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ABSTRACT

In modern preventive maintenance, time-based management
is still the mainstream approach. This strategy continues to
be the preferred choice to manage the risk of equipment fail-
ure when other alternatives, such as condition-based manage-
ment, are technically or economically unfeasible. In this pa-
per we propose a novel approach to time-based maintenance
based on (linear) regressive Support Vector Machines (SVM).
In the proposed model, expected lifetime is estimated based
on the equipment past failure times combined with the main-
tenance history of similar components. Time series analy-
sis combined with outlier detection techniques and concepts
from technical analysis, such as resistance and support levels,
are used to establish the SVM model prediction bounds. The
proposed SVM model is compared with the traditional ap-
proach to time-based maintenance — life usage modeling —
and the autoregressive moving average (ARMA) forecasting
method. Results are shown on an industrial case study of data
describing the maintenance life-cycle of a critical component
of the aircraft bleed air system. Results suggest that the SVM
model can outperform the other tested approaches both in re-
gards to the squared, percentage and absolute errors.

1. INTRODUCTION

Time-based maintenance (TBM), also termed periodic-based
maintenance, is a traditional technique used in maintenance
and repair operations (MRO). In TBM, maintenance deci-
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sions (e.g., preventive hard time intervals) are determined
based on the analysis of past failure times (Ahmad & Ka-
maruddin, 2012). In this kind of approach, usually termed life
usage (LU), the expected lifetime, 7', of the equipment is es-
timated based on reliability data. Estimates of T" are derived
by fitting the data to a statistical distribution of failure rate
over time. Here, the distribution of Exponential and Weibull
tend to be the preferred choices.

Despite its widespread use, the strategy of TBM is often seen
as a not so effective means of identifying when components
will require a corrective intervention (Ahmad & Kamarud-
din, 2012). Since this methodology determines MRO hard
intervals based on the analysis of the statistics probability
alone, TBM tends to disregard several aspects of mainte-
nance, such as the specificity of the individual system — the
within-component pattern of failure, as well as other relevant
patterns related to the equipment lifecycle evolution, such as
the assumption of mean reversion or jump probability (Xu &
Perron, 2014).

In view of TBM limitations and as noted by Wang (2012),
time-based maintenance could make use of more advanced
models and methodologies. These, based on equipment usage
and failure times, could more accurately predict and manage
asset lifetime requirements compared to traditional life usage
(LU) methods. More accurate models could be of use in di-
verse situations. First, a higher level of reliability is needed
when it is necessary to recommend repair interventions based
on past failure times alone, such as when information col-
lected though condition monitoring is not yet available or too
difficult/ impracticable to obtain. Also, time-based methods
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can be combined with advanced techniques and sensory real-
time information to optimize condition-based maintenance
(CBM), that is, maintenance based on the real-time assess-
ment of the equipment health status (Brotherton, Jahns, Ja-
cobs, & Wroblewski, 2000).

Data-driven techniques have recently become a popular ap-
proach to aircraft prognostics due to their ease of use and pre-
dictive power (Schwabacher, 2005). These techniques consist
in the use of non-parametric modeling methods, which rely
on past data and advanced statistics to derive estimates on the
reliability of mechanical components. This paper proposes
a data-driven approach to time-based maintenance based on
(linear) regressive Support Vector Machines (SVM). This
data-driven technique was considered suitable given its sev-
eral advantages, such as its generalization ability and its guar-
anteeing of global minima for given training data (Widodo &
Yang, 2007).

The SVM approach is tested on a real industrial case involv-
ing a two-valve system of the aircraft bleed air system. Air
bleed valves are a critical component of the aircraft as they
regulate bleed air exiting the engine pylon for use throughout
the aircraft. The well functioning of these kind of compo-
nents is key to prevent unexpected and unwanted operational
anomalies.

Relevant literature on the past use of the SVM approach to
this type of problem includes the work of de Pddua Moreira
and Nascimento (2012). In this study, a SVM classification
algorithm is proposed to estimate the remaining useful life of
an aircraft bleed valve based on maintenance and condition-
based data.

In our comparative study, the baseline model used is a
Weibull life usage (LU) estimated using Maximum Likeli-
hood Estimation (MLE). In addition to the LU, the proposed
model is also compared with the autoregressive moving av-
erage (ARMA) forecasting approach. The novelty of our
work is the application of regressive Support Vector Ma-
chines (SVM) to a (novel) forecasting parameter that com-
bines time series statistical analysis, unsupervised techniques
of outlier detection, and concepts from technical analysis
such as support and resistance levels.

The remaining of the paper is organized as follows. Section
2 reviews the theoretical background of this study. Section 3
describe the data set, methodology and modeling approaches.
Section 4 presents and discusses the results. To conclude,
Section 5 summarizes the paper and outlines future research
directions.

2. THEORETICAL BACKGROUND
2.1. Life Usage (LLU) Model

Reliability theory tends to recommend that, unless strong
evidence of failure times following another distribution, the
Weibull distribution should be used as the preferred method to
model technical failure, especially for samples with less than
20 observations (Liu, 1997). Here, removals are fit and mod-
eled to a statistical distribution such as exponential, Weibull
or lognormal.

Weibull distributions come in two and three-parameter vari-
ants. The three parameter Weibull Probability Density Func-
tion (PDF) and Cumulative Distribution Function (CDF) and
the Failure Rate Function (FRF) are defined as:

8(=) ()" t>0
t)=<K a\ « -7 1
Jr(t) {0 £<0, (1
1—e 57 >0,
Fr(t) = {O P
B—1
he(t) = 2 (t) 3)
« «

where [ is the shape parameter (or slope), « is the scale pa-
rameter (or characteristic life) and ~ is the location parameter
(or failure free time). The two parameter Weibull distribu-
tion is obtained when ~ is set to zero. In most cases, this two
parameter description is sufficient.

Weibull is a flexible distribution as by changing the shape pa-
rameter, (3, it can approximate the form of other probability
distributions such as the exponential (5 = 1) or the Rayleigh
distribution (8 = 2 and a = v/20). Figure 1 illustrates exam-
ples of Weibull distributions with distinct shape parameters.

As indicated in the plots of Figure 1, Weibull distributions
with 8 < 1 have a failure rate that decreases with time, also
known as infantile or early-life failures. Weibull distributions
with /3 close to or equal to 1 have a fairly constant failure rate,
indicative of the useful life with random failures. Weibull
distributions with S > 1 have a failure rate that increases
with time, also known as wear-out failures. These comprise
the three sections of the classic “bathtub curve” (see Figure
2).

The Weibull scale parameter is another important parameter,
as it determines the device characteristic life, that is, the age
at which 63.2 [%] of the equipment will have probably al-
ready failed. A larger scale parameter is desirable as an in-
dicative of a better durability for the device.
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Figure 1. Weibull distribution functions for distinct shape pa-
rameters (). By changing the shape parameter, the Weibull
function can approximate the form of distributions such as the
Exponential (8 = 1) or Normal (8 = 10, 8 = 2.5).
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Figure 2. Typical failure curve (bathtub curve). The bathtub
curve’ hazard function is a combination of a stage of early
failure (I), a constant stage of random failure (II) and a stage
of wear-out failure (III).

2.2. Box-Jenkins  Autoregressive
(ARMA) Models)

Moving Average

ARMA, or also called Box-Jenkins methodology, stands for
Autoregressive Moving Average models. This methodology
consists in projecting the future values of a univariate (sin-
gle vector) time series based on its past history. It attempts
to capture a time series using autoregressive (AR) and mov-
ing average (MA) parameters. Formal definition of ARMA
follows.

Given a series of data points 7; where ¢ € N is the time index
and T; € R, then an ARMA(p,q) model is given by:

P q
j=1 Jj=1

where L is the lag operator, the «; are the AR parameters, the

0; are the MA parameters and the ¢; are error terms. Please
note that p and ¢ refers to the number of AR and MA terms,
respectively.

2.3. (Regressive) Support Vector Machines (SVM)

Support Vector Machines (SVM) is a supervised learning
technique developed at AT&T Bell Laboratories in the early
nineties (Boser, Guyon, & Vapnik, 1992). As in other ma-
chine learning methods, the SVM assumes a set of training
data {(Z1,vy1),...,(Z1,y)} € X x R where X denotes the
space of input features, R”V. The goal is to learn a model of
how the target variable y C R changes with the inputs £ C X
in order to make accurate predictions of y based on the future
values of . Accuracy here is defined as a function f that
has at most an ¢ deviation from targets y; in the training data.
Prediction is based on a function f(x) : X — R defined over
the input space X where SVM learning is used to infer the
parameters of this function. Generally, for linear SVM, this
function takes the form:

f(@w) =(w, @) +b,be R (5)

where (-,-) denotes the dot product and w =

(wo, w1, ...,wn)7T is a weight vector.

This problem can be written as a convex optimization prob-
lem:

1
minimize 3 [|w]|?

yi —(w, ;) —b<e

(w,x;)) +b—y; <e ©

subject to {

Figure 3 illustrates an example of a SVM linear regression.
In the figure, the straight line depicts the fitted f(Z, w) =
mz + b. The f function minimizes the error ¢ creating an
epsilon margin around the linear function f.

Slack variables &;, & are included in the above equations (6)
when the optimization problem is unfeasible, that is, when the
data is not (linearly) separable (Smola & Scholkopf, 2004). In
this case, the slack variables help determine the penalty im-
posed on the observations that lie outside the epsilon margin
(¢) and help to prevent model over-fitting. They control the
trade-off between the flatness of the linear function and the
deviations larger than €.

In Figure 3, it can be seen how function f minimizes the er-
ror £ and penalizes the deviations, that is, the training data
points shown as black star symbols, from this margin in a lin-
ear fashion creating a ‘soft margin’. This soft margin concept
is aimed at extending the SVM algorithm so that the hyper-
plane allows a few noisy data to exist.
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Figure 3. Convex optimization problem of support vector re-
gression (primal formulation). Support Vector Machines can
be applied not only to classification but also to regression
problems. Still, this technique contains the main features that
characterize a maximum margin algorithm.

3. MODEL

In this section the data set used to evaluate the modeling ap-
proaches is described, as well as the implementation of each
approach and methodology.

3.1. Aircraft Bleed Air System

Aircraft engine bleed-air system is of vital importance con-
cerning flight safety and ground operations. The bleed system
main functions include air conditioning and cabin pressuriza-
tion. Its operation is carried out by a set of numerous air flow
and temperature pneumatic or electrical switches and valves.
Figure 4 illustrates the schematics of the bleed system studied
in this work. In orange is the component of interest.

The bleed system is periodically maintained in order to insure
safe and optimum system performance. Typical maintenance
involves having the aircraft brought into a hangar and having
the most critical components being subject to a removal. Here
by removal we mean a maintenance and repair action where
the equipment is removed from the aircraft and restored to its
original condition or it is replaced by a new/repaired unit.

3.2. Data

The used data set reports on the removals of a set of two crit-
ical valves from the aircraft bleed air system. Please note
that our original data set was submitted to a cleaning proce-
dure: the techniques of Tukey’s boxplot (Tukey, 1977) and
Medcouple-based outlier detection method (Brys, Hubert, &
Struyf, 2004) were used to detect outliers: removals with
extremely long or short lasting times between repairs were
considered outliers and removed from the sample. Also,
components with a non-representative number of removals
(< 10) were disregarded. After cleaning, the data set com-
prised information on 485 removals of 24 aircraft (average
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Figure 4. Schematics of the studied engine bleed system. The
valve of interest is marked in light orange. The valve is lo-
cated on the top of the thermostat bypass pipe/heater pipe as-
sembly. To bleed, the valve is opened while the engine is
running until all air has bled from the cooling system.

of 19.20 4 6.51 removals per aircraft) — removals recorded
during six years, between January 2010 and June 2015'.

3.3. Modeling Approaches

In this study three modeling approaches were analyzed: life
usage (LU), auto-regressive moving average (ARMA) and
(regressive) support vector machines (SVM). In this section
we detail each of these. Please refer to Table 1 for a summary
and comparison of these approaches.

The life usage (LU) approach consisted in applying the
Weibull-Pareto distribution to the data set of N removal times
{T;}~.,. To evaluate this approach, we used 10-fold cross-
validation. Here, we divided the original data set {7T;},
with N observations in k£ = 10 equal sized samples. Of the
10 samples, a single sample of data was used as the testing
set and the remaining 9 samples were used as training data.

The auto-regressive moving average (ARMA) approach con-
sisted on an ARMA(p, q=0) model.We chose p to be the num-
ber of total past observations at time index ¢ (i — 1 observa-
tions). This way, the model was able to compute the next
removal time as an function of past removal times. For sim-
plicity, the moving average (MA) terms were not considered.

As the validation method for the ARMA approach we used
the forecast evaluation with a rolling origin (Bergmeir &
Benitez, 2012):

1. Suppose there are N observations,

Ti,..., Ty for aircraft j.
2. Let observation T; form the test set and fit the ARMA

independent

!For a more detailed description on the data cleaning process please refer to
(Baptista et al., 2016).
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usage modeling (LU), ARMA forecasting and regression support machines.

SVM requires a considerable set of data while LU can provide good estimates for less than
20 observations. ARMA requires a considerable number of observations of same and similar

As life usage (LU) is based on the characteristic life « of the Weibull distribution it has more
difficulty in generalizing to unseen data points. The data-driven approach of SVM is well
known for generalizing well to unseen data while the the ARMA by the use of mean and
outlier detection methods also adapts fairly well to distinct patterns from the training set.

SVM has the worst performance of the three analyzed approaches. The solving of the opti-
mization problem of SVM uses more time than the algorithm of ARMA or the simple solution

The data-driven SVM provides a less intuitive solution than the ARMA or the Weibull model.
The hyper-plane provided by this solution is more difficult to understand than the point esti-
mates of the ARMA model and the characteristic life measurement of LU.

The data-driven SVM and ARMA have high implementation costs compared to the LU model.

Dimension Life Usage (LU) ARMA  SVM  Description
Sample Size * % % K% *

component.
Generalization Hok * ok
Performance * ok k Kk *

of LU.
Simplicity * %k ¥ *ok *
Cost * ok k ok *

Note: we evaluate each studied approach — LU, ARMA and SVM, according to five criteria: sample size, generalization (ability to generalize to unseen

data points), performance (processing time), implementation cost and simplicity. In regards to evaluation, * * * stands for best performance and * for

worst performance on criteria.

model to the remaining p = ¢ — 1 past values
Ty, ...,T;_1. Estimate the future T; value.

3. Compute the residual T — T;. Apply statistics of Table
2. Repeat step 1 for aircraft j = 1,..., M.

The SVM model consisted on an univariate (linear) regres-
sive SVM (please see a description of the SVM technique in
Section 2.3). We choose to construct a univariate instead of
a multivariate model to reduce complexity and also process-
ing time. A model with less features is faster to construct and
hence easier to sophisticate, eventually with health monitor-
ing variables. A univariate model is also easier to interpret.

The (novel) SVM predictor d;; for time index 7 and aircraft j
is calculated as follows:

1

i=(—————)x2-1 7
e (1 +ewp(—pij)> ' @

1—1

_ T

T;; = Z;”%ll ®)
dij = wi Ty + (1= wig) (Y Tom) ©)

mtj

where p;; is the number of past removals of aircraft j at time
index i. Here, T;; stands for the mean of past removal times
for aircraft j at time index % and w;; is the weight associated
to this factor. Seemingly, )" +; Tim stands for the mean of
past removal times for all aircraft except j at time index 1.
Seemingly, 1 — wy; is the weight associated to this factor.

The SVM predictor d;; weights the past removal times of air-
craft component j at time index ¢ against the removal times
all the other similar equipment. Here, weight given to the
aircraft removal history (w;;) depends on the number of past

removals (7 — 1).

Figure 5 shows how the weight of past removals increases as

1.0
|
|

0.7 0.8 0.9
|

Weight of aircraft past remavals (w;)
0.6

0.5

T T
5 10 15 20
Number of aircraft past removals (p;)

Figure 5. Weight function (7) of the (novel) univariate pre-
dictor of the SVM model. The weight function measures the
importance of the component past removal times against that
of other aircraft. To compute this function an exponential
construction was used to capture the weight exponential rise.

the number of past removals grows (7). For i — 1 = 1, the
same importance is given to the aircraft and to similar aircraft.
For i —1 = 2 this importance grows to around 0.7. From the 5
removals the most prevalent factor is the aircraft own history.

Please note that prior to the computation of factors 7; and
Yom £ Tim, an outlier detection algorithm was applied to
each set of past removals. The goal here was to disregard
abnormal past removal times from calculation: long or short
removals were identified and ignored for each time index
. Outlier detection was based on the standard boxplot rule
(Williamson, Parker, & Kendrick, 1989), taking into account
only the nominal data range:

[Qle* IQD, Q3 + ¢+ IQD] (10)
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Figure 6. SVM predictor (d;; (in black solid line) for dif-
ferent aircraft timelines. Support and resistance are shown
as dashed lines (red and green lines). Dark circles represent
removals with time index ¢ on the x-axis and 7; on the y-axis.

where Q1 and Q3 represent the lower and upper quartiles,
respectively, of the data distribution. 1QD = Q3 — Q1 is
the interquartile distance, a measure of the spread of the data
similar to the standard deviation. The threshold parameter c
used is set as the value most commonly used in this outlier
detection rule (¢ = 1.5).

The predictor d;; attempts to capture the removal trend. Fig-
ure 6 shows this index tends to provide moderately good esti-
mates: each plot in the Figure shows the successive removals
of an aircraft as white circles. Time index ¢ is presented on
the x-axis while the observed removal time value T;; is on the
y-axis.

In Figure 6, two dashed lines are also shown. These lower
and upper lines correspond to the support (s;;) and resistance
levels (r;;), that is the minimum past removal time and the
maximum past removal time seen to date. These concepts
borrowed from technical analysis and stock trade (Edwards,
Magee, & Bassetti, 2007) allow us to set reasonable bound-
aries for the d;; values.

Using the boundary values of support and resistance levels

it is assumed the removal time d;; does not go above maxi-
mum removal time (resistance) or below minimum removal
time (support). Please note that in the computation of these
thresholds we also use the boxplot outlier detection method.

3.4. Methodology

In this study we used the comparative research method to test
our main hypothesis:

H1: Predictive time-based Support Vector Ma-
chines (SVM) models can outperform traditional
prognostics models based on statistical techniques
(Weibull analysis) and forecasting techniques
(ARMA model).

To test this hypothesis, the three modeling approaches previ-
ously described were compared:

o Life Usage (LU) (baseline): the calculation of the life of
the equipment is based on a Weibull distribution.

e Auto-regressive Moving Average (ARMA): an ARMA
model is used to predict the future life of the equipment
based on past reliability time series (removal history).

e Support Vector Machine (SVM): a linear SVM model
is constructed from a degradation index. This ap-
proach is distinct from the previous as it is data-driven
(Schwabacher, 2005), meaning it is mostly focused on
the information (data) making no a-priori assumptions
on the data relations (Si, Wang, Hu, & Zhou, 2011).

In this study the target variable was the future life of
the equipment at time index ¢ (7;). Model accuracy was
evaluated and compared in terms of mean absolute error
(MAE), mean-square (MSE), mean absolute percentage error
(MAPE), root-mean-square (RMSE), and mean error (ME)
which is also designated mean bias. Table 2 details the used
metrics.

4. RESULTS

The accuracy and performance results of the comparative re-
search study are shown in Table 3. Here, the absolute (MAE),
mean (ME) square errors (RMSE) are important metrics as
they report how much the model predictions deviated from
reality in absolute terms.

The mean error (ME) of the Life Usage (LU), ARMA and
SVM models indicate the forecasts do not tend to be inher-
ently biased — i.e., they are not (on average) disproportion-
ately positive or negative. This can also be observed in the
third column of Figure 7. Here, for each approach, the resid-
uals of each aircraft are shown. As illustrated, the residu-
als of the SVM approach do not exhibit substantial bias even
tough there is a tendency towards towards over-prediction
(ME=31.85 days).

Regarding the Mean Absolute Error (MAE), the SVM model
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Figure 7. Model validation graphs. Top to bottom plots: comparison of Life Usage (LU), ARMA and SVM models. Left to right
plots: a,d,g) Fitted values vs residuals (homoscedasticity), b,e,h) Histogram of the residuals (normality) and c,f,i) Boxplot of
residuals per aircraft. The first set of plots examine how each of the approaches were able to generate homoscedastic residuals,
that is, residuals are approximately equal for all predicted values. The second set of plots analyze residuals normality. Finally,
the final plots exhibit residual distribution per aircraft.

Table 2. Performance metrics used in comparative study.

Metric Abbr Formula
1N
Mean error ME N ;(Tl T:)
N
Mean squared error (days) MSE i Z <T - T )2
N — 2 7
1SN 2
Root mean squared error (days) RMSE N Z (Tl - Ti)
i=1
1 [ —T;
Mean absolute percentage error (%) MAPE — — Z
N~ T;
N
1 .
Mean absolute error (days) MAE ~ Z T, —T;
i=1
Note: N stands for number of observations in testing set. For each

observation T; at time index ¢, the model outputs the Ti prediction.
Here, variable T; means equipment life or, the removal time value at

time index 1.

presented the best results with an error of 61.90 days against
the results of 68.91 and 66.20 days of the LU and ARMA

models. Please note that this difference of 7 (SVM vs LU)
and 4 days (SVM vs ARMA) is significant in the context
of (aeronautics) maintenance planning for the long run. In
percentage terms, this result represented an improvement of
around 10 and 6% in predictive accuracy. The Mean Percent-
age Error (MAPE) of the model also showed a considerable
improvement compared to the other approaches.

Regarding the Root Mean Squared Error (RMSE), the three
models had comparable results (third line of Table 3). As

Table 3. Accuracy and performance results.

Metric [Life Usage (LU)[ARMA [SVM
MAE (days)[68.91 66.20 61.90
ME (days) |1.42 -18.86 31.85
MSE 9524.40 10279.02 9540.49
RMSE 97.59 101.39 97.67
MAPE 556.76 417.74 332.12
Time (s) 0.14 0.35 15.34

* Time stands for processing time (seconds), ME for Mean Error (days) where
ME = mean(simulated - observed), MAPE for Mean Absolute Percentage Error
(MAPE), MAE for Mean Absolute Error (days) and RMSE for Root Squared
Mean Error.
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a measure of the model error standard deviation, this result
suggests the prediction errors of the tested models vary in the
same magnitude.

Regarding computational performance, the life usage (LU)
model exhibited the best results — 0.14s vs the 0.35s of the
ARMA model and the 15.34s of the Linear SVM model.
However, overall, all models exhibited a reasonable perfor-
mance given that these were time-based models processing
N=485 removals.

We present a residual analysis for the three compared ap-
proaches in Figure 7. Here, the residuals of each prediction
model are computed as the difference between the fitted val-
ues and the actual values: e; = T; — T;. In Figure 7, three
plots are shown for each model with LU on top, ARMA mid-
dle and SVM in the bottom row.

From left to right, the first charts of Figure compare the model
fitted values against the corresponding residuals. These plots
should by definition, show no clear pattern — if no pattern is
observed, there is “homoscedasticity” in the residuals, mean-
ing modeling errors are uncorrelated and uniform (Cook &
Weisberg, 1982). An observation of the first column of Fig-
ure 7 shows that the best models in this dimension are the
ARMA and SVM models. While residuals of the LU model
are projected along the 10 vertical lines corresponding to the
characteristic lives of the 10-fold Weibull distributions, the
residuals of the ARMA and SVM model are more scattered
along the x-y plane.

Even though it is not essential for forecasting that residuals
are normally distributed (Cook & Weisberg, 1982), this is a
positive trait, as it facilitates the calculation of prediction in-
tervals. Here, the ARMA model provide stronger evidence
to hold the assumption of normality than the LU model, as
shown in the second-column charts of Figure 7.

All the studied models had residuals that seemed to be
slightly negatively skewed, even though this tendency was
more pronounced in the ARMA model. This is not surpris-
ing, as the ARMA model outputs predictions based on a data
set of past removals which may include outlier data, that is,
extremely long or short past removals. The SVM model in
contrast, by its technical construction and due to its specific
degradation index, can deal better with this kind of problem.

Comparing the SVM and the ARMA model in regards to
residual distribution per aircraft (Figures 7f and 7i), both
have comparable results in regards to their under-predictions
(residuals below zero) even though the ARMA model ap-
pears to be slightly better. In contrast and in regards to over-
prediction errors, the SVM model is better than ARMA.

In conclusion, and disregarding the inferior computational
performance, the results obtained in this case study (show in
Table 3) appear to suggest that the SVM model has a better

accuracy performance than the contrasting LU and ARMA
models. Accordingly, we conclude there is sufficient evi-
dence to support hypothesis H1 (Section 3.4).

5. CONCLUSION

For most industrial and commercial equipment, time-based
maintenance continues to be a dominant maintenance policy,
as it is a strategy easy to implement and the technology in-
volved is not as costly as in condition-monitored policies. It is
often the preferred solution for systems with a minimal vari-
ation in usage and when the associated degradation process
varies proportionally with time.

In this paper, we proposed a new type of prognostics model
for improved time-based maintenance. Based on a data set of
cross-sectional time series of past maintenance actions, the
model used several techniques to compose a degradation in-
dex that was then combined into a linear Support Vector Ma-
chines (SVM) model. The novelty of our work lies on the use
of a new data-driven technique, not usually applied in time-
based maintenance, and the construction of the degradation
index using a set of techniques from statistics, technical anal-
ysis and outlier detection.

On this comparative case study, it was shown that the pro-
posed SVM model could provide significantly better esti-
mates for the next maintenance event than traditional time-
based maintenance models. Also, the proposed model out-
performed, in most metrics, an ARMA model, a traditional
forecasting technique.

Overall, our results suggested time-based maintenance may
be enhanced by the use of data-driven modeling. As future re-
search, we intend to explore other data-driven techniques for
time-based maintenance. Concretely, we are interested in the
study of how to deal with prediction uncertainty in this kind
of time-based models, using for instance, techniques such as
Relevance Vector Machines (RVMs) and Bayesian Models
(BM), that is, techniques which can provide probabilistic so-
lutions for regressive prognostics.
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NOMENCLATURE

Most relevant nomenclature used in paper follows.

T Remaining time to removal

MRO Maintenance and Repair Operations
HM Health Monitoring

PHM Prognostics and Health Monitoring

PDF Probability Density Function

CDF Cumulative Distribution Function

RUL Remaining useful life

SVM Support Vector Machines

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

RMSE  Root Mean Squared Error

MFE Mean Error (Standard Error)
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