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ABSTRACT 

Vibration-based orbit analysis has been employed as a 

powerful tool in diagnosing the operating state for rotating 

machinery in power plants. However, due to the difficulties 

of extracting mathematical features for data-driven 

approaches in the orbit analysis, it heavily depends on the 

expert knowledge or experience. In this paper, the deep 

learning algorithm in machine learning is used to develop 

autonomous orbit pattern recognition. In details, the 

convolutional neural network is implemented to build up 

weights between convolution kernels and pixels, and to 

construct the entire structure of the neural networks. Finally, 

the trained network enables us to classify the shapes of the 

orbit via orbit shape images and its result can estimate fault 

modes of the rotating machinery. The proposed framework 

is demonstrated with a rotating testbed. 

1. INTRODUCTION

In most power plants, faults from the rotating machinery 

may cause its performance degradation and entire system 

breakdowns. It is directly related to plant 

operation/maintenance costs. The condition-based 

maintenance (CBM) helps to avoid and prevent system 

failures through monitoring vibration signals collected by 

accelerometer or proximity sensors in various locations. The 

vibration signals need to transform to useful information via 

signal processing. Generally, time-domain analysis, 

frequency-domain analysis and time-frequency analysis are 

known as traditional, but main methods (Jardine et al. 2006). 

 Frequency-domain analysis handles the data related to 

frequency domain. The spectrum analysis based on fast 

Fourier transform (FFT) is widely used. Conventionally, the 

principal harmonic frequency amplitudes (1X, 2X, 3X, etc.) 

are extracted and used to diagnose the state of rotating 

machinery. 

Time-domain analysis directly handles a time waveform 

itself as applying filters or extracting characteristic features 

such as simple statistics (mean, standard deviation, etc.) or 

high-order statistics (root mean square, skewness etc.). In 

time domain, there are many techniques to remove the effect 

of other source and noise such as time synchronous average 

(TSA) and autoregressive moving average (ARMA) model. 

Time-frequency analysis is combined concepts of time and 

frequency domains. Short-time Fourier transforms (STFT) 

and Wigner-Vile distributions are the popular methods. 

These methods are used to handle non-stationary waveform 

signals or inspect trend information over time.  

It is well known that the harmonic frequency elements (1X, 

2X, 3X, etc.) are often selected as principal features 

especially for the rotating machinery health monitoring. The 

orbit constructed by two non-contacting proximity sensors 

(x and y axes) provides important and relevant information 

on rapidly changing machinery conditions. Generally, 

perturbations or malfunctions can usually be detected by 

shaft rotation (orbit) in rotating machinery. Furthermore, the 

malfunction of machine will adversely cause change of shaft 

rotation and generate the special orbit pattern. Therefore, an 

understanding of orbit shapes helps to identify how the 

dynamics of machinery malfunctions takes place, and how 

they can be more accurately detected before failure 

(Eisenmann, 1997). 

Although the orbit shape from orbit analysis contains the 

most important information of the rotating machinery health 

condition, it is not well utilized in power plants because it is 

not easy to extract numerical features that represent the 
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specific orbit shape. As a result, orbit shapes are manually 

monitored by human operators in most case. 

Therefore, in this paper, the deep learning based approach is 

proposed for the autonomous orbit pattern recognition. 

Especially, Convolutional Neural Networks (CNN) for 

image pattern recognition has been applied to orbit images 

to diagnose the fault mode. 

2. THEORETICAL BACKGROUND

The following section outlines general (non-formatting) 

guidelines to follow. These guidelines are applicable to all 

authors and include information on the policies and 

practices relevant to the publication of your manuscript. 

2.1. Previous Machine Learning Methods for 

Diagnostics 

There are a variety of machine learning algorithms used to 

diagnose a fault in the rotating machinery. Basically, 

machine learning is to make a category (or class) of the 

pattern from raw data and build auto-cognitive systems for 

some tasks (Duda, 2012).  

An expert system method is based on the causes of fault and 

symptoms from an empirical knowledge, which came from 

direct experience of engineers. Generally, causes-systems 

are expressed in the form of IF (symptom) and THEN 

(cause). Because observed symptoms are able to be known 

information or cases, Bayesian algorithm that calculates the 

probability of an accident occurring based on condition 

probability is adopted in the expert system (Yang, 2005). 

Support Vector Machine (SVM) is a supervised learning 

model. In SVM, a feature-based input vector is used to build 

a feature space. Frequency elements and statistical elements 

are selected as features to diagnose rotating machinery. 

Then, SVM will provide a decision boundary by 

considering relationship between input feature vector 

pattern1s and fault types. 

Artificial Neural Network (ANN) is a mathematical or 

computational model for information processing. ANN 

structure generates appropriate classification boundaries 

based on information that flows through the network during 

iterative training (Zurada, 1992). After training is completed, 

the trained model can classify state of machine (Kankar, 

2011). 

ANN is chosen as a classifier in “Automatic Recognition of 

Orbit Shape for Fault Diagnosis in Steam Turbine Generator 

Sets” (C. Yan 2010). In this paper invariant moments are 

used as features of the ANN classifier by experts who have 

domain knowledge. Hence the paper does not automatize 

feature extraction process for orbit images. 

On the other hand, our paper directly deals with image 

recognition problem. That is, we provide an image itself as 

an input without computing any features based on either 

training dataset or domain knowledge. Furthermore, CNN is 

known for outperformance on selecting image features 

automatically using convolution layers. 

2.2. Deep Learning 

In conventional machine-learning techniques, it is necessary 

to extract appropriate feature vector with careful 

engineering and considerable domain expertise to detect or 

classify patterns.  

Representation learning methods are a set of methods that 

allow a machine to automatically discover the representation 

needed for detection or classification. Deep learning 

methods are representation learning methods with multiple 

levels of representation, obtained by composing simple but 

non-linear modules that each transforms the representation 

at one level (starting with the raw input) into a 

representation at a higher, slightly more abstract level. The 

key advantage of deep learning is that very complex 

functions can be learned and good feature can be 

automatically extracted using general-purpose learning 

procedure.  As a result, deep learning is a computational 

model, which is composed of multiple processing layers that 

perform non-linear input-output mappings to learn 

representations of data with multiple levels of abstraction. 

Then, deep learning can find complicated hidden patterns in 

large data sets by using the backpropagation algorithm to 

calculate its internal parameters that are used to compute the 

representation in each layer from the representation in the 

previous layer (LeCun, 2015). 

2.3. Image Pattern Recognition and Convolutional 

Neural Networks 

Image pattern recognition is a method to generate and match 

descriptions to classify images. (Azriel et al. 1988). 

Descriptions are similar to features used to represent the 

waveform data in signal processing. Characteristic element 

of pattern in image can be express by good descriptions. 

Some points and edges can be descriptions such as Harris 

corner (Harris et al. 1988) and canny edge (CANNY. 1986). 

A matching operator between trained descriptions and input 

descriptions are interrupted by the variance of image 

patterns such as rotation and scale change. Extracting 

features or developing matching algorithm are used to solve 

image pattern recognition problem.  

CNN is used as a key algorithm for the orbit image pattern 

recognition in this paper. CNN models are known as one of 

biologically inspired models and have been widely used for 

image pattern recognition problems such as hand-written 

digit recognition and face recognition (Matsugu et al. 2003). 

In image recognition, CNN consists of multi-layers of small 

parameters and collect the information to obtain better 

representation of the original image (Korekado et al. 2003). 

Figure 1 illustrates the CNN architecture. It includes pairs of 

convolution, sub-sampling layers (Lecun et al. 1998). The 
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last sub-sampling layers are fully connected and the output 

vector classifies the input using max-pooling between 

overall values of activation function. This hierarchical 

organization helps to extract proper features in image 

classification tasks (Abdel-Hamid O. 2012). 

Figure 1. Structure of Convolutional Neural Networks 

2.4. Orbit Shape and its Fault Type 

The malfunction of rotating machinery causes a variety of 

faults such as unbalance, shaft misalignment and oil whirl in 

a rotor shaft. It has been well studied that the fault types in a 

rotor dynamics have a corresponding orbit shapes. The 

representative corresponding orbit shapes are summarized in 

Table 1 (Patel et al. 2009, Shia et al. 2005). 

2.5. Full Spectrum: Complex Representation of Orbit 

An orbit shape is mathematically related to the full spectrum 

which was introduced by Bently Nevada Corporation in 

1993. Full spectrum analysis considers the orbit in the 

complex space in that the orbit signal constructed by two 

sensors attached 90 degree apart can be expressed by a 

linear combination of complex unit circles.  

The full spectrum analysis is defined in Equation (1) where 

( )x n  and ( )y n  are the vibration signal, and ( )Z k  is a 

complex coefficient which contains an amplitude and a 

phase of each unit complex circle (Goldman et al. 1999). 
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As a result of the full spectrum analysis, the orbit expressed 

in a complex form can be approximated with the finite 

number N of harmonic frequencies (1X, -1X, 2X, -2X, etc.). 
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3. PRE-PROCESSING OF ORBIT IMAGES

The pre-processing step is necessary to orbit images before 

we train a classification model for image pattern recognition. 

In the pre-processing step, as the orbit image pattern is 

independent of a rotated angle of pattern, size of image, and 

an orbit image location, normalizing an orbit image with 

respect to rotation, size, and location is conducted. 

For example, the orbit image of shape 8 and counter-clock 

wise rotated image as shown in Figure 3 can be recognized 

by a human operator. However, it is not easy to recognize 

the same pattern of rotated image in machine learning 

algorithm or it requires large computational time. To reduce 

the time for the image pattern machine learning process, it is 

necessary to conduct pre-processing steps such as re-

orienting, offset shifting, and size normalization. Figure 2, 3, 

and 4 show these pre-processing steps. 

3.1. Orbit Image Offset Shifting 

A translation of the center point of the orbit image to the 

origin in an image canvas is performed to guarantee the 

invariance of the center position. Orbit signals which take 

place from the rotating machinery usually have the center 

point at origin point because sensors are attached based on 

the shaft midpoint. However, problem of the sensor 

calibration or the specific state of machine (hard rubbing, 

etc.) may cause offset of the center point. 

The matrix A  consists the column vector of each axis 

vibration data. The new orbit matrix A  is obtained by 

subtracting the mean values from matrix A. 

 A x y

A A m


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(3) 

Table 1. Different Orbit Shapes according to Fault Types 

Fault Normal Unbalance 
Shaft 

misalignment 

Orbit 

Shape 
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Figure 2. Image Offset Shifting 

3.2. Orbit Image Re-orienting 

Although phases are different, the shape of orbit is same 

with tilted orbit in a geometry viewpoint. A human operator 

can easily identify the same orbit pattern even if two images 

are tilted. However, machine learning algorithm is most 

likely to fail to recognize them as the same pattern. 

Consequently, before applying any pattern recognition 

algorithm, it is necessary to re-orient all the orbit pattern 

images to the same direction. 

Covariance matrix, C is obtained by matrix A .  

Subsequently, eigenvector matrix V can be obtained by 

eigen-analysis. V  is a set of basis where matrix   is a 

diagonal eigenvalue matrix. The coordinate of an orbit is 

changed to matrix RA by applying a rotation transformation.

T T

R

C A A V V

A AV

  


(4) 

Figure 3. Image Re-orienting 

3.3. Orbit Image Re-scaling 

Although the degree of machine fault determines the size of 

an orbit shape, the fault type classification is not related to 

the size of image. Therefore, the scale of orbit pattern 

images can be normalized based on an input image size. 

The size of orbit shape is resized with maintaining a ratio 

between a vertical length and a horizontal length. To resize 

the original image to the training image size, the re-scaling 

is conducted based on the longer length between a 

horizontal and a vertical length. 

Figure 4. Scale Normalization 

3.4. Orbit Shape De-noising 

Moreover, an orbit pattern de-noising step is important to 

enhance an accuracy of orbit pattern recognition. In most 

cases, the orbit shape contains a sensor noise. Because of 

these noises, the shape of orbit will be disguised. 

Optimization method discussed in section 2.3 can be remove 

the effect of noise and improve the quality of orbit pattern. 

Using the least square method, we make a projection of the 

given noisy orbit image onto a full spectrum model with the 

finite harmonic frequencies of 1X, -1X, 2X, -2X, 3X, -3X. 

Then, the approximated orbit trajectory is converted to the 

binary image for the image pattern recognition process. 
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Figure 5. Optimization Result 

4. EXPERIMENTS AND RESULTS

4.1. Model Training for Image Pattern Recognition 

The testbed consists of a rotor, shaft, disc, bearing, and 

coupling. The shaft with a length of 470 mm is coupled with 

a flexible coupling to reduce the effect of the high frequency 

vibration, two discs, and three bearing housings. To 

construct the patterns of the orbits, two sensors to measure 

accelerations are attached on x and y-axis at the bearing 

housing. 1700rpm is set for this experiment. 
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Figure 6. Testbed 

The orbit image pattern recognition algorithm is applied to 

the orbit images collected from the rotor kit, shown in 

Figure 6. There are five classes of orbits: circle (C), ellipse 

(E), eight (8), heart (H), and tornado (T). The orbit shapes 

depend on the rotor status such as normal, unbalance, 

misalignment, etc. Table 2 shows the relationship between 

the rotor status and orbit classes. 

4.2. Training Tool 

The training set of 300 images are acquired by each class 

(circle, ellipse, eight, heart and tornado in Table 2). The 

orbit images are normalized to maximize the effect of 

training although deep learning (CNN) is able to capture 

invariances of images with respect to location, rotation, size, 

and deformation. These data sets are used to train weight 

parameters for CNN. In our experiment, CNN architecture 

is formed by a stack of two convolution layers, two max 

fooling (sub-sampling) layers, followed by fully connected 

layers. Table 3 and Figure 7 show the detailed training 

constraints and information. TensorFlow (open source 

software library for machine intelligence developed by 

Google) is used for training the orbit pattern recognition. 

Table 3. Detailed training constraints 

Constraints Value 

Training set 300 5 1500 

Number of patterns 5 

Activation Function ReLU 

Epoch ~ 50 

Batch size 50 

Figure 7. Training Graph 

A structure of CNN is shown in Figure 8. The first 

convolution layer has 32 filters of size 7 7 1. The second 

convolution layer has 64 filters of size 7 7 32. Max 

pooling layers reduce both the size of images and the 

number of parameters. The first max pooling layer reduce 

the image size by selecting max value in a filter size of 2 2. 

The second max pooling layer with a filter size of 4 4 are 

applied. Then, 1024 neurons in a final layer are fully 

connected to all the outputs from the previous layers. The 

ReLU function is used as an activation function. 

Figure 8. TensorFlow Structure of CNN 

Table 2. Five Classes of Orbit Shapes 

Status Classes Orbit Shape 

Normal 
Circle 

(C) 

Unbalance 
Ellipse 

(E) 

Shaft 

misalignment 

Eight 

(8) 

Heart 

(H) 

Tornado 

(T)
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4.3. Orbit Image Classification and Results 

The result of a test set of 500 orbit images is listed in Table 

4 as a confusion matrix form. The total misclassification for 

the given test set is overall 1.8 %. The confusions occur 

between heart and ellipse, heart and eight, tornado and circle. 

To illustrate the effectiveness of a CNN classifier, the 

performance with a different classifier, Gaussian 

discriminant analysis (GDA) is benchmarked. As Table 6 

shows, the GDA classifier demonstrates poor classification 

performance especially when evaluating ‘8’ shape. This 

comparison shows that the GDA classifier is not expressive 

enough to accommodate all the orbit shapes than the used 

CNN classifier. 

4.4. Classification Performance 

This images set in Table 7 is artificially created by hands, 

but it is similar to those of the real orbit shape acquired by 

rotor test kit. These images are used to measure 

classification performance. 

To compute the error rate of the CNN classifier, we use the 

nested 10 folds cross validation method. We choose the area 

under curve (AUC) as the evaluation metric since prediction 

is in a form of probability. Validation estimates CNN’s 

general error is about 1.3% with standard deviation 0.3%.  

Figure 9 shows errors calculated with one fold. 

Figure 9. Learning Graph of CNN 

A deep learning autonomously extracts abstract features, so 

deep learning algorithm can provide robust classification 

results even with a subtle difference of shape, orientation 

and position as shown in Table 7. 

5. CONCLUSION

Using the deep learning algorithm, we develop autonomous 

the orbit pattern recognition systems for the rotating 

machinery diagnostics since the orbit shapes are typical 

characteristics to classify rotating machinery dynamics and 

status. To demonstrate the feasibility of this method, an 

image pattern recognition using convolution neural 

networks is applied to orbit shapes generated by a rotor 

testbed. 

Even though the orbit shape is well classified by the 

proposed algorithm with a trained model, the current version 

of the deep learning classification model cannot take 

probabilistic perspectives into account. Therefore, the 

classification model will need further to be developed to 

provide not only the estimate of orbit pattern information, 

Table 4. Confusion Matrix of CNN 

True 

shape 

Classified 

C E H 8 T 

C 100 0 0 0 0 

E 0 100 0 0 0 

H 0 2 94 4 0 

8 0 0 1 99 0 

T 2 0 0 0 98 

Table 5. Error Image Type 

True class Heart Heart Tornado 

Result of 

classification 
Ellipse Eight Circle 

Orbit Image 

Table 6. Confusion Matrix of GDA 

True 

shape 

Classified 

C E H 8 T 

C 98 2 0 0 0 

E 7 91 2 0 0 

H 0 0 97 3 0 

8 0 0 18 82 0 

T 0 0 0 0 100 

Table 7. Classified Orbit Images 

Various Orbit Images Classified 

C 

E 

H 

8 

T 
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but also decision accuracy with higher confidence through 

the probability model. 
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