
 

1 

Bayesian Approach for the Lethargy Coefficient Estimation in the 

Probabilistic Creep-Fatigue Life Model 

Jaehyeok Doh
1
, Junhwan Byun

2
, Jongsoo Lee

3
 

1,2
Department of Mechanical Engineering, Yonsei University,  Seoul, 03722, Republic Of Korea 

jhdoh87@yonsei.ac.kr 

byun103@yonsei.ac.kr 
3School of Mechanical Engineering, Yonsei University,  Seoul, 03722, Republic Of Korea 

jleej@yonsei.ac.kr 

 
ABSTRACT 

The researches of Prognostics and Health Management 

(PHM) have been important in the field of engineering. The 

crack is propagated by high temperature and stress in power 

plants, vehicle engines and etc. The defect and damage are 

also accumulated. Therefore, it is necessary for design of 

creep-fatigue life about various structures and etc. In this 

study, probabilistic life design based on Zhurkov life model 

was performed using the lethargy coefficient under the 

variety of temperatures and stress conditions. For this work, 

the integration life equation was derived using Zhurkov life 

model. The deterministic lethargy coefficient is calculated 

to using the reference of the Small Punch (SP)-Creep test 

and tensile-shear test data about steel material (rupture 

stress and rupture time). Markov Chain Monte Carlo 

(MCMC) sampling method based on Bayesian framework is 

employed for estimating the lethargy coefficient and 

considering its uncertainties. As a result, predicted creep-

fatigue life was observed that it was considerably decreased 

in accordance with increasing temperature and stress 

conditions relatively. This life model is reasonable through 

comparing with conventional creep-fatigue life data. 

Key Words: Prognostics and Health Management (PHM), 

Creep-fatigue life, Lethargy coefficient, Zhurkov model, 

Markov Chain Monte Carlo (MCMC), Bayesian framework  

1. INTRODUCTION 

Nowadays, Prognostics and Health Management (PHM) 

have been applied to the field of engineering. The crack 

propagation by high temperature and stress is occurred due 

to accumulating defect and damage continuously in power 

plants, vehicle engines and so on. Therefore, it needs the 

design of creep-fatigue life about various structures under 

operating conditions. For this work, the estimation of 

parameters is required using finite data set in structural 

analysis or the health management of structures. In the early 

stage of structural design, material properties are obtained 

from various experiments. It is affect to the validity of 

structural analysis. Meta-model model which can replace 

the finite element analysis (FEA) is employed to saving 

computational cost but it is that there are also inherent 

uncertainties due to experiment error and the lack of data. 

For quantifying the uncertainties of material parameters or 

model coefficients, stochastic and statistical manners are 

employed. In the health management, degradation 

parameters of physical model in the deteriorating structures 

are estimated using monitoring data over times for the 

prognostics of creep-fatigue life. 

Bayesian framework for fatigue model determination, 

updating and averaging using trans-dimensional Markov 

Chain Monte Carlo (MCMC) simulation (C.  Andrieu et al., 

2003) is presented. Uncertainties are introduced by model 

choice, mechanism modeling, model parameter, and 

response measures are systematically included. Additional 

response measures are used to update model probabilities 

and parameter distributions associated with each of the 

models simultaneously via one trans-dimensional MCMC 

simulation in the general state space. The results of Bayes 

factors serve as a reference for model comparisons and 

determinations (X. Guan et al., 2010). This framework is 

also outlined for the parameter estimation that arises during 

the uncertainty quantification in the numerical simulation as 

well as in the prognosis of the structural performance. The 

parameters are estimated in the form of posterior 

distribution conditional on the provided data. During the 

numerical implementation, MCMC method is employed, 

which is a modern computational technique for the efficient 

and straightforward estimation of parameters (Choi et al., 

2010). X. Guan et al. compared with two probabilistic 

prognosis updating schemes. One is based on the classical 

Bayesian approach and the other is based on newly 
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developed maximum relative entropy (MRE) approach. The 

algorithm performance of the two models is evaluated using 

a set of recently developed prognostics-based metrics. 

Various uncertainties from measurements, modeling, and 

parameter estimations are integrated into the prognosis 

framework as random input variables for fatigue damage of 

materials. Measures of response variables are then used to 

update the statistical distributions of random variables and 

the prognosis results are updated using posterior 

distributions. MCMC technique is employed to provide the 

posterior samples for model updating in the framework. 

Experimental data are used to demonstrate the operation of 

the proposed probabilistic prognosis methodology (X. Guan 

et al., 2011). The methodology to quantify the uncertainty in 

fatigue crack growth prognosis applied to structures with 

complicated geometry and subjected to variable amplitude 

multi-axial loading. The Gaussian process surrogate model 

is used to replace the expensive finite element analysis. The 

various sources of uncertainty include, three different types 

of modeling errors are included in analysis such as crack 

growth model error, discretization error and surrogate model 

error. The different types of uncertainty are incorporated 

into the crack growth prediction methodology to predict the 

probability distribution of crack size (S. Sankararaman et al., 

2011). In other research, the parameters of the proposed 

creep-fatigue model were estimated using a standard 

Bayesian regression approach. It has been performed 

Bayesian analysis using the MCMC sampling method. The 

results have shown a reasonable fit between the 

experimental data and the proposed probabilistic creep-

fatigue life assessment models (F. Ibisoglu et al., 2015). 

In this study, probabilistic creep-fatigue life which based on 

Zhurkov (S. N. Zhurkov, 1965) model is suggested using 

stochastically and statistically estimated lethargy coefficient. 

the creep-fatigue life model was derived using Zhurkov life 

model and this model was deterministically validated with 

the reference of creep-fatigue life data (Park et al., 2011). 

For this process, firstly, lethargy coefficient which is 

relative to the failure of materials has to be obtained with 

rupture time and stress from quasi static tensile-shear test 

and Small Punch (SP) creep test. These experiments are 

performed using HS40R and X20CrMoV121 steel 

respectively (Sin et al., 2011; Park et al., 2011). However, 

lethargy coefficient has uncertainties due to experiment 

errors and the variation of material properties by inherent 

defects. Bayesian approach was employed for estimating its 

coefficient of the creep-fatigue life model using Markov 

Chain Monte Carlo (MCMC) sampling method. Once the 

samples are obtained, one can proceed to the posterior 

predictive inference on the creep-fatigue life. 

2. EXPERIMENTS 

2.1 Quasi Static Tensile-Shear Test for HS40R 

In this study, HS40R (high strength steel sheet) is widely 

used for the body frame of automobiles and so on. For 

calculating the lethargy coefficient about this material, 

rupture time and stress are obtained from quasi static 

tensile-shear test. Using specimens in Figure 1 were carried 

out the tensile test with the controlling displacement method 

with INSTRON 8516. The tensile velocity was set to 2 

mm/min and displacements were measured with a contacted 

strain gauge. Spot welding condition of the specimen is 

depending on KS B 0850. Chemical compositions and 

obtained material properties of the HS40R are represented 

respectively in the Table 1 and Table 2. 

 
Figure 1. Quasi static tensile-shear test specimen 

Table 1. Chemical composition of HS40R (wt %) 

C Si Mn P 

0.0876 0.0065 0.7407 0.1241 

S Ni Al Fe 

0.0036 0.0091 0.3577 Bal. 

 

Table 2. Mechanical properties of HS40R 

Material t (MPa) y (MPa) Elongation (%) 

HS40R 416.5 286.1 39 

 

2.2 Fatigue Test of HS40R Steel 

From the quasi static tensile-shear test, rupture stress and 
time were obtained for calculating lethargy coefficients. In 
order to compare with predicted life, fatigue test is preceded 
with dynamic fatigue tester as INSTRON 8516. The 
frequency of alternative load was set to 10Hz and the cyclic 
load is controlled under stress ratio condition (R ≒ 0). The 
behaviors of fatigue crack propagation under the spot 
welding with 6kA and 2 lap are observed by using direct 
current potential drop method (DCPDM). It use the 
displacement current by behavior of fatigue crack 
propagation. The fatigue life of the HS40R is represented in 
the Table 3 

Table 3. The summary of experiments of HS40R 
 HS40R 

Steel 

(300K) 

Welding 

current 

(kA) 

Rupture 

stress 

(MPa) 

Rupture 

time 

(sec) 

Alternate 

load (MPa) 

Experimental 

fatigue life (Cycle) 

2 lap 6 229.5 60.6 

113.5 52750.0 

112.5 162440 

112.0 291160 

111.7 408190 

2.3 SP-Creep Test of X20CrMoV121 Steel 
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X20CrMoV121 steel is widely used for boiler pipe in 

thermal power generation, or steam valve such as high 

temperature and pressure state. Chromium (Cr) steel 

(9~12%) is recommended for thermal power generations 

boiler header. In this study, small-punch (SP) creep test was 

conducted using the steel with Cr content 10%. Chemical 

compositions and obtained material properties of the 

X20CrMoV121 are represented respectively in the Table 4 

and Table 5. 

Table 4. Chemical compositions of X20CrMoV121 (wt %) 

C Si Mn P S 

0.19 0.19 0.48 0.011 0.003 

Ni Cr Mo V Fe 

0.66 10.40 0.86 0.26 Bal. 

 

Table 5. Mechanical properties of X20CrMoV121 

Material t (MPa) y (MPa) Elongation (%) 

X20CrMoV121 798.5 572.8 19.4 

 

When performing the SP-creep test, creep load is subjected 

to ceramic (Si3N) rigid ball. The central displacement of 

specimens was measured according to time. The spec of the 

creep tester is that temperature error is in ± 1℃, high 

temperature range is from 550℃ to 650℃ and load range is 

in the 20~100kg. During the test, central displacement of 

materials is measured using the linear variable differential 

transformer (LVDT). It can be precisely measured until 

1m. 

 

Figure 3. Expansion of test portion 

SP-creep test was conducted under the high temperature 

conditions as 898K and creep load conditions as 

108.3~173.3MPa. However, rupture stress and rupture time 

can’t be found directly in creep test for calculating the 

lethargy coefficient. Generally, rupture time and stress’s 

relation can be expressed tr=A-mt
 (A is constant) in the 

tensile creep test. We found the lethargy coefficient when it 

occurs similar result to creep life using these relationships. 

The SP-creep life is represented according to temperature 

and stress conditions in Table 6. 

Table 6. Results of creep test for X20CrMoV121 

Material Temperature (K) 

Actual 

stress 
(MPa) 

Experimental 

rupture time  
(hours) 

X20CrMoV121 
Steel 

898 

108.3 369.43 

130.0 128.00 

151.6 54.066 

173.3 18.914 

3. CREEP-FATIGUE LIFE MODEL 

Zhurkov drew the empirical fatigue life model under 

uniform stress and temperature conditions. This model is 

assumed that the failure occurs when the grid of atoms is 

removed from stable state. The probability which an atom is 

removed by thermal vibration for steady time from the 

position of grid is considered under the mentioned 

hypothesis. The static fatigue equation of Zhurkov is 

transformed into the relation of dynamic fatigue. The creep-

fatigue life model is represented as Equation (1). 

 0 ( )0
( )

0

1
L

U t

kT t

dt

t e




 

(1) 

Here, (t) and T(t) are stress and absolute temperature are 

changed with arbitrary time function respectively. U0 is 

internal energy; t0 is time constant as 10
-13

 sec and k is 

Boltzman constant.  is lethargy coefficient that the material 

characteristics are involved in accordance with defects and 

metallography.  
When creep and fatigue are respectively occurred, life can 
be obtained using general life model but it’s difficult to 
predict the life about occurring creep and fatigue 
concurrently. Generally, fatigue is generated by repeated 
load under uniform temperature. On the other hands, creep 
is occurred by the temperature effect under uniform stress. 
Therefore, when creep and fatigue is concurrently generated, 
we can consider the relation of stress (

1
ˆ cos t     ) 

and temperature (
2

ˆ cosT T T t  ) through transforming 
into time functions. Zhurkov’s creep-fatigue life model can 
be changed with this equation (2). Here,  and T  are mean 
stress and mean temperature respectively. ̂ and T̂ are the 
amplitude of alternate stress and alternate temperature, these 
parameters are substituted in Equation (1). It is represented 
as Equation (2). 

 0 1

2

ˆ(1 ( / )cos )0
ˆ(1 ( / )cos )

0

1
L

U t

kT T T t

dt

t e

   



 





 

               (2) 

However, equation (2) can’t be integrated directly, if ( T̂ /T
<< 1) equation changed as follows equation (3) 

 
1 2

0

ˆˆ
cos cos

0

0

1
1

T
t tL

kT kT T
U

kT

e e dt

t e

  
 





 

      (3) 
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Equation (3) can be changed as Equation (6) using Cauchy-

Schwarz inequality conditions as Equation (4) and the 

Bessel functions as Equation (5), 

 

1

22 2( ) ( ) ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx 

    
 

(4) 

 
2

1

cos

2 1 0( ) ( )
L

x x

L
e dx L L I x                (5) 

 

0

0

2 2

0 0

(0) 1

( ) / 2

(2 ) / 2 2 ( )

x

x

I

I x e x

I x e x I x x



 





 
 

 

0

1

2

0
0 0

0

ˆˆ1
2 2 1

U

kT

U T
L I I

kT kT T
t e



 



   
   

    
 

(6) 

Integrated life (L) equation can be derived as follows 

Equation (7). 

 

0

0

1

2

0
0 0

ˆˆ
2 2

U

kTt e
L

U T
I I

kT kT T



 







   
   

      

      (7) 

Fatigue and creep are respectively affected by stress and 
temperature. If fatigue will be occurred by alternate load 
under uniform temperature, T̂ is 0 and I0(0) = 1.  Therefore, 
fatigue life cycle (Lf) is following as Equation (8) (Yang et 
al., 1997).  
 

 

0

0

1

2

0

ˆ
2

U

kT

f

t e
L

I
kT



 







 
 
   

            (8) 

Equation (8) is represented as follows Equation (9) 
 

 

0 0

0 0

1 1

22 2
0 0

ˆ
  where, =

2 ( ( ) )

U U

kT kT

f

t e t e
L x

kT
I x I x x

 

 




 

                

0 0

0 0

0
0

( )
( )

U U

kT kTt e t e

I x
I

kT

 



 

               

(9) 

Finally, the fatigue life model is derived as follows Equation 
(10). 

0

0 ˆ

ˆ
2

U

kT

f

kT

e
L t

kT
e




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 
 
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 
 
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0

ˆ
2

U
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kT
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



  
 
   

            

(10) 

We have to consider the frequency of alternate stress. 
fatigue life cycle can be obtained by the multiplication of 
fatigue life (Lf) and frequency (f), N=Lf • f. We can predict 
the fatigue life cycle using Equation (11) (Yang et al., 1997; 
Park et al., 2011). 
 

 
0 ˆ( )

0

ˆ
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U
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kT
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



  
 
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(11) 

In case of creep life, alternate load is 0. Its life (Lc) can be 
derived from Equation (7) as follows Equation (12) (Yang et 
al., 1997). 
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Equation (12) is represented as follows Equation (13) 
0

0 0

1

2 2
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(13) 

 
The creep life model [Equation (14)] is also derived from 
Equation (13) using Bessel functions. 
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(14) 
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3.1. Creep-fatigue life using lethargy coefficient 

The lethargy coefficient is represented with defect constant 

of material characteristic; therefore, many tensile tests are 

needed to determine . In this study, determining γ, results 

from simple quasi static tensile-shear tests performed by 

Park et al. (1998) were used. We computed the lethargy 

coefficient and creep-fatigue life using the rupture stress and 

rupture time under uniform temperature and loading 

conditions. The lethargy coefficient can be obtained by 

using Equation (15) (Song et al., 2004). 

 0 (1 )
u

U
 


 

 

(15) 

Lethargy coefficient is proportional to the internal energy 

over the rupture stress and (1-.  is variable for 

calculating lethargy coefficient that is expressed as equation 

(16). 

Where, 

0

00

1
0

0

0 0

ln lnln

1

ln 1 ln

rr

r r

U tt

kT tt

U
Ut t

kT
t kT t




 
     

     
      

      
       

          

(16) 

3.2 Deterministic creep-fatigue life  

Deterministic creep-fatigue life were obtained using 

Zhurkov life model about HS40R and X20CrMoV121 

materials. Lethargy coefficient was calculated using 

constant and rupture parameters in Table 7 and Table 8. 

After that, fatigue life was predicted using Equation (11) in 

accordance with alternate stress conditions. We also 

estimated the creep rupture time using Equation (14) 

according to alternating temperature conditions. One can see 

that predicted life was approximately corresponded with 

experimental data. Predicted fatigue life cycle and creep 

rupture time are represented in the Table 8 and Table 9.  

 

Table 7. Constants for lethargy coefficient 

Material 

T 300K 

t0 10
-13

 sec 

k 0.008384 kJ/mole•k 

HS40R U0 418.4 kJ/mole 

X20CrMoV121 U0 344.4 kJ/mole 

 

Table 8. Results of fatigue life for HS40R (2 lap / 6kA) 
Rupture 

stress 

(MPa) 

Rupture 

time 

(sec) 

Lethargy 

coefficient 

(kJ/mole • mm2/N) 

Alternate 

stress 

(MPa) 

Predicted 

Fatigue life 

(Cycle) 

Experimental 

Fatigue life 

(Cycle) 

229.5 60.6 1.4501 

113.5 51929.0 52750.0 

112.5 163770 162440 

112.0 290840 291160 

111.7 410490 408190 

Table 9. Results of creep test for X20CrMoV121 

Temperature (K) 

Lethargy 

coefficient 

(kJ/mole • mm2/N) 

Actual 

stress 

(MPa) 

Predicted 

rupture time 

(Hours) 

Experimental 

rupture time 

(Hours) 

898 

0.1325 108.3 422.33 369.43 

0.1824 130.0 119.62 128.00 

0.2087 151.6 41.103 54.066 

0.2223 173.3 16.278 18.914 

4. BAYESIAN ESTIMATION OF LETHARGY COEFFICIENTS 

USING MARKOV CHAIN MONTE CARLO (MCMC) 

For estimation of the lethargy coefficient of Zhurkov creep-

fatigue model, Bayes’ rule is used as follows Equation (17) 

(Bayes, 1763). 

 ( | ) ( | ) ( )p L pθ y y θ θ  (17) 

Here, L(y|) is the likelihood of observed data y conditional 

on the given parameters , p(is the prior distribution of , 

and p(yis the posterior distribution of  conditional on y. 

The equation states that our degree of belief on the 

parameter  is expressed as posterior pdf in right of the 

given data y. As more data are provided, the posterior 

distribution is again used as a prior at the next step, and the 

values are update to more confident information. This is 

called Bayesian updating. The Procedure to obtain posterior 

distribution p(yconsists of proper definition of 

probability distribution for the likelihood and prior 

respectively (Leem et al., 2011). For estimating posterior 

distribution of the lethargy coefficient, Markov model is 

widely used in various fields in which sequence of the data 

is very meaningful. Markov chain consists of Markov model 

defines probability of posterior event given the prior events. 

The idea of MCMC basically the same as the Markov model 

in that it defines posterior position of the sampling point 

based on the prior information of the sampled points. Most 

important technique can be employed in MCMC, the 

Metropolis-Hastings (M-H) algorithm which is the most 

simplified MCMC method can be performed using Equation 

(18) by the following steps. 

 

1. Initialise x
(0)

 

2. For i = 0 to nm-1 

- Sample u ~ U[0,1] 

- Sample x* ~ q(x*| x
(i)

) 

  
* ( ) *

( ) *

( ) * ( )

( ) ( | )
if   < ,  min 1,  

( ) ( | )

i
i

i i

p x q x x
u A x x

p x q x x

 
  

 

             (18)             

x 
(i + 1) 

= x* 

else 

x 
(i + 1) 

= x
(i)
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In these steps, x0 is the initial value of an unknown 

parameter to estimate, nm is the number of iterations or 

samples, U is a uniform distribution, p(x) is the posterior 

distribution (target PDF), and q(x*|xi) is an arbitrary chosen 

proposal distribution which is used when a new sample x* is 

to be drawn conditional on the current point xi. Uniform or 

normal distribution at the current point is the most common 

choices for the proposal distribution. Success and failure of 

the algorithm significantly depends on a proper design of 

the proposal distribution. In order to illustrate this, a target 

distribution of x is considered (C. Andrieu et al, 2003). In 

this study, Bayesian method was employed for estimating 

the lethargy coefficient. Posterior distribution was also 

estimated through MCMC simulation assuming proposal 

distribution as normal distribution. The formulation of 

Bayes’ rule is represented as our engineering problem in 

Equation (19) and Equation (20). Likelihood function can be 

represented with Equation (21). It’s the observed life data of 

creep and fatigue life from Equation (11) and Equation (14) 

respectively. 

 ( | ) ( | ) ( )p N L N p  
 

(19) 

 
2

2
1

1 1
( | ) exp ( )

22

k
k

i i
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istdstd
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   
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(20) 

 
 

2

2
1

1 1
( | ) exp

22

k
k

i i

estimation actual

istdstd

L N N N
 

   
      

  


 

(21) 

With only 10,000 iterations, the sampling result follows the 

target distribution quite well. Estimated posterior 

distributions of lethargy coefficients were corresponded 

with actual lethargy coefficients as follows Figure 4 and 

Figure 5. 

  

  
Figure 4. Posterior distribution of   (Fatigue life) 

 

  

  
Figure 5. Posterior distribution of   (Creep life at 898K) 

5. RESULTS OF PROBABILISTIC CREEP-FATIGUE LIFE 

The probability density function (pdf) distributions of creep-

fatigue life were predicted using estimated the lethargy 

coefficient by MCMC simulation. In case of fatigue life, the 

pdf distributions were predicted according to alternate stress 

at room temperature (300K). Results are corresponded with 

actual life cycle. In addition, the pdf of creep life was 

estimated in accordance with alternate stress at 898K. The 

results also agreed with actual life time. The pdf of 

estimated fatigue life is shown as narrow deviations because 

lethargy coefficient is identical according to alternate stress. 

However, in creep model is different to lethargy coefficients 

according to alternate stress at the high temperature. Thus, 

the pdf of creep life is relatively shown as high deviations. 

  

  
Figure 7. The probabilistic fatigue life 
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Figure 8. The probabilistic creep life at 898K 

6. CONCLUSIONS 

Zhurkov life model based on probabilistic creep-fatigue life 

models is derived under the cyclic stress and temperature. 

Lethargy coefficients were calculated using experimental 

data of rupture stress and time. Using this parameter, the life 

model was deterministically validated with actual life data. 

For considering the inherent uncertainty of lethargy 

coefficient of life models, the degree of belief on the model 

parameters is expressed through a posterior probability 

distribution in light of the observed data combined with the 

prior knowledge. Bayesian inference manner was employed 

and its coefficient was also estimated using MCMC which 

is used to obtain the posterior predictive distribution. One 

can see that estimated posterior distributions are 

corresponded with experimental data. As a result of 

probabilistic creep-fatigue life using estimated the lethargy 

coefficient is satisfied with actual value. From this result, 

Bayesian approach is proved to be useful means for the 

uncertainty quantification of the unknown parameters in the 

practical engineering problem. This manner is also useful in 

the field of prognostics. 
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NOMENCLATURE 

 Lethargy coefficient (kJ/mole • mm
2
/N) 

k Boltzman constant (kJ/mole • K) 

 Stress (MPa) 

std Standard deviation 

t Tensile stress (MPa) 

y Yield stress (MPa) 

 r Rupture stress (MPa) 

   Mean stress (MPa) 

̂  Alternating stress (MPa) 

f Frequency (Hz) 

I0 Bessel function 

L Life time (sec) 

N Life cycle (cycle) 

t Time (sec) 

t0 Life coefficient (sec) 

tr Rupture time (sec) 

T Absolute temperature (K) 

U0 Internal energy (kJ/mole) 

 Probabilistic parameter 

L(y|) Likelihood function 

p(y Posterior distribution 

p( Prior distribution 

q(x Marginal  probability density function 

 

REFERENCES 

C. Andrieu, N. D. Freitas, A. Doucet & M. Jordan (2003). 

An introduction to MCMC for Machine Learning, 

Machine Learning. vol. 50, pp. 5-43. 

X. Guan, R. Jha, & Y. Liu (2010). Trans-dimensional 

MCMC for fatigue prognosis model determination 

updating and averaging. Annual Conference of the 

Prognostics and Health Management Society. October 

10-16, Portland, Oregon. 

J.-H. Choi, D. An, J. Gang, J. Joo & N. H. Kim (2011). 

Bayesian Approach for Parameter Estimation in the 

Structural Analysis and Prognosis. Annual Conference 

of the Prognostics and Health Management Society. 

September 25-29 Montreal, Quebec, Canada. 

X. Guan, Y. Liu, R. Jha, A. Saxena, J. Celaya, & K. Geobel 

(2011). Comparison of Two Probabilistic Fatigue 

Damage Assessment Approaches Using Prognostic 

Performance Metrics. International Journal of 

Prognostics and Health Management, vol.2, pp.1-11. 

S. Sankararaman, Y. Ling, C. Shantz & S, Mahadevan 

(2011). Uncertainty Quantification in Fatigue Crack 

Growth Prognosis. International Journal of Prognostics 

and Health Management, vol.2, pp. 1-15. 

F. Ibisoglu & M. Modarres (2015). Probabilistic Life 

Models for Steel Structures Subject to Creep-Fatigue 

Damege. International Journal of Prognostics and 

Health Managements, vol. 6, pp. 1-12. 

S. N. Zhurkov, (1965). Kinetic Concept of The Strength of 

Solid. International Journal of Fracture Mechanics, 

vol.1, no. 4, pp. 311-322 

S. M. Yang, H. Y. Kang, J. H. Song, S. J. Kwon, H. S. Kim, 

(1997). Failure life prediction by simple tensile test 

under dynamic load. International Conference on 

Fracture 9. November Sydney, Australia. 

J. E. Park, S. M. Yang, J. H. Han & H. S. Yu (2011). Creep-

Fatigue Design with Various Stress and Temperature 

Conditions on the Basis of Lethargy Coefficient. 
Korean Society of Mechanical Engineers, vol.3, pp. 

157-162. 

S. R. Sin, S. M. Yang, H. S. Yu, C. W. Kim & H. Y. Kang 

(2007). Fatigue Analysis of Multi-Lap Spot Welding of 

High Strength Steel by Quasi Static Tensile-Shear Test. 

Engineering Material, vol. 345-346, pp. 251-254. 

INSTRON 8516, Instron Corporation, Norwood, MA. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

8 

KS B 0850, (2011). Korean Standards Information Center, 

Korean Industrial Standard, Seoul. Republic Of Korea. 

J. M. Park, J. H. Song, H. Y. Kang, S. M. Yang (1998).  
Prediction of life of SAPH45 steel with measured 

fracture time and strength. Korean Society of 

Manufacturing Technology Engineers, pp. 269~273 

J. H. Song, H. G. Noh, H. S. Yu, H. Y. Kang, & S. M. Yang 

(2004). Estimation of fatigue Life by lethargy 

coefficient using molecular dynamic simulation. 

International journal of automotive technology, 

vol.5(3), pp.215-219 

S. H. Leem, D. An, S. Ko, & J.-H. Choi (2011). A Study on 

the parameter estimation for crack growth prediction 

under variable amplitude loading. Annual Conference 

of the Prognostics and Health Management Society. 

September 25-29 Montreal, Quebec, Canada. 

 

BIOGRAPHIES 

Jaehyeok Doh received M.S. in Mechanical Engineering at 

Kyungpook National University, Korea in 2013. He is a Ph. 

D. student in Mechanical Engineering at Yonsei University. 

His research interests are on the field of structural analysis, 

finite element method, probabilistic design optimization and 

PHM 

 

Jongsoo Lee received B.S. in Mechanical Engineering at 

Yonsei University, Korea in 1988 and Ph.D. in Mechanical 

Engineering at Rensselaer Polytechnic Institute, Troy, NY 

in 1996. After a research associate at Rensselaer Rotorcraft 

Technology Center, he is a professor of Mechanical 

Engineering at Yonsei University. His research interests 

include multidisciplinary/multi-physics/multi-scale design 

optimization and reliability-based robust engineering design 

with applications to structures, structural dynamics, fluid- 

structure interactions and flow induced noise and vibration 

problems. 


