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ABSTRACT

Model-based prognostics has become a popular approach to
solving the prognostics problem. However, almost all work
has focused on prognostics of systems with continuous dy-
namics. In this paper, we extend the model-based prognostics
framework to hybrid systems models that combine both con-
tinuous and discrete dynamics. In general, most systems are
hybrid in nature, including those that combine physical pro-
cesses with software. We generalize the model-based prog-
nostics formulation to hybrid systems, and describe the chal-
lenges involved. We present a general approach for modeling
hybrid systems, and overview methods for solving estima-
tion and prediction in hybrid systems. As a case study, we
consider the problem of conflict (i.e., loss of separation) pre-
diction in the National Airspace System, in which the aircraft
models are hybrid dynamical systems.

1. INTRODUCTION

Prognostics deals with predicting the occurrence of some sys-
tem event, so that decisions can be made either autonomously
or by human operators to improve system performance in
some way. For example, in failure prognostics, end-of-life
(EOL) is predicted so that system usage can be modified to
extend system life or maintenance planned (Camci, 2009;
Tian, Jin, Wu, & Ding, 2011; Saha & Goebel, 2009; Orchard
& Vachtsevanos, 2009). Engineering systems are becoming
increasingly complex, and often consist of a tight integration
between hardware and software components. As such, most
real-world engineering systems exhibit hybrid dynamics, i.e.,
a mix between continuous and discrete dynamics. This fea-
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ture of modern-day systems makes prognostics more com-
plex.

A significant amount of research has been performed deal-
ing with hybrid systems in the areas of modeling, verifica-
tion, diagnosis, and control, among others. Several model-
ing paradigms have been developed to represent hybrid sys-
tem dynamics, such as hybrid automata (Henzinger, 2000)
and hybrid bond graphs (P. J. Mosterman & Biswas, 1998;
P. Mosterman & Biswas, 2000). A significant amount of re-
search exists on diagnosis of hybrid systems (Narasimhan &
Biswas, 2007; Narasimhan & Brownston, 2007; McIlraith,
2000; Koutsoukos et al., 2003; Hofbaur & Williams, 2004;
Bayoudh et al., 2008; Bregon et al., 2011; Cocquempot et al.,
2004; Daigle et al., 2010), yet little work exists on prognosis
of hybrid systems. Only recently have approaches for hybrid
systems prognostics been investigated (Chanthery & Ribot,
2013; Zabi et al., 2013; Gaudel et al., 2014; Yu et al., 2011).
In (Chanthery & Ribot, 2013) and (Zabi et al., 2013), hybrid
automata models are used, and in (Gaudel et al., 2014), a new
formalism, hybrid particle petri nets, is introduced. These
works are focused mainly on the integration of diagnosis and
prognosis for hybrid systems. The prognosis aspect is limited
in that it is focused specifically on the subproblem of fail-
ure prognostics, and, further, aging laws specifically take the
form of Weibull models. In (Yu et al., 2011), hybrid bond
graphs are used, but the approach is similarly limited.

In contrast, our aim is to develop a general, model-based
prognostics framework for hybrid systems. We adopt a com-
positional, component-based modeling approach (Daigle,
Bregon, & Roychoudhury, 2015). The modeling approach is
inspired by hybrid bond graphs, but does not restrict compo-
nent dynamics to a fixed set as with HBGs. We advance the
theory of model-based prognostics to the more general for-
mulation for hybrid systems, and describe the complexities
introduced for prognostics with hybrid system models. Al-
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gorithms for estimation and prediction using hybrid system
models are also discussed. To demonstrate the approach, we
look at the problem of conflict (i.e., loss of separation) predic-
tion within the National Airspace System (NAS) (Erzberger,
Paielli, Isaacson, & Eshow, 1997; Tomlin, Pappas, & Sastry,
1998).

The paper is organized as follows. Section 2 develops the
model-based prognostics framework for hybrid systems. Sec-
tion 3 discusses hybrid system estimation, and Section 4 cov-
ers the prediction problem. Section 5 develops the case study
and demonstrates the approach. Section 6 concludes the pa-
per.

2. MODEL-BASED PROGNOSTICS

In this section, we first describe our hybrid systems modeling
paradigm. We then formulate the prognostics problem for
hybrid systems, and present a computational architecture.

2.1. Hybrid Systems Modeling

We define hybrid system dynamics in a general compositional
way, where the system is made up of a set of components.
Each component is defined by a set of discrete modes, with
a different set of constraints describing the continuous dy-
namics of the component in each mode. Here, system-level
modes are defined implicitly through the composition of the
component-level modes.

At the basic level, the continuous dynamics of a component
in each mode are modeled using a set of variables and a set
of constraints. A constraint is defined as follows:
Definition 1 (Constraint). A constraint c is a tuple (εc, Vc),
where εc is an equation involving variables Vc.

A component is defined by a set of constraints over a set of
variables. The constraints are partitioned into different sets,
one for each component mode. A component is then defined
as follows:
Definition 2 (Component). A component δ with n discrete
modes is a tuple δ = (Vδ, Cδ), where Vδ is a set of variables
and Cδ is a set of constraint sets involving variables in Vδ ,
where Cδ is defined as Cδ = {C1

δ , C
2
δ , . . . , C

n
δ }, with a con-

straint set, Cmδ , defined for each mode m = {1, . . . , n}.

By composing a set of components, we can define a system
model as follows:
Definition 3 (Model). A model M = {δ1, δ2, . . . , δd} is a
finite set of d components for d ∈ N.

Note that the set of variables for a model does not change
with the mode, hence we need only a variable set in a com-
ponent and not a set of variable sets as with constraints.
The set of variables for a model, VM, is simply the union
of all the component variable sets, i.e., for d components,
VM = Vδ1 ∪ Vδ2 ∪ . . . ∪ Vδd . We say that two components
are connected if they share a variable, i.e., components δi and

δj are connected if Vδi ∩ Vδj 6= ∅. VM consists of five dis-
joint sets, namely, the set of state variables, XM; the set of
parameters, ΘM; the set of inputs (variables not computed
by any constraint), UM; the set of outputs (variables not used
to compute any other variables), YM; and the set of auxil-
iary variables, AM. Parameters, ΘM, include explicit model
parameters that are used in the model constraints (e.g., fault
parameters). Auxiliary variables, AM, are additional vari-
ables that are algebraically related to the state, parameter, and
input variables, and are used to simplify the structure of the
equations.

The model constraints, CM, are a union of the component
constraints over all modes, i.e., CM = Cδ1 ∪ Cδ2 ∪ . . . ∪ Cδd ,
where Cδi = C1

δi
∪ C2

δi
∪ . . . ∪ Cnδi for n modes. Constraints

are exclusive to components, that is, a constraint c ∈ CM
belongs to exactly one Cδ for δ ∈M.

To refer to a particular mode of a model we use the concept of
a mode vector. A mode vector m specifies the current mode
of each of the components of a model. So, the constraints for
a mode m are denoted as Cm

M. For shorthand, we will refer
to the modes only of the components with multiple modes.

The switching behavior of each component can be defined
using a finite state machine or a similar type of control speci-
fication. The state transitions may be attributed to controlled
or autonomous events. However, for the purposes of this pa-
per, we view the switching behavior as a black box where the
mode change event is given, and refer the reader to many of
the approaches already proposed in the literature for model-
ing the switching behavior (Henzinger, 2000; P. J. Moster-
man & Biswas, 1998). We distinguish between two types of
mode changes, controlled and autonomous, where controlled
mode changes depend solely on the system inputs, and au-
tonomous mode changes depend also on internal system vari-
ables.

2.2. Problem Formulation

The system model is constructed as a collection of compo-
nents describing the system variables and the constraints de-
scribing their relationships (Defn. 3). By collecting all the
constraints over each mode, the model variables and equa-
tions can be presented in a summarized, abstract form, con-
sisting of the (continuous) state vector, x(k) ∈ Rnx ; the
mode (or, discrete state) vector, m(k) ∈ Nnm ; the unknown
parameter vector, θ(k) ∈ Rnθ ; the input vector, u(k) ∈ Rnu ;
the process noise vector, v(k) ∈ Rnv ; the output vector,
y(k) ∈ Rny ; the measurement noise vector, n(k) ∈ Rnn ;
the state equation, f ; the mode transition equation, g; and the
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Figure 1. Model-based prognostics architecture.

output equation, h:1

x(k + 1) = f(k,m(k),x(k),θ(k),u(k),v(k)), (1)
m(k + 1) = g(k,m(k),x(k),θ(k),u(k)), (2)

y(k) = h(k,m(k),x(k),θ(k),u(k),n(k)), (3)

where k is the discrete time variable. Here, the full state of the
hybrid system is defined by both the continuous state x and
the mode m. Note that the unknown parameter vector θ(k)
is used to capture explicit model parameters whose values are
unknown and time-varying stochastically. This presentation
of the model is used here for problem formulation and does
not necessarily represent implementation.

Prognostics is concerned with predicting the occurrence of
some event E that is defined with respect to the mode, states,
parameters, and inputs of the system. We define the event as
the earliest instant that some event threshold TE : Nnm ×
Rnx ×Rnθ ×Rnu → B, where B , {0, 1}, changes from the
value 0 to 1. That is, the time of the event kE at some time of
prediction kP is defined as

kE(kP ) ,

inf{k ∈ N : k ≥ kP ∧ TE(m(k),x(k),θ(k),u(k)) = 1}.
(4)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (5)

2.3. Prognostics Architecture

We adopt a model-based prognostics architecture (Daigle
& Goebel, 2013; Daigle & Sankararaman, 2013), in which
there are two sequential problems, (i) the estimation problem,
which requires determining a joint state-parameter estimate
p(m(k),x(k),θ(k)|Y(k)) based on the history of observa-
tions up to time k, Y(k) = [y(k0) . . .y(k)], and (ii) the
prediction problem, which determines at kP , using the joint
state-parameter estimate p(m(kP ),x(kP ),θ(kP )|Y(kP )),
the future parameter trajectory p(ΘkP ), the future input

1Bold typeface denotes vectors, and na denotes the length of a vector a.

trajectory p(UkP ), and the future process noise trajectory
p(VkP ), a probability distribution p(kE(kP )|Y(kP )).

The prognostics architecture is shown in Fig. 1. In discrete
time k, the system is provided with inputs uk and provides
measured outputs yk. The estimation module uses this infor-
mation, along with the system model, to compute an estimate
p(m(k),x(k),θ(k)|Y(k)). The prediction module uses the
joint state-parameter distribution and the system model, along
with the distributions p(ΘkP ), p(UkP ), and p(VkP ), to com-
pute the probability distribution p(kE(kP )|Y(kP )). We de-
scribe the estimation problem in Section 3, and the prediction
problem in Section 4.

3. ESTIMATION

As we have already mentioned, the estimation problem in
our approach deals with determining a joint state-parameter
estimate p(m(k),x(k),θ(k)|Y(k)) based on the history of
observations up to time k, Y(k). A general solution to the
problem of joint state-parameter estimation is the unscented
Kalman filter (UKF) (Julier & Uhlmann, 2004, 1997), which
may be applied to nonlinear systems with Gaussian noise.
Another solution highly used in the estimation literature is
the particle filter (PF) (Arulampalam, Maskell, Gordon, &
Clapp, 2002), which may be directly applied to nonlinear
systems with non-Gaussian noise terms (Arulampalam et al.,
2002). The main disadvantage of the PF against the UKF is
the computational complexity, which is linear in the amount
of samples, or particles, that are used to approximate the state
distribution. The number of particles needed for joint state-
parameter estimation is typically larger, and this number in-
creases with the dimension of the state-parameter space.

For hybrid systems, the problem of joint state-parameter esti-
mation becomes more complicated due to the mode changes.
In the case the mode of the system is known, which hap-
pens when the system only has controlled mode changes, the
problem reduces to continuous system state estimation, and
the approaches mentioned above can be applied. A com-
parison of different filter techniques for the estimation prob-
lem in prognostics can be found in (Daigle, Saha, & Goebel,
2012). On the other hand, when autonomous mode changes
can occur in the system, the estimation problem becomes
more complex. Since the main focus of this work is the
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prediction problem of the prognostics architecture, we refer
the reader to one of the many existing state estimation ap-
proaches in the literature (Rienmüller, Bayoudh, Hofbaur, &
Travé-Massuyès, 2009; Benazera & Travé-Massuyès, 2009;
Hofbaur & Williams, 2004; Koutsoukos et al., 2003; Blom &
Bloem, 2004).

In (Hofbaur & Williams, 2004; Benazera & Travé-Massuyès,
2009) the authors propose an approach that requires to follow
every possible state in the system at a particular instant, and
then use search techniques from model-based reasoning in or-
der to focus the estimation on the set of most likely modes,
without missing symptoms that might be hidden among the
system noise. Rienmuller et al. (Rienmüller et al., 2009) also
use the state estimator proposed in (Hofbaur & Williams,
2004). In (Koutsoukos et al., 2003), the authors propose a
particle filtering based estimation algorithm for a class of dis-
tributed hybrid systems. Finally, the approach in (Blom &
Bloem, 2004) also uses particle filtering. Each one of this ap-
proaches can be perfectly integrated within our prognostics
framework to precede the prediction problem.

4. PREDICTION

The prediction problem is to find the time of some system
event E and/or system variables at the time of that event.
In the model-based paradigm, the approach is conceptually
straightforward. Given the system model, an initial state, and
future inputs, we simulate the model forward in time until
the event occurs. Of course, in practice, this is difficult be-
cause the inputs to this problem are all uncertain. In this con-
text, the prediction problem becomes one of uncertainty prop-
agation (Sankararaman, Daigle, Saxena, & Goebel, 2013;
Sankararaman, Daigle, & Goebel, 2014).

At prediction time kP , we consider four different inputs
to the prediction problem: (i) the initial state estimate,
(m(kP ),x(kP ),θ(kP )); (ii) the future parameter trajectory,
ΘkP (where θ(kP ) is the first value); (iii) the future input
trajectory, UkP ; and (iv) the future process noise trajectory
VkP . The initial state estimate comes from the estimation
module and is given as a probability distribution. The remain-
ing uncertain inputs must be determined in some way either a
priori or by using data from the system. For example, we can
assume that the future inputs look like the past inputs over
some time window with some uncertainty (Daigle, Saxena, &
Goebel, 2012).

Underlying the overall prediction algorithm is the function P
(Algorithm 1) that, given a realization of all the prediction
inputs, computes the corresponding value of kE . The algo-
rithm simply simulates forward the model given the inputs.
The version presented here extends the version for continuous
systems (Daigle & Sankararaman, 2013) by including the dis-
crete state, m(k), and the mode transition equation, g (Eq. 2).
Further, it introduces a finite prediction horizon, specified by

Algorithm 1 kE(kP ) ← P(m(kP ), x(kP ), ΘkP , UkP ,
VkP , kH)

1: k ← kP
2: x(k)← x(kP )
3: while TE(m(k),x(k),ΘkP (k),UkP (k)) = 0 or k < kH do
4: x(k + 1)← f(k,m(k),x(k),ΘkP (k),UkP (k),VkP (k))
5: m(k + 1)← g(k,m(k),x(k),ΘkP (k),UkP (k))
6: k ← k + 1
7: x(k)← x(k + 1)
8: m(k)←m(k + 1)
9: end while

10: if k = kH then
11: kE(kP )←∞
12: else
13: kE(kP )← k
14: end if

kH . If E is not reached by kH , then∞ is returned, meaning
that E was not reached in the specified prediction horizon.

Prediction algorithms differ by how they make use of the
P function. In Monte Carlo sampling, inputs are sampled
stochastically from the given distributions, and P is called
many times, once for each sample. Other algorithms like un-
scented transform sampling and the inverse first-order relia-
bility method offer more complicated sampling or analytical
schemes (Daigle & Sankararaman, 2013). For hybrid sys-
tems, these approaches become more complicated because
there is a mix of discrete and continuous probability distri-
butions. The presence of a discrete mode and the possibility
of future mode changes means that the distribution for kE
will typically be multi-modal, which causes additional dif-
ficulties. The problem is present for both autonomous and
controlled mode changes. Uncertainty in the initial state,
process noise, and inputs means that, for some realizations,
autonomous mode changes may occur, whereas for others it
may not, and uncertainty in the future input trajectory means
that controlled mode changes may occur for some realizations
but not for others.

Although it can be inefficient due to the large number of sam-
pling typically required, in this work we use Monte Carlo
sampling, as it is the most straightforward to apply for hybrid
systems; the algorithm can be directly used given distribu-
tions for all the prediction inputs. Since we consider a finite
prediction horizon here, that limits the computational com-
plexity of the algorithm. In the worst case, the complexity is
given by the number of samples times the difference kH−kP .

5. CASE STUDY

The NAS consists of commercial flights, general aviation
flights, air traffic controllers (ATCs), airports, etc. There are
many prediction problems to consider within the NAS, in or-
der to maintain safety and increase efficiency. We consider
the problem of conflict prediction in the NAS. A conflict, or
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loss of separation, is defined as an event in which two planes
come within an unsafe distance from one another. In present-
day operations, conflicts are predicted within a 20 minute pre-
diction horizon (Erzberger et al., 1997). If a conflict is pre-
dicted, then an ATC must resolve it by issuing instructions to
the aircraft to turn, change speed, or change altitude. We want
to predict conflicts in order to determine if conflict-resolving
maneuvers need to be issued. Such predictions serve as inputs
to a decision-making problem. An estimate of uncertainty is
also required in order to maintain safety and avoid risks.

5.1. Modeling

In order to apply model-based prognostics to this problem,
we require a model of the system. In our modeling frame-
work, each aircraft with its controller defines a component.
The system is constructed as the set of all considered air-
craft. We follow the approach in (Bilmoria, Banavar, Chat-
terji, Sheth, & Grabbe, 2000; Chatterji, Sridhar, & Bilimo-
ria, 1996) for modeling the aircraft, using point-mass models
with simplified dynamics. For each aircraft, we consider two
components, one representing the aircraft dynamics, and one
for the control. The dynamics always remain the same, but
the control laws change depending on the flight phase (climb,
cruise, or descent). The component equations are summa-
rized in Table 1. While more complex and realistic equations
may be used to describe the dynamics and control, the simpli-
fied equations here are actually quite close to what is used in
practice, and suitable for demonstrating hybrid system prog-
nosis concepts.

We assume a point-mass model as in most trajectory predic-
tion methods in the literature (e.g., (Slattery & Zhao, 1997;
Erzberger et al., 1997; Chatterji et al., 1996)). The aircraft
position is defined by latitude λ, longitude τ , altitude h, head-
ing χ (the angle on the horizontal plane), and flight path angle
γ (the angle on the vertical plane). The velocity is described
by the airspeed Vt and the climb velocity Vh. The ground-
speed Vg is computed based on an addition of the airspeed
and windspeed vectors. The windspeed vector is defined by
magnitude Vw and an angle χw. We assume there is no verti-
cal component to the wind. It can be decomposed into north
and east components, WN and WE , respectively.

Latitude and longitude change based on the component of the
airspeed and windspeed in the horizontal plane and the radius
R, which is computed as the radius of the earth Re and the
altitude. Altitude changes directly based on the climb veloc-
ity. As in (Bilmoria et al., 2000), we assume simple dynam-
ics where the airspeed, climb velocity, and heading change
are based on abstracted first-order systems. For each, they
change based on the error between the current value and a
commanded value (c subscript) with some lumped inertia J .

The control laws aim to point the aircraft to the desired
heading, and control the velocity according to the phase

of flight. The desired heading angle is computed as the
great-circle heading, χGC with a wind correction term
(arcsin(Vw/Vt sin(χw − χg))) (Chatterji et al., 1996). The
desired climb velocity is zero in the cruise phase, and in the
climb and descent phases it is determined with a proportional
control law based on the altitude error. The commanded air-
speed is fixed for climb and descent (Vt,climb and Vt,descent,
respectively), and for cruise it is determined based on the
distance to be traveled, D, and the desired time to arrive
at the waypoint, t∗. The desired waypoint is specified by
desired latitude, longitude, altitude, and time of arrival,
(λ∗, τ∗, h∗, t∗).

The mode transition equation is implemented as follows. In
nominal operations, an aircraft goes from the climb mode, to
cruise mode, then descent mode for the final waypoint (i.e.,
the arrival runway), which are autonomous mode transitions.
The aircraft goes from climb or descent to cruise when it
reaches the desired altitude h∗ within some error bounds. It
goes from cruise to climb or descent when the desired altitude
is lower than the current altitude within some error bounds.
Thus, in nominal operations, the aircraft follows the given
waypoints and switches between the control modes based on
these waypoints. If a conflict will occur, then an ATC action
can also cause the aircraft to switch modes. Predictions will
be made to determine if such actions need to take place.

The event of interest, E, is a conflict, which is defined as two
aircraft being within 5 nautical miles and 1000 vertical feet of
one another. Since this event is defined over multiple aircraft,
we require a system-level perspective, where the system is
the NAS or a specific region within it (Daigle, Bregon, &
Roychoudhury, 2012).

The inputs to the system are the set of desired waypoints for
each aircraft and the wind. We assume that there is no uncer-
tainty in the desired waypoints. Without a model of how the
wind changes, we assume that the windspeed and direction
are steady within the 20 minute prediction horizon, and their
values fall within some assumed probability distribution.

5.2. Demonstration of Approach

We consider a scenario in which to demonstrate the overall
approach. Here, we have a region of the NAS in which five
aircraft are heading to different navigation waypoints. For
each aircraft, the probability of a conflict with another within
the next 20 minutes is computed, as well as the estimated
time of the conflict. Both the state and the wind are consid-
ered to be uncertain and captured through normal distribu-
tions. Process noise is ignored and parameters are assumed
to be known. Monte Carlo sampling is used for prediction
with 500 samples. Each sample is associated with a time of
conflict, from which the probability distribution of conflict
time is produced. The probability of a conflict is computed as
the number of samples with finite conflict times (i.e., 20 min-
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Table 1. Components of the NAS

Component Mode Constraints
Dynamics 1 WN=Vw sin(χw)

WE=Vw cos(χw)

λ̇t=(Vt cos γ cosχ+WN )/R
τ̇t=(Vt cos γ sinχ+WE)/(R cosλ)

ḣ=Vh
R=Re + h

γ=arcsin(ḣ/Vt)

V̇t=(Vt,c − Vt)/Jt
V̇h=(Vh,c − Vh)/Jh
χ̇=(χc − χ)/Jχ

Vg,y=Vt cosχ+ Vwcosχw
Vg,y=Vt cosχ+ Vwcosχw
Vg=Vt cosχ+ Vw cosχw
χg=arctan(Vg,y/Vg,y)

h=
∫ t
t0
ḣ

λ=
∫ t
t0
λ̇t

τ=
∫ t
t0
τ̇t

Vh=
∫ t
t0
V̇h

χ=
∫ t
t0
χ̇

Vt=
∫ t
t0
V̇t

Control 1 χGC=arctan
sin(τ∗ − τ) cos(λ∗)

(sin(λ∗) cos(λ)− sin(λ) cos(λ∗) cos(τ∗ − τ))
Vt,c=Vt,climb
Vh,c=(h∗ − h)Ph,climb
χc=χGC − arcsin(Vw/Vt sin(χw − χg))

2 χGC=arctan
sin(τ∗ − τ) cos(λ∗)

(sin(λ∗) cos(λ)− sin(λ) cos(λ∗) cos(τ∗ − τ))
D=

√
(λ∗ − λ)2R2 + (τ∗ cos(λ∗)− τ cos(λ))2R2

Vt,c=D/(t
∗ − t)

Vh,c=0
χc=χGC − arcsin(Vw/Vt sin(χw − χg))

3 χGC=arctan
sin(τ∗ − τ) ∗ cos(λ∗)

(sin(λ∗) ∗ cos(λ)− sin(λ) ∗ cos(λ∗) ∗ cos(τ∗ − τ))
Vt,c=Vt,descent
Vh,c=(h∗ − h)Ph,descent
χc=χGC − arcsin(Vw/Vt sin(χw − χg))

utes or less) over the total number of samples (which includes
those for which no conflict occurred within 20 minutes, re-
turned as∞ by Algorithm 1).

The initial aircraft positions are shown in Fig. 2. Each air-
craft is numbered, and their waypoints are drawn along with
straight-line flight paths to their waypoints. The circle drawn
around each aircraft represents the required separation dis-
tance (the aircraft are not drawn to scale). From the plot, it
appears that conflicts may arise between aircraft 1 and air-
craft 3, aircraft 2 and aircraft 3, and aircraft 4 and aircraft 5,
as their intended flight paths cross. The predictions at t = 0
minutes are that aircraft 1 and aircraft 3 have a 76% probabil-
ity of conflict, occurring between 13.3 and 15.7 minutes, that
aircraft 2 and aircraft 3 have a 88% probability of conflict,
occurring between 4.3 and 8.2 minutes, and that aircraft 4

and aircraft 5 have a 0.02% probability of conflict, occurring
around 11 minutes.

Without intervention, the conflict between aircraft 2 and air-
craft 3 appears at 6.6 minutes (see Fig. 3), so the original
prediction captures the true conflict time. As the actual time
of conflict is approached, the estimated probability of con-
flict increases, as shown in Fig. 4. After the actual conflict,
the probability of conflict reduces. The drop to zero is not
discontinuous, since there is uncertainty in the aircraft posi-
tions.

Without intervention, the conflict between aircraft 1 and air-
craft 3 occurs at 14.6 minutes (see Fig. 5). The probability
of conflict over time is shown in Fig. 6. Due to position un-
certainty, the probability at the time of conflict is only around
50%, as the conflict is just on the border of not happening.

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

x (nm)
-100 -50 0 50 100 150

y
(n
m
)

0

50

100

150

200

1

2

3

4

5

Figure 2. Aircraft positions at 0 minutes.
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Figure 3. Aircraft positions at 6.6 minutes.

For aircraft 4 and aircraft 5, the probability of conflict is pretty
low, and does not occur where the intended flight paths are
(see Fig. 5, where aircraft 5 reaches the point where the paths
cross before aircraft 4 does). The estimated probability of
conflict rises to 100% around 12 minutes, but this is for a
conflict that is to occur at t = 30 minutes where the intended
flight paths to the next waypoints cross.

Here, the hybrid dynamics do not have much effect on the

Prediction Time (minutes)
0 2 4 6 8 10 12 14 16

Pr
ob

ab
ili

ty
 o

f 
C

on
fl

ic
t (

%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 4. Predicted probability of conflict between 2 and 3 as
a function of prediction time.
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Figure 5. Aircraft positions at 14.6 minutes.

predictions, since all the conflicts happen to arise when in
the cruise mode. If a conflict is to happen on the border of
climb and cruise, for example, then the resulting distribution
may become bimodal, for example if just on the border of the
vertical separation being violated.

In actual operations, if a conflict is predicted within the 20
minute prediction horizon, a resolving maneuver would be
issued by ATC in order to prevent the conflict. In current
practice, only deterministic trajectory prediction is available,
and errors are added on afterwards on top of these predic-
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Figure 6. Predicted probability of conflict between 1 and 3 as
a function of prediction time.
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Figure 7. Predicted probability of conflict between 4 and 5 as
a function of prediction time.

tions in an ad hoc manner to obtain probabilistic predictions
of conflicts (Erzberger et al., 1997). On the other hand, in our
approach, uncertainties are added at the time of prediction,
and are propagated throughout the prediction procedure in
order to obtain conflict probabilities. The model-based prog-
nostics approach is a more rigorous method compared to the
currently used ad hoc methods for treatment of uncertainty,
and allows for more robust and efficient operations and more
informed decision-making.

6. CONCLUSIONS

We presented an extension of the model-based prognosis
framework to hybrid systems. The presence of mixed discrete
and continuous dynamics presents significant challenges to
the estimation and prediction problems. However, the over-
all model-based prognostics approach is essentially the same,
as there is an estimation step followed by a prediction step.
The only difference is the multi-modal, hybrid models used,
which requires more complex estimation and prediction algo-
rithms.

The approach was demonstrated on the problem of conflict
prediction in the NAS. We showed how the framework can
be applied, and discussed also how the model-based prog-
nostics framework offers a more systematic and robust ap-
proach, especially in the context of handling uncertainty, than
the current state-of-the-art in that domain. In fact, the frame-
work presented here has a much broader applicability. For
example, given models of unsafe weather systems, “conflicts”
with unsafe weather regions can also be predicted, and these
predictions can be used within decision-making algorithms.
Other safety events, such as low fuel and high congestion,
can also be predicted within this type of architecture.

While much work has been done on state estimation for hy-
brid systems, relatively little has been done on prediction and
uncertainty propagation using these types of models. Monte
Carlo sampling is a simple but inefficient solution to this
problem, and future work will address more efficient predic-
tion algorithms for hybrid systems, e.g., the extension of the
unscented transform sampling method.
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Benazera, E., & Travé-Massuyès, L. (2009, October). Set-
theoretic estimation of hybrid system configurations.
Trans. Sys. Man Cyber. Part B, 39, 1277–1291.

Bilmoria, K. D., Banavar, S., Chatterji, G. B., Sheth, K. S., &
Grabbe, S. (2000, June). Facet: Future atm concepts

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2015

evaluation tool. In 3rd USA/EuropeATM R&D Semi-
nar.

Blom, H. A., & Bloem, E. A. (2004). Particle filtering for
stochastic hybrid systems. In 43rd IEEE Conference
on Decision and Control (Vol. 3, pp. 3221–3226).

Bregon, A., Alonso, C., Biswas, G., Pulido, B., & Moya, N.
(2011, October). Hybrid systems fault diagnosis with
possible conflicts. In Proceedings of the 22nd Inter-
national Workshop on Principles of Diagnosis (p. 195-
202). Murnau, Germany.

Camci, F. (2009). System maintenance scheduling with
prognostics information using genetic algorithm. IEEE
Transactions on Reliability, 58(3), 539–552.

Chanthery, E., & Ribot, P. (2013). An integrated frame-
work for diagnosis and prognosis of hybrid systems.
In 3rd Workshop on Hybrid Autonomous Systems (pp.
14–25).

Chatterji, G., Sridhar, B., & Bilimoria, K. (1996, July). En-
route flight trajectory prediction for conflict avoidance
and traffic management. In AIAA Guidance, Naviga-
tion, and Control and Conference.

Cocquempot, V., El Mezyani, T., & Staroswiecki, M. (2004,
July). Fault detection and isolation for hybrid sys-
tems using structured parity residuals. In 5th Asian
Control Conference (Vol. 2, p. 1204-1212). doi:
10.1109/ASCC.2004.185027

Daigle, M., Bregon, A., & Roychoudhury, I. (2012, Septem-
ber). A distributed approach to system-level prognos-
tics. In Annual Conference of the Prognostics and
Health Management Society 2012 (p. 71-82).

Daigle, M., Bregon, A., & Roychoudhury, I. (2015, Septem-
ber). A structural model decomposition framework for
hybrid systems diagnosis. In 26th International Work-
shop on Principles of Diagnosis.

Daigle, M., & Goebel, K. (2013, May). Model-based prog-
nostics with concurrent damage progression processes.
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 43(4), 535-546.

Daigle, M., Koutsoukos, X., & Biswas, G. (2010, October).
An event-based approach to integrated parametric and
discrete fault diagnosis in hybrid systems. Trans. of the
Institute of Measurement and Control, 32(5), 487-510.

Daigle, M., Saha, B., & Goebel, K. (2012, March).
A comparison of filter-based approaches for model-
based prognostics. In Proceedings of the 2012 IEEE
Aerospace Conference.

Daigle, M., & Sankararaman, S. (2013, October). Ad-
vanced methods for determining prediction uncertainty
in model-based prognostics with application to plane-
tary rovers. In Annual Conference of the Prognostics
and Health Management Society 2013 (p. 262-274).

Daigle, M., Saxena, A., & Goebel, K. (2012, September). An
efficient deterministic approach to model-based predic-
tion uncertainty estimation. In Annual Conference of

the Prognostics and Health Management Society 2012
(p. 326-335).

Erzberger, H., Paielli, R. A., Isaacson, D. R., & Eshow, M. M.
(1997). Conflict detection and resolution in the pres-
ence of prediction error. In 1st USA/Europe Air Traffic
Management R&D Seminar.

Gaudel, Q., Chanthery, E., & Ribot, P. (2014, September).
Health monitoring of hybrid systems using hybrid par-
ticle petri nets. In Annual Conference of the Prognos-
tics and Health Management Society 2014.

Henzinger, T. A. (2000). The theory of hybrid automata.
Springer.

Hofbaur, M., & Williams, B. (2004, October). Hybrid esti-
mation of complex systems. IEEE Trans. on Systems,
Man, and Cybernetics, Part B: Cybernetics, 34(5),
2178-2191.

Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the
Kalman filter to nonlinear systems. In Proceedings of
the 11th Intl. Symposium on Aerospace/Defense Sens-
ing, Simulation and Controls (pp. 182–193).

Julier, S. J., & Uhlmann, J. K. (2004, mar). Unscented filter-
ing and nonlinear estimation. Proceedings of the IEEE,
92(3), 401-422.

Koutsoukos, X., Kurien, J., & Zhao, F. (2003). Estimation of
distributed hybrid systems using particle filtering meth-
ods. In Hybrid Systems: Computation and Control
(HSCC 2003). Springer Verlag Lecture Notes on Com-
puter Science (pp. 298–313). Springer.

McIlraith, S. (2000). Diagnosing hybrid systems: a Bayesian
model selection approach. In Proceedings of the 11th
International Workshop on Principles of Diagnosis
(pp. 140–146).

Mosterman, P., & Biswas, G. (2000). A comprehensive
methodology for building hybrid models of physical
systems. Artificial Intelligence, 121(1-2), 171 - 209.

Mosterman, P. J., & Biswas, G. (1998). A theory of dis-
continuities in physical system models. Journal of the
Franklin Institute, 335(3), 401–439.

Narasimhan, S., & Biswas, G. (2007, May). Model-Based
Diagnosis of Hybrid Systems. IEEE Trans. Syst. Man.
Cy. Part A, 37(3), 348-361.

Narasimhan, S., & Brownston, L. (2007, May). HyDE: A
general framework for stochastic and hybrid model-
based diagnosis. In Proc. of the 18th Int. WS. on Prin-
ciples of Diagnosis (p. 186-193).

Orchard, M., & Vachtsevanos, G. (2009, June). A particle fil-
tering approach for on-line fault diagnosis and failure
prognosis. Transactions of the Institute of Measure-
ment and Control(3-4), 221-246.

Rienmüller, T., Bayoudh, M., Hofbaur, M., & Travé-
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