unfea-
sible. Hence, data-driven method becomes the primary ap-
proach in our work for prediction. To enable an accurate
prediction using data-driven method, feature extraction is a
critical step. If an extracted feature is well correlated with the
fault propagation process (e.g. vibration root mean square in-
creases as the machine degrades), a good prediction can be
expected by extrapolating the historically observations to the
future. Related work can be seen in (Coble & Hines, 2009),
which used genetic algorithm to find the optimal feature sub-
set, and in (Liao, 2014), which used genetic programming to
discover novel features for prediction. In most of the cases,
engineering expertise is need to a certain extent to guide the
feature extraction, which might not be directly available for
complex systems. We would like to explore automatic feature
generation method for remaining useful life prediction when
engineering expertise is unavailable. Deep learning has re-
cently gained popularity in machine learning based on learn-
ing layers of network structure based on restricted Boltzmann
machines (RBM). RBM has been widely used as a gener-
ative model in many applications such as image classifica-
tion, speech recognition, and word representation. It has re-
cently been applied in prognostics health management area
for health state classification (Tamilselvan & Wang, 2013).
Instead of using RBM in a classification scenario, we explore
RBM as a feature extraction tool in a RUL prediction sce-
nario.

Prior work (Pavel, Snyder, Frankle, Key, & Miller, 2010) has
demonstrated that vibration data could be used for diagnos-

ing machine imbalance fault conditions. Our study focuses
on extending prior work by exploring various types of sensor
and control data for diagnosing the imbalance of the machine
tools. Prior work (Pavel & Iverson, 2012) proposed self orga-
nizing maps and polynomial curve fitting for RUL prediction
based on domain specific features such bearing signature fre-
quencies. Our study focuses on automatic feature generation
assuming domain specific expertise is unavailable.

Our contribution includes the following:

e Combining control and sensor signals for machine health
condition estimation, while utilizing a different set of
sensor data such as temperature, power, flow, and lubri-
cant/coolant pH instead of vibration.

e A novel method of using Restricted Boltzmann Machine
as a feature generation model and coupling with a ran-
dom forest algorithm in remaining useful life prediction
applications.

Our hypothesis is that these advancements to prior work will
aid in improving the diagnosis and prognostics capability, as
well as reducing the cost of machine diagnostics by utiliz-
ing cheaper sensors and saving engineering effort in feature
engineering for predictive maintenance tasks.

2. TECHNICAL APPROACH

This section contains two subsections to describe the techni-
cal approaches for: (1) device health estimation by combin-
ing contextual control information with sensor data; and (2)
remaining useful life prediction using Restricted Boltzmann
Machine and random forest.

2.1. Device Health Estimation

For each extension to prior work listed in Section 1, we per-
formed two main steps for diagnostics:

e Feature Extraction & Synthesis
e Model Selection

2.1.1. Feature Extraction & Synthesis

There are various approaches for condensing time series in-
formation into data mining features. Prior work has utilized
transfer functions to map control signals to vibration sensor
data (Pavel et al., 2010). The diagnosis step is then reduced
to comparing the features of transfer function-predicted vi-
bration data and the sensor-derived vibration data. This ap-
proach makes sense when the control signal directly impacts
the output variables of the machine. For motion control of
machine tools, the estimated transfer function should be sim-
ilar to the transfer function of the implemented control (like
PI or PID). Typical vibration data features would include av-
erage, standard deviation, and maximum FFT values (Deng,
Runger, Tuv, & Vladimir, 2013).
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However, we would like to diagnose the state of machine us-
ing not only accelerometers, but also other sensors, such as
temperature sensors. Since temperatures at various locations
are not part of active control loops, there may not exist well
defined transfer functions that can map control signals to tem-
perature sensor data very accurately. In such cases where con-
ventional features extracted from temperature signals are not
correlated with the fault (imbalance) to a sufficient degree.
Additionally, if the associated sensors are too expensive to
install, then data fusion may be applied.

There are three data fusion approaches typically used in ma-
chinery diagnostics (Liu & Wang, 2001; Jardine, Lin, &
Banjevic, 2006)—data-level fusion, feature-level fusion, and
decision-level fusion. Data-level fusion involves combining
sensor data before feature extraction, such that features con-
tain information gathered from multiple sensors. Feature-
level fusion involves generating features from each sensor
separately, then fusing this set of features generated from all
of the sensors coherently for diagnostics. Finally, decision-
level fusion creates diagnostics from each sensor separately,
then aggregates these diagnostics into a single diagnostic out-
put.

The choice of the three types of data fusion methods is of-
ten application specific. In our application, we found that
temperature sensor data cannot resolve imbalance conditions
by itself and control signal data is too coarse-grained to aid
in classifying imbalance conditions using the standard data-
fusion techniques. Note that we did not focus on spindle ac-
celeration data, which could diagnose imbalance on its own
(see Subsection 3.1.1) since that would require retrofitting ex-
isting machine tools with new expensive sensors and data ac-
quisition hardware. Ideally we would like to use the readily
accessible control signals and data from inexpensive temper-
ature sensors to diagnose imbalance. To achieve this goal, we
proposed a different type of data fusion approach. We used
the control signal to provide the contextual information for
temperature sensor data. The control signal is used for the
segmentation of sensor data, but does not directly map into
feature vectors (see Subsection 3.1.2).

2.1.2. Model Selection

Since the data sets are statistically small and dimensionality
of the data is increased by feature synthesis, the models to
be used for imbalance classification need to be carefully cho-
sen to avoid over-fitting. The high-dimensional data needs
to be projected to a much smaller sub-space to prevent over-
fitting! To accomplish this, the main techniques used in this
study are Principal Component Analysis (PCA) (Wold, Es-
bensen, & Geladi, 1987) and Linear Discriminant Analysis

'Note that complexity of model is positively correlated with likelihood of
over-fitting. Thus, creating a classifier that takes high-dimensional input
will have higher degree of fredoom (i.e. higher complexity) compare to
low-dimensional inputs, which results in higher likelihood of over-fitting.

(LDA) (Koehler & Erenguc, 1990). These techniques are
based on linear coordinate transformation, which makes them
more likely to under-fit and less likely to over-fit (Yang, Chen,
& Wu, 2011).

2.2. Device Remaining Useful Life Prediction

The remaining useful life (RUL) prediction algorithm can be
summarized in Figure 1. The pre-processed data is input to
the Restricted Boltzmann Machine to automatically generate
features. The preprocessed data can actually be the raw sig-
nals, e.g. vibration signals, or time/frequency domain fea-
tures of vibration, or features extracted by signal processing
techniques e.g. discrete wavelet transform. The generated
features are then input to a predictor, which is random forest
in this case, to predict RUL.

RUL

I

Random Forest Regression

Generated Feature%\

Restricted
Boltzmann
Machine

Preprocessed Data

Figure 1. RUL prediction method.

2.2.1. Feature Generation

Restricted Boltzmann Machine (RBM) can be considered as
a two-layer network which consists a visible layer and a hid-
den layer. The visible layer corresponds to the observed in-
put units (v), and the hidden layer corresponds to the fea-
ture detectors which are hidden units (k). Since we consider
Gaussian input for both the input and hidden units, the en-
ergy function of the RBM is more complex than the common
binary case. We defined the energy function as:
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where v;, h; are the states of the visible unit 7 and hidden unit
J, ai,b; are their levels, d;,d; are the standard deviations,
and w;; is the weight between them. The probability that the
RBM network assigns to a visible vector is given by summing
over all hidden vectors:
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The positive part in the last line of Eq. 5 is the so called
positive phase contribution and the negative part is the so
called negative phase contribution. The algorithm updates the
parameters through iterations coupling with a learning rate
and/or a momentum parameter until a stop criterion is met.
The hidden unit states are used as the extracted features for
RUL prediction.

2.2.2. RUL prediction

We treat the RUL prediction as a regression problem, in
which we will train a supervised learner to match the ex-
tracted features and the expected RUL. In our case, we
picked random forest algorithm as our prediction algorithm
to demonstrate how to make predictions based on the fea-
tures extracted from RBM. Random forest (Breiman, 2001)
is an ensemble algorithm for classification or regression by
aggregating the decision result from multiple decision trees.
A simple pseudo algorithm of random forest training is de-
scribed in Algorithm 1. After training, the algorithm outputs
a RUL given a feature vector extracted from the RBM model
described in Section 2.2.1.

Algorithm 1 Random forest training algorithm

e Draw N bootstrap data samples from original dataset D;

e For each of the bootstrap data samples, build a decision
tree. For each node of the decision tree, randomly sam-
ple M of the predictors (observations in our case), and
choose the best split among the selected predictors;

e Make a prediction by aggregating the predictions of the
N trees (e.g. majority votes);

e At each bootstrap iteration, predict data not in the boot-
strap sample (called out-of-bag data) using the tree built
with the bootstap sample. Aggregating the out-of-bag er-
ror rate, and repeat the process until a preset threshold is
met (i.e. error rate or maximum number of iteration)

3. RESULTS

This section contains two subsections to demonstrate: (1) de-
vice health estimation using data collected from a machine
tool including sensor data and MTConnect data; (2) remain-
ing useful life prediction using run-to-failure dataset collected
from a machine tool spindel testbed.

3.1. Device imbalance condition estimation

We have explored three imbalance scenarios to investigate our
hypothesis of diagnostics using:

e Sensor based diagnostics

e Control based temporal segmentation followed by sensor
based diagnostics

3.1.1. Sensor based Diagnostics

In this case, each sensor signal was analyzed separately to de-
termine if any of the sensor signals contains enough diagnos-
tic information to detect imbalance on its own. By plotting
the time series data we find that spindle acceleration sensors
(which captures vibration) show higher oscillation amplitudes
(see Figure 2) with increasing imbalance. Since imbalance
actually impacts moment of inertia of the spindle, this change
in acceleration is expected.

We also considered measuring imbalance through tempera-
ture. From the energy flow perspective, additional accelera-
tion caused by imbalance should result in higher energy con-
sumption from the power source and higher energy dissipa-
tion to thermal inertias due to friction, which should result in
temperature increase in parts of the machine tool. However,
the time series data, from each of the temperature sensors,
did not show distinguishing features similar to the accelera-
tion sensors. An example of temperature sensor time series
data is shown in Figure 3.

For this sensor data analysis, the features extracted are (i) av-
erage, (ii) standard deviation, (iii) maximum amplitude of
FFT, and (iv) frequency for maximum amplitude of FFT.
These four features are inspected visually to determine if im-
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Figure 2. Spindle acceleration data for different imbalance level.
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Figure 3. Sample temperature sensor Data (fluid tempera-
ture): blue and red traces indicate nominal and faulty condi-
tions respectively.

balance could be classified by a simple linear classifier. The
spindle acceleration (X, Y, and Z) feature (maximum ampli-
tude of FFT) showed easily visible characteristics that can
distinguish between degrees of imbalance. See Figure 4 for
an example of visual classification based on X-axis acceler-
ation data. Other sensor signals like power, pH, flow, and
temperature did not exhibit such classification capability.

3.1.2. Control-based Segmentation followed by Sensor-
based Diagnostics

The second diagnostic approach that we explored combines
both sensor and control data in a coherent manner. The first
step in this approach is to utilize the control signal to provide
temporal segmentation, i.e., assuming quasi-steady state, the
goal is to find the time intervals in which the following condi-
tions are satisfied: (i) all experiments display same values for
the primary control signal (actual spindle speed) , and (ii) all
the control signals are constant over the same period. Note
that, to investigate the dynamic response, rather than quasi
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Figure 4. Visual classification using spindle x-axis acceleration sensor.

steady state response, the control signals should be consistent
across the experiments so that responses are compared under
the same set of control inputs. Figure 5 (a) shows the result
of this temporal segmentation scheme. For each of the con-
trol signals, we have computed the standard deviation at the
each time step and identified the periods with standard devia-
tion below a set threshold to find the consistent time intervals
(shown as colored segments along the time axis in Figure 5
(b)). Then we find the intersection of the sets of consistent
time intervals over all the control signals to determine the ag-
gregate time intervals over which the control signals are sta-
tistically consistent (shown as black segments along the time
axis in Figure 5 (¢)).

These temporal segments are then mapped to sensor data to
facilitate diagnostics. For each of 16 temporal segments, we
computed features including (i) average, (ii) standard devia-
tion, (iii) maximum FFT amplitude value, and (iv) FFT fre-
quency at maximum amplitude. This step produces a 64 di-
mensional feature space to diagnose machine imbalance. As
mentioned before, to avoid the overfitting we focus on linear
transformation based approaches. We implemented Princi-
pal Component Analysis (PCA) to reduce the dimensionality
from 64 to 4 (postulating that there should be 4 unique dimen-
sions given the 4 uncorrelated features that we have selected).
The PCA step is followed by Linear Discriminant Analysis to
find the optimal coordinate transformation that provides max-
imum separation between classes. Result of this PCA-LDA
analysis is shown in Figure 6 for Fluid Temperature sensor
data. Another temperature sensor located at Spindle Motor
also exhibits similar diagnostic capability after application of
control based temporal segmentation. This demonstrates that
control data can be used to provide context to sensor data in
a way that helps diagnose machine imbalance. Thus, temper-
ature sensor which had inferior diagnostic performance with-
out context data, could classify imbalance perfectly when it
is combined with additional context from control signal.

3.2. Spindle Remaining Useful Life Prediction
3.2.1. Experiment Setup and Data

The spindle test-bed was built at TechSolve using a frequency
drive, a motor, a poly-V belt transmission, and a simplified
spindle using two bearings identical to the ones used in the
horizontal machining center. Figure 7 presents a picture of
the spindle test-bed showing the motor, the belt transmission,
and the actual spindle. A loading mechanism pulling on the
nose of the spindle was added to accelerate the degradation.
The force was kept constant as 35 Ibs. The spindle was ro-
tating at a constant speed of 9120 resolution per minute. The
spindle motor was shut down automatically by the frequency
drive when the bearing was locked at the end of life. A cur-
rent sensor was installed on one phase of the power cable in
the control box which controls the speed of the motor. An
accelerometer was installed on the housing of the spindle to
collect vibration data. Four thermal couples were installed to
collect temperature data of the motor, spindle bearing, load-
ing deck and ambient temperature, respectively. The sam-
pling rate was 25600 Hz and 765440 data points were col-
lected every hour.

We first examined the time series statistics of the vibration
signal and energy based on the rotational speed which was
152 Hz. The purpose was trying to find the feature(s) that
has(have) trending though the life time so that the feature(s)
can be used for prediction based on the historical trend. The
result revealed that there was no obvious trending in none of
the features at least from visual inspection. Figure 8 showed
some of the features that we examined. The solid red lines
were the smoothed features using a moving average window
of length 3.
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3.2.2. RUL Prediction Using Features Generated by
RBM

Since there was no obvious trending in the features that we
examined, the RUL prediction was supposed to be not straight
forward. We would like to use the proposed RBM method to
generate features automatically. In order to test the generative
capability of the RBM and assuming there is no engineering
guidance on feature extraction, we arbitrarily selected the fre-
quency amplitude values ranging within 76 Hz and 532 Hz.
It covered the frequency range upto 3.5 times of the rotating
frequency. The frequency amplitude values were used as the
input to the RBM. The RBM learning parameters were cho-
sen by trial and error because there was no general guidance
available to a practical application. The number of hidden

nodes was set to 1000. The number of maximum of epochs
was set to 100. The learning rate was chosen as 0.1 and it
was fixed through the iterations.The momentum was set to be
0.1. The number of iteration for Gibbs sample of Contrastive
Divergence algorithm was set to be 1.

After training, we input the training data itself to the trained
RBM, and selected the hidden units whose standard devia-
tions are greater than zero. The purpose was to avoid those
hidden units that did not contain any variance information.
As a result, 88 hidden nodes were selected.

The ground truth of RUL was calculated by the hours from
the time stamp when the data was collected to the failure time
stamp. All RUL hours were normalized to be in the range
between 0 and 1. The selected 88-dimensional features and
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the corresponding normalized RUL were trained by the ran-
dom forest regression algorithm. A five-fold cross validation
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was used to validate the prediction. For comparison purposes,
we also directly applied the random forest regression to the
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Table 1. Comparison of prediction methods.

etho vg. vg.
Random Forest 0.077 0.065
Random Forest + RBM | 0.047 0.029

pre-processed data without using RBM feature generation. A
five-fold cross validation was also applied for this case.

The result was shown in Table 1, which showed that the per-
formance of the proposed RBM and random forest RUL pre-
diction method was superior to the random forest method
without using RBM to generate features in terms of both
RMSE (Root Mean Square Deviation) and MAE (Mean Ab-
solute Error) criterion. To show the RUL prediction result,
90% of the data was randomly selected for training and the
rest was used for testing. The testing result was plotted in
Figure 9. The solid line was the ground truth of RUL and the
circles were the predicted RUL values. The predicted RUL
was very close to the ground truth and the prediction RMSE
was 0.043.
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Figure 9. RUL Prediction

4. CONCLUSION

We proposed a method based on principal component anal-
ysis and linear discriminant analysis to combine control
and sensor signals for machine health condition estimation.
This work explored various types of sensory and control
data for diagnosing the imbalance conditions of the machine
tools. Our finding was that by combining context informa-
tion gained from the control signal, certain sensors can have
better sensitivity in diagnosing faulty conditions. In our case,
the temperature sensor was able to classify machine imbal-
ance conditions with much higher sensitivity than using itself
alone. For practical implementation, using thermal couples
can reduce the cost of both sensors and data storage compar-
ing to using accelerometers.

For future work on device health estimation, we will explore
diagnostics based on control signal alone. Given that relying
on sensor data typically requires adding sensors to existing
machine tools, it would be ideal if we could diagnose im-
balance of the machine from control signals that are usually
recorded (i.e. no additional hardware required). The expec-
tation is that if a machine tool uses feedback controls, then
the control signal should be impacted by any change in the
operational characteristics (in this case the imbalance of the
machine tools).

We also proposed a novel method of using Restricted Boltz-
mann Machine as a feature generation model and coupling
with a random forest algorithm in remaining useful life pre-
diction applications. RBM has been explored in many clas-
sification scenarios,but it hasn’t been explored in the RUL
prediction scenario to our best knowledge. The run-to-failure
test showed RBM can potentially generate useful features for
RUL prediction with high accuracy.

For future work on RUL prediction, considering using a
discriminative restricted Boltzmann machine (Larochelle &
Bengio, 2008) model to integrate feature extraction and pre-
diction as a unified task is of interest. One of the advantages
is that as a unified task, model selection, parameter tuning,
and initialization can be done only once comparing to using
two learning phases (feature generation followed by predic-
tion). Currently, the features generated from RBM barely
have physical meaning or are hard to explain. If an extra ob-
jective term can be added in addition to the energy function
1 of RBM, it may generate features that are easier to under-
stand e.g. a feature which has a better trending over the life
span.
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