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ABSTRACT

In this paper, we propose a mixed method for analyzing
telemetry data from a robotic space mission. The idea is
to first apply unsupervised learning methods to the teleme-
try data divided into temporal segments. The large clusters
that ensue typically represent the nominal operations of the
spacecraft and are not of interest from an anomaly detection
viewpoint. However, the smaller clusters and outliers that re-
sult from this analysis may represent specialized modes of
operation, e.g., conduct of a specialized experiment on board
the spacecraft, or they may represent true anomalous or unex-
pected behaviors. To differentiate between specialized modes
and anomalies, we employ a supervised method of consult-
ing human mission experts in the approach presented in this
paper. Our longer term goal is to develop more automated
methods for detecting anomalies in time series data, and once
anomalies are identified, use feature selection methods to
build online detectors that can be used in future missions, thus
contributing to making operations more effective and improv-
ing overall safety of the mission.

1. INTRODUCTION

As engineered systems have become more complex, and in-
clude a range of operations that vary widely, self-monitoring,
self-diagnosis, and adaptability to maintain operability and
safety have become focus areas for research and develop-
ment. Typical goals of such self-diagnosis approaches are
the detection and isolation of faults and anomalies, identify-
ing and analyzing the effects of degradation and wear, and
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providing fault-tolerant and fault-adaptive control (Blanke &
Schröder, 2006; Chen & Patton, 2012; Isermann, 2005; Ji,
Zhang, Biswas, & Sarkar, 2003; Noura, Theilliol, Ponsart,
& Chamseddine, 2009). The majority of projects dealing
with monitoring and diagnosis applications rely on models
created using physical principles or by human experts. How-
ever, these models are not always available, and are often in-
complete, and sometimes erroneous. Moreover, it is hard to
maintain the effectiveness of these models during a systems
life-cycle.

More recently, promising data-driven alternatives that exploit
the large amounts of operational data collected from these
systems are being employed to better understand system be-
haviors and anomalies during system operations (Qin, 2012;
Yin, Ding, Xie, & Luo, 2014). In data-driven approaches,
monitoring and diagnosis knowledge can be learned by ob-
serving and analyzing system behavior (Mack, Biswas, Kout-
soukos, & Mylaraswamy, 2016, in press). This large amount
of data collected using new, more robust sensors and sen-
sor networks, can be exploited in a reliable manner for the
purpose of detecting and analyzing anomalous situations and
faults in these large and complex systems. The vision is de-
veloping Cyber Physical Systems (CPSs) (Lee, 2008; Mar-
wedel, 2010; Niggemann et al., 2015) that can observe their
own behavior, recognize unusual situations during opera-
tions, and inform operators, who use this this information
to modify system operations, or plan for repair and mainte-
nance. Furthermore, system’s experts and engineers can use
the information gleaned from this data to update operations
procedures and even redesign the system.

In this paper, we take on the challenges of developing an
anomaly detection scheme for analyzing telemetry data gen-
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erated by NASA’s Lunar Atmosphere and Dust Environment
Explorer (LADEE) spacecraft1. LADEE was a robotic mis-
sion that orbited the moon to gather detailed information
about the structure and composition of the thin lunar atmo-
sphere, and determine whether dust is lofted into the lunar
sky. The LADEE spacecraft’s modular common spacecraft
bus, or body, designed, developed, and operated by NASA’s
Ames Research Center, innovated away from custom designs
and transitioned toward multi-use designs and assembly-line
production, which could drastically reduce the cost of space-
craft development (Hine, Spremo, Turner, & Caffrey, 2010).
The LADEE system block diagram, shown in Figure 1, con-
sists of five primary subsystems: (1) the Integrated Avionics
system, (2) the Propulsion system, (3) the Attitude Control
system (ACS)), and the Electrical Power Subsystem (EPS).
Our focus is to develop a general data-driven monitoring ap-
proach for telemetry (i.e., streaming time series) data for pur-
poses of health monitoring, which includes fault and anomaly
detection, prognosis, and performance analysis of the moni-
tored system.

Our specific focus in this paper is on developing a general
unsupervised method for data-driven anomaly detection in
complex systems. The rest of this paper is organized as fol-

1see https://www.nasa.gov/mission pages/ladee/main/index.html

lows. Section 2 defines anomaly detection problem for space-
craft longterm missions. Section 3 formally describes our
approach to anomaly detection, and lays out the description
of our methodology. Section 4 shows an application of our
methodology to telemetry data from the EPS of the LADEE
spacecraft. Using examples, we illustrate the intertwining of
the mode and anomaly detection problem. Finally, Section 5
presents a discussion and conclusion based on the results or
our case study, and briefly discusses how we will extend this
approach in future work.

2. PROBLEM FORMULATION

A spacecraft is a mixed discrete-continuous system (hybrid
system). For example, a reaction wheel which is a contin-
uous system with an electric motor to rotate the spacecraft
around its center of mass is controlled by a discrete proces-
sor. The discrete states of the spacecraft are called modes and
the switches or external events define the discrete dynamics
of the system. The behavior of the spacecraft depends on
the system mode: each mode change can be: (1) controlled,
i.e., they are initiated by a set of discrete switches by the sys-
tem controller or a human operator; and (2) autonomous, i.e.,
they are induced by external events (e.g., when the spacecraft
moves from region where it receives sunlight to one where it
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is dark) or they may be caused by a change internal to the sys-
tem (e.g., a battery may be completely drained, or a fuel tank
overflows). In both cases, the mode change changes the sys-
tem model, and, therefore, the system dynamics. In this work,
we assume the spacecraft is a hybrid system that is modeled
as a hybrid automaton (Henzinger, 2000) with the following
definition.

Definition 1 (Hybrid Automaton) A hybrid automaton H
is defined by a 5-tuple, H = {Q,Rn, f, ϕ, ρ}, where Q
represents a set of discrete states; Rn represents the space
of continuous behaviors; f : Q × Rn → Rn represents
the vector field that defines continuous behaviors in a mode;
ϕ : Q× Rn → Q represents the discrete transition function,
and ρ : Q×Rn → Rn represents the reset map.

Generally, before a spacecraft launch, scientists and system
developers plan the entire mission. This is called space mis-
sion planning. Some components of the plan may be up-
loaded to controllers on the spacecraft, others are manually
commanded or uploaded as a mission progresses by the mis-
sion controllers. Considering the spacecraft as a hybrid au-
tomata, we can define the expected mission trace as a se-
quences of time transitions that the spacecraft is designed to
follow during the mission.

Definition 2 (Expected Mission Trace) The expected mis-
sion trace, MT consists of an initial mode qstart ∈ Q, a
finite set of mode transitions, Tr : Q → Q, which may be
controlled or autonomous; and a sequence of intermediate
modes Qm = {qi, qj , · · · qk}, where each intermediate mode
qi ∈ Qm has a start time tsi and an end time tei. The final
mode that ends a mission is qend.

A mode trace is considered normal if and only if every mode
the system enters is expected according the hybrid automata
model, H .

Definition 3 (System normal operating mode) A mode
(qi, tsi, tei) is a normal operating mode if and only if
(qi, tsi, tei) ∈MT .

Because of unpredicted events and possible faults and degra-
dation in the system, it is possible that the system starts be-
having in an unexpected way for an interval of time during the
mission. Since this behavior cannot be explained or justified
using the mission plan or by a mode transition in the defini-
tion of H , then the system is considered to be in an abnormal
mode.

Definition 4 (System abnormal operating mode) A mode
(qi, tsi, tse) is an abnormal operating mode if and only if
(qi, tsi, tse) /∈ MT , or there is no defined transition from
a mode qk ∈ Q to mode qi.

The objective here is to develop a method to detect the ab-
normal behavior modes during spacecraft operation. This
helps the system developers to study the abnormal modes

and analyzes their root causes to prevent them from occur-
ring in future missions. A common approach to detect nor-
mal and abnormal operating modes in hybrid systems is using
the state estimation approaches (Hanlon & Maybeck, 2000;
Blom & Bar-Shalom, 1988). Estimation approaches typi-
cally use multiple-model-estimation schemes to track state
estimates over time, and therefore, require at least as many
filters as there are modes in the system. In the LADEE space-
craft, we have at least 67 switches in the power system, which
means we have at least 267 modes. A model-based approach
to designing 267 filters is unrealistic and impractical – most
of these modes are not likely to occur in any spacecraft mis-
sion. A more realistic approach would be to build detectors
corresponding to the system Mission Trace, but that would
miss unanticipated anomalous behaviors in the system.

3. DATA DRIVEN ANOMALY IDENTIFICATION

The objective here is to develop a method to detect abnormal
behaviors that may have occurred during the spacecraft oper-
ations for a long-term mission. Since the possible discrepan-
cies, faults, or errors that may occur are unknown before the
mission takes place, we have to develop approaches that can
discover them by analyzing mission telemetry data. If this
can be accomplished, system designers and mission special-
ists can perform detailed studies in the time intervals when
the abnormal behaviors occur. This will help them identify
the root causes, which in turn will influence the design of
future spacecraft to avoid such anomalies. Alternately, mon-
itors that can detect such anomalies in an automated fashion
can be designed that allows mission specialists to come up
with corrective actions or change the mission plan and avoid
adverse incidents.

In our work, we have applied unsupervised learning tech-
niques to find groupings in a large database of time series
data. Our approach is to divide the time series representing
the entire mission trajectory into segments, and each segment
represents an object of interest on the mission time line. The
selected size of each time interval (time window) is a trade-off
between the number of objects created from the time series,
and having enough data per window to detect and character-
ize abnormal versus nominal behavior. Typically, most of the
objects will represent nominal operations of the spacecraft
during the mission, but a small subset of the time segments
(objects) may represent anomalous or faulty behaviors. Since
the anomalous behaviors or faults are not known beforehand,
we apply a clustering algorithm to group the objects. Our
hypotheses is that the larger groups of clusters will repre-
sent nominal operations, whereas outliers and smaller groups
may represent anomalous situations. In general, researchers
have developed classifier or supervised methods for charac-
terizing known faults and semi-supervised and unsupervised
methods for discovering and characterizing unknown faults
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Figure 2. Data preprocessing and feature extraction.

and anomalies. In this work, we propose a mixed method for
anomaly detection in a robotic space mission.

In more detail, we have developed a multi-step unsupervised
learning method to distinguish the outliers which include spe-
cialized modes of operation and abnormal behaviors from the
normal operation. Then, we employ a supervised method of
consulting human mission experts to differentiate between
specialized modes and anomalies. First, we select a set of
objects from a curated data set, where each object is repre-
sented by a set of features, typically segments of a time series
signal. The next step is to convert each feature signal into
a set of feature values that make the data amenable to tra-
ditional numeric clustering methods. To do this we apply a
wavelet transform to each time series segment, and represent
that waveform in terms of coefficients that define the wavelet
transform. In addition to generating numeric feature values,
this approach also serves as an approach for compressing and
smoothing a signal. Then a hierarchical clustering approach
is used to generate clusters from the extracted features. The
outputs of the clustering algorithm are preliminary groups of
time intervals for further consideration.

The input to the process is operational data, which is the
telemetry data transferred to the earth from the spacecraft dur-
ing the mission. This dataset contains many variables from
different subsystems of the spacecraft which are measured or
computed with different sample rates. In general, this dataset
is extremely large. To reduce computational complexity, we
use the following approaches; 1) data reduction, 2) feature
reduction. The data reduction here means selection of rele-
vant time series waveforms for object definition to describe
anomalies. V = {v1, v2, ..., vm} represents the selected vari-
ables. Figure 2 illustrates the data preprocessing procedure.

As discussed earlier, we divide the mission into segments,
and each segment represents an object of interest on the mis-
sion time line. k is the number of samples in each time in-
terval (time window). The time windows are the objects,
O = {O1, O2, ..., On}. In fact, each object Oi ∈ O is a
time series which contains k samples of each select variable.

In this work, we use the discrete Haar wavelet transform to
extract the scaling coefficients which correlate to the low fre-
quency of the time series signals. We consider the first l co-
efficients of the wavelet transform for each variable (See Fig-
ure 2). The set of coefficients for object Oi, is presented with
fi ∈ Rm∗l in Figure 3, where m ∗ l represents the number
of wavelet coefficients derived from the set of time series sig-
nal segments defining the object. The algorithm then uses the
generated features and a weighted Euclidean distance mea-
sure to build the dissimilarity matrix between every pair of
objects, i.e., Dnn = dist(Oi, Oj), 1 ≤ i, j ≤ n. We then run
a UPGMA (Unweighted Pair Group Method with Arithmetic
Mean), agglomerative (bottom-up) hierarchical clustering al-
gorithm to generate a dendrogram that represents the order
in which the objects group into clusters. The advantage of
this approach is that the number of clusters does not have to
be pre-determined. We then use heuristic methods to cut the
dendrogram at a level (i.e., a distance measure) that provides
a distinct grouping of clusters. In other words moving the
distance level at which the dendrogram is cut by small levels
will not change the number of clusters that are generated.

The next step is the interpretation process and the identifica-
tion of anomalous groups. We assume the results of the clus-
tering produce one or more large clusters where most of time
intervals reside, with the implication that these large clusters
represent mostly nominal behaviors because overall the mis-
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sion was a success. We label these clusters as corresponding
to nominal operations of the spacecraft. Since a spacecraft is
on a complex mission that involves multiple maneuvers and
also a number of scientific experiments, we then time focus
on the smaller clusters, and start with the hypotheses that each
one of the cluster represent: (i) special operating modes , or
(ii) anomalous or faulty behavior. We identify special op-
erating modes by looking at the discrete waveforms that are
available, such as switches that indicate a particular load rep-
resenting a science experiment or a spacecraft maneuver was
turned on. This helps us assign non anomalous labels to a
number of the smaller clusters. For the rest, we seek expert
input.

A typical approach here would be to compare the features of
the possible anomalous groups against the labeled nominal
groups. We can do this systematically by running a classi-
fier algorithm and determining the features that best separate
these groups. These features then define the anomalous pat-
terns that do not confirm to expected behavior. In this work,
to identify anomalies we perform the following analysis on
the small clusters (outliers): 1) we study the features that suf-
ficiently distinguish the outliers from the nominal data, 2) we
study the switches that went on or off during the outlier in-
tervals, 3) we talk with the experts to confirm our hypothe-
sis. With possible anomalous groups and a nominal base of
clusters, a feature selection algorithm is applied to identify
the relevant features that differentiate each anomalous group.
A switch can explain special operating conditions due to the
mode transitions in the system. An expert will use the distin-
guishing features and binary transitions during the outliers to
characterize the anomalies and their level of failure. Coupled
with the nominal sets, these groups can be used to produce
new models of anomaly detection.

4. CASE STUDY: LADEE EPS

The data set was a collection of time series data recorded
over a 1 year long lunar mission. We extracted only voltage
and current features (total 34) from this dataset. We believe
this provided sufficient information for a mode and anomaly
identification. This paper explores a data-driven mode and
anomaly detection approach where the algorithm has access
to the electric power subsystem data of a robotic satellite. The
dataset has the following characteristics:

1. There are 265 time series variables in the electrical sub-
system dataset.

2. There are 17 time series binary variables in zero or one
format among the variables.

3. There are 50 time series binary variables in on or off for-
mat among the variables.

4. There are 7 time series variables with voltage index
among the variables. These variables include:
• Battery voltage
• Solar array voltages
• Load voltages

5. There are 27 time series variables with current index
among the variables. These variables include:
• Battery current
• Solar array currents
• Load currents

6. The mission is 223 days long and there are 574687 sam-
ples for each time series variable.

7. The sampling rate is not constant and the time between
two samples can vary from 0.4s to 10195s in the dataset.

4.1. Data preprocessing and feature extraction

We have decided to break each time series into 1512 time
windows where each time window includes 380 samples. The

5
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sampling rate of the recorded data was not constant, therefore
a time window may represent from 5 minutes to 10 hours of
operation. In average each time window represents 3 hours
and 31 minutes. The selected size of the time window was a
tradeoff between detection accuracy and having enough data
per window to detect/identify an abnormal behavior.

The task of the data processing is to break the recorded time
series data into distinct features, which were used as inputs
of the clustering algorithm. Wavelet transform is an impor-
tant mathematical tool to analyze time series data because it
contains both time and frequency information of a signal. A
wavelet is an oscillation function which increases from zero,
and then returns to zero. The wavelet transform of a signal
is a convolution of a wavelet function with the signal. Those
wavelet functions have different shapes and sizes and are im-
plemented as band-pass filters. The output of the wavelet
transform is a set of coefficients which capture the time (po-
sition in time) and frequency characteristics of the signal.

In signal processing wavelets are typically used in peak de-
tection, noise reduction, and data compression. The discrete
wavelet transform was applied to reduce the computational
complexity and to filter the noise of all variables by extracting
the scaling coefficients which correlate to the low frequency
subbands. We used the package of functions for computing
wavelet filters, wavelet transforms and multiresolution analy-
ses (Aldrich, 2010) in R software environment2 to extract the
wavelet coefficients. The wavelet transform was decomposed
up to the 8th coefficient for each variable. This resulted in
272 features per time window.

4.2. Clustering

In the next step the euclidean distance was employed to com-
pute the pairwise distance between the temporally segmented
objects. The time series waveforms were converted to a set of
features represented by the wavelet transforms as discussed
earlier. We used the R function hclust to generate the de-
drogram shown in Figure 4. We selected UPGMA as the ag-
glomerative clustering in this case study. The dendrogram
represents the order in which the objects group into clusters.
We used a heuristic, which suggested cutting the dendrogram
at a height, where small changes in the location of the cut
would not cause changes in the number of groups extracted
from the dendrogram. The small clusters generated were po-
tential anomalies. We will investigate them in more detail
using the binary variables (switches) as context to understand
the spacecraft’s mode of operation, and experts recommen-
dations to further characterize the condition. Cutting the tree
at lower heights will generate more clusters and anomalies.
Therefore, the level at which the dendrogram is cut represents
a trade-off between increasing the precision of the anomaly

2see http://www.R-project.org/

Figure 5. Anomalies and special modes during the mission

definitions, while also reducing the number of anomalies an
expert would have to analyze.

4.3. Anomaly Detection

Figure 5 shows the most relevant groups plotted over time
(mission days) detected by the clustering algorithm. Each
group represents a mode or an anomaly. Table 1 shows an ab-
stract description of the most important modes and anomalies
that were discovered from the groups generated.

4.3.1. Group 1: Normal operation

As we expected, the clustering algorithm generates a large
cluster where significant number of time intervals reside.
This cluster represents the normal operation of the spacecraft.

4.3.2. Group 2: The reaction wheels control problem

This time interval belongs to the beginning of the mission
and is distinguished from the rest of the data set because of
relatively high current in the SATORI #2 subsystem. As it is
shown in Figure 6, the reaction wheels go off during this time
interval. Note that Figure 6 shows that the reaction wheels
go off two times during the mission. However, the experts
in NASA confirmed that the reaction wheels only went off
once during the mission and the second zero in the figure is
a result of bad data. Considering the reaction wheels and the
high current in the SATORI #2 subsystem, we found it very
likely that this incident related to the guidance navigation and
control unit. The experts from NASA confirmed that this time
interval represents an anomaly and the incident is as follows.

In the first few orbits around the earth, the spacecraft began to
spin at a faster rate than was expected, and the reaction wheels
were turned off by the control software to avoid a high current
load on the battery by the guidance, navigation and control
(GNC) system. When the reaction wheels were turned off, the

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

13
67

44
3

34
7

39
2

14
99

34
6

61
6

14
25

44
15

00
3 20

30
5

39
5 1

10
2

13
1

37
3

48
1

54
8

54
9

73
4

74
0

48
3

54
3

54
4

60
4

61
7

53
1

60
9

53
4

72
9

73
3

74
2

55
0

53
0

72
8

73
9

65
3

65
5

73
0

49
6

53
2

54
6

60
6

53
3

63
6

65
4

73
2

74
1

26
8

39
1

13
66

19
17 18

16
4

14
39

43
14

12
1 2

14
83

68
1

68
2

68
3

99
0

11
42

92
0

12
55

74
9

21
6

24
1

33
3

29
4

34
0

13
68

13
85

27
8

28
1

46
0

34 13
2

12
61

13
89

27
9

14
97

55
8

41
1

87
1

63
4

53
6

48
8

49
4

14
15

64
7

65
2

50
1

49
5

72
7

55
2

13
77

94
9

12
34

13
54

84
2

12
94

10
20

89
1

10
41

77
8

10
71

11
72

27
39 12

4
44

1
44

2
61

4
74

8
81

5
82

8 11
16

49
2

10
09

46 56
25

6
39

0
34

4
34

5
26

4
30

2
55

26
2

26
0

26
1

26
3

13
0

12
9

52 54
25

7
25

9
57 59

53 30
1

25
5

25
8 45

58 60
14

68
23

1
23

2
16

2
16

3
63

8
14

36
14

13
64

9
49

3
53

5
14

23
60

8
60

3
61

0
61

5
64

2
60

1
61

3
14

59
14

30
71

1
71

3
16

1
42

2
73

7
43

9
42

4
43

5
42

0
42

9
32

1
41

8
42

8
90

43
8

42
7

43
4

12
3

32
2

88
43

2
43

1
43

0
41

5
42

1
42

6
43

6
43

3
43

7
45

6
46

5 1
15

7
11

8
11

6
12

0 91
11

1
11

3
95

10
9

93
11

4
12

2
32

5
41

9
42

5
11

9
11

2
89

41
7

32
4

73
5

36
3

42
3

92 96
36

2
12

1
11

0
11

7
32

3
32

6
11

5
94 36

4
73

6
41

4
41

6
14

20
71

6
15

07
13

48
14

28 11
70

11
91

13
33

13
43

13
90

14
10

14
17

40
9

58
7

56
2

92
8

10
60

58
2

10
69 78

7
10

65
80

5
23

3
40

8
14

26
92

4
80

4
79

5
93

8
64

8
76

8
10

46
94

3
10

51
14

32
61

1
56

5
78

3
81

7
15

03
14

72
14

37
14

49
15

12
15

10
15

11
14

45
10

96
56

3
56

6
51

7
75

2
56

7
69

8
12

92
56

4
66

4
66

6
11

30
13

92
14

11
67

0
31

7
40

1
40

7
40

6
40

0
40

5
48

9
50

2 50
0

48
7

49
0

48
2

48
4

54
0

53
8

54
2

14
35

11
00

14
93

62
6

11
11

14
27

12
65

12
74

71
7

14
14

14
54

11
21

12
79

53
9

41
0

72
5

11
93

50
3

71
9

75
8

10
56

10
42

79
1

93
4

51
9

76
2 52

4
91

0
54

5
55

1
89

2
58

8
10

61
10

40
58

3
64

3
60

2
63

7
74

7
40

4
41

2
41

3
40

2
40

3
12

25
15

09
12

01
13

72
91

8
90

1
59

3
50

9
92

9
57

0
11

07
86

5
10

04
99

9
10

25
11

92
73

8
10

32
10

92
12

16
47

5
75

7
90

2
91

4
69

7
10

95
14

44
70

1
14

71 1
46

7
48

0
86

9
15

04
12

27
10

79
10

84
10

45
13

51
75

1
10

73
13

59
52

2
12

02
75

3
51

2
15

02
93

7
13

34
13

39
13

53
10

37
10

59
12

37
12

26
78

1
12

72
94

5
96

1 1
40

1
80

3
95

3
12

67
12

42
12

81
12

58
14

56
12

59
14

04
96

2
11

15
11

03
77

1
13

56 10
72

77
9

13
55 12

35
12

56 6
50

79
6

92
5

13
97

13
82

93
5

10
81

66
5

96
4

81
1

97
4

56
1

62
1

82
9

95
5

14
40

80
0

81
2

82
0

13
65

64
0

13
88

14
08

94
8

96
9 9

59
80

6
63

9
95

0
14

69
46

1
46

4
47

3
44

7
46

3
45

3
44

5
47

0
98

9
10

47
77

4
13

49
12

29
13

70
13

74
93

0
12

45
64

6
13

69 8
01

12
48

96
5

68
4

95
1

12
17

12
66 1

13
7

12
36

14
46

66
0

57
6

58
0

10
70

78
8

10
66

14
84

66
1

67
2

11
97

45
7

89
6

11
94

12
09

13
44

75
0

52
3

55
7

13
75

10
75

13
57

93
9

95
6

11
60

14
76

11
26

12
88

14
64

11
47

10
77

11
36

11
31

11
40

13
14

13
00

14
89

14
81

11
77

57
8

11
61

11
87

13
29 13

19
11

66
13

05 11
48

11
82

13
09

13
23

11
52

14
77

12
69

14
19

57
4

59
5

57
2

58
5

59
7

62
8

63
0

63
2

76
6

14
21

12
84

12
93

84
3

12
95

90
4

97
2 13

32
13

62
13

37
13

42
12

53
11

50
14

06
70

6
12

78
83

6
11

58
85

3
68

9
69

4
12

90
14

75
12

64
61

9
64

5
65

1
50

8
55

5
52

1
52

7 1
18

0
68

8
71

5
73

1
54

7
48

6
50

7
11

35
81

9
95

8
82

5
65

8
96

0
13

84
13

95
11

34
82

2
10

83
11

78
11

79
79

7
86

4 6
93

66
2

66
7

76
5

92
6

97
6

66
3

72
4

10
24

11
04

12
47

12
38

12
46

14
62

14
91

15
05 88

6
88

9
13

36
11

99
12

11
76

4
79

8 8
35

11
74

83
4

11
45

11
55

13
47

94
6

13
96

10
17

11
89

87
3

86
3

93
6

89
4

13
27 1

23
2

80
2

10
85

12
77

14
96

97
7

14
05

99
3

79
3

10
16

91
2

14
43

14
53

68
5

81
8

95
7

10
08 99

8
11

20
14

74
12

05
13

15
11

12
13

38
14

09
14

16
13

40
11

95
10

28
13

16
12

96
13

01 11
46

96
6

11
23

10
88

12
71 9

41
12

41 10
99

10
89

10
98

12
06

12
57

94
4

80
7

80
8

93
1

13
26

14
57

14
34

14
79

11
54

10
94

67
3

77
0

96
3

12
82 8

82
75

6
79

4
14

00
11

64
14

48
10

58
90

9
91

3
10

12
11

09
91

7
10

02 9
32

83
9

91
6

68
6

12
73

84
0

85
6

81
4

10
68

12
98

11
18

12
14

11
88

13
06

14
87

78
9

12
20

69
5

72
3

87
9

94
0

70
5

11
13

12
43

10
64

13
22

96
8

79
0

13
58 10

07
11

59 1
03

9
10

49
79

9
94

2
11

25
90

0
93

3
80

9
12

52
13

71
13

94
12

51
14

51
11

67
14

94
84

6
71

0
82

3
88

3 7
18

13
03

10
31

13
08

13
63

55
6

94
7

11
01

11
56

15
06

76
7

11
24

96
7

12
62

11
10

14
66

14
61

98
7

12
87

14
80

98
2

11
49

97
1

12
76

99
4

11
28

99
7

14
52 8

49
14

86
14

42
11

14
13

81
11

06
14

33
14

41
98

1
76

0
13

30 10
78

12
00

12
21

78
0

12
15

89
5

10
34 70

0
88

7
13

12
99

1
14

58
98

6
11

19 9
52

81
3

98
5

78
2

11
39 86

8
10

54
10

55 10
53

10
80

10
76

81
0

10
90

10
38

79
2

12
07

11
96

12
97 8

45
10

11
89

9
78

6
11

63
11

85
90

8
99

2
83

1
12

30
88

8
92

2
67

7
83

0
11

33 12
18

13
99

12
31

13
50

12
68

13
45

10
93

13
76

98
0

11
05 9

23
12

50
14

47
10

63
12

63
14

29
14

38
14

50
13

52
10

74
13

93
13

31
11

75
11

90
12

91
13

80
11

29
14

22
10

13
87

4
10

18
13

41
12

10
11

83
13

46
13

17
14

95
10

22
14

85
85

5
13

35
13

11
13

21
47

9
50

5
51

8
67

1
66

9
50

6
55

9
74

6
49

9
77

2 59
9

53
7

52
8

90
5

12
13

10
87

12
40

11
08

14
03

59
2

95
4

14
31

11
22

12
54

44
9

67
4 5

41 66
8

56
0

85
4

67
8

14
60

69
9

12
70

12
89

14
55

60
0

63
3

51
5

52
0

63
5

13
91

13
86

10
86

10
91

57
3

58
4

59
0 71

4
12

22
13

60
13

78
59

4
57

5
13

73
57

1
58

6
12

03
12

08
11

98
12

28
13

83
13

98
12

33
10

82
12

49
13

87
14

07
60

7
12

60
14

24
62

0
62

4
11

17
57

7
57

9
58

1
55

4
59

1 12
44

64
1

61
2

62
2

59
6

59
8

12
39

14
02 6

29
63

1
60

5
61

8 5
69 62

3 52
6

55
3

77
6

13
02

13
07

10
33

11
84

76
1

78
5

77
5

85
0

12
85

13
25

10
97

13
61

13
79

10
67

12
19 87

5
87

8
14

18
12

86
13

20 7
08 82

7
10

15
82

6
85

9
71

2
11

65
12

83
13

28
13

13
11

76
11

86
14

88
13

04
12

99
11

81
13

18
69

6
91

9 50
4

14
73 33

10
52

14
98

14
92

87
2

13
64

64
4

62
5

62
7

10
44

76
9

78
4

15
01

15
08

92
1

92
7

45
1

68
7 86

0
11

38
11

43
11

69
10

03
14

90
44

4
81

6
88

0
10

10
84

8
49

8
13

24
88

1
58

9
12

12
14

65
70

2
48

5
69

0
87

7 1
16

2
11

53
85

8
13

10
10

01
14

78
86

7
10

27
99

6
97

0
98

4
11

27
12

80
82

1
84

4
11

32
83

8
97

5
10

50
12

24 1
00

6
12

04
91

1
91

5
10

48
75

5
10

36
11

44
11

68 1
02

3
72

0
90

7 8
93

75
9

10
57

10
29

10
43

90
3

89
8

10
62

11
71

86
6

86
2

11
73

11
41

83
3

14
82

67
5

12
23

65
6

12
75

45
4

97
9

76
3

84
1

69
1

72
1

86
1

87
0

49
7

67
9

39
9

10
05

85
7

10
00

52
9

10
35 4

59
10

26 7
73 77

7
51

3
90

6
74

3
56

8
85

1
89

7
70

7
70

3
98

8
98

3
10

14 4
72

46
7

47
4

10
30

51
6

52
5

46
2

74
4

72
6

70
9

75
4

45
5

51
1

44
6

45
2

84
7

14
70

46
9

88
5

83
7

87
6

47
1

70
4

10
21

45
8

67
6

65
7

69
2

45
0

65
9

46
8

97
8 68

0
72

2 83
2

99
5 1

01
9

49
1

89
0

44
8

47
6

82
4

51
4

85
2

51
0

74
5

88
4

97
3

11
51

14
63

39
8

44
0 62 16
5 37

6
28

2
61 28

0 31
8

27
0

27
1

34
9

27
6

19
6

27
7

37
1

17
7

21
8

29
0

24
5

28
5

24
8

29
6

24
0

21
7

28
9 2

14 29
5

24
9

27
5 2

84 28
8

22
4

49 26
7

30
32

7
82

21
9

22
9

28
3

18
4

24
4

26
6

35
13

9
36

7
32

10
7

17
2

47
7

35
7

47
8

21 13
7 8

7
37

5
32

9
37

4
38

2
40 34

8 2
46 25

0 2
69

35
9

16
9

27
2

36
1

35
5

35
4

39
4

25
4

24
3

25
2

67 19
8

70 20
4 22

5
20

6
73 15

3
85

36
8

18
7

30
6 29

1
18

8
22

3 1
52 19

5
18

9
20

1
28

6
20

9
19

1
38

4
21

0
21

5 23
0

38
6

15
4

14
6

19
4

80
64 25

3
86

14
9

15
0

22
2

29
3

66 22
7

20
8

29
7

76
20

5
22

0
79 14

2
81

77
19

3
68 69

78
14

7
21

2
21

3
38

1
14

3
71 29

2
36 38 4

1 50
32

8
37

9 33
1

38
0

23
7

19
7

21
1

48 39
3

26
5

27
4

31 16
0 1

76
31

6
23 32

0
24

2
18

1
18

2 1
05

10
1

10
6 35

0
23

6
31

0
12

5
51

12
8

27
3

35
6

35
8

17
9

30
3

31
9

35
3

13
4

39
6

38
9

36
0

30
0

34
3

29
8

33
7

15
9

30
4

35
2

25 28
17

1
31

1
38

8
31

3
31

5
33

0
38

7
14

1
15

6
10

2
16

8 1
26 30

9
19

0
18

5
37

0
24

7
17

4
19

2
30

7
26

17
0

31
2

23
5

17
5

17
8 2

39
28

7
36

6
34

1
15

7
20

2
33

2
29

9
42 38

5
97 31

4 2
38

33
5

38
3

37
7

33
9

34
2

33
6

33
8

20
7

22
1

15
1

14
5

15
5

74
37 37

2
22

6
75

65 72
18

6
22

8
14

4
20

3
15

8
47

63 83
14

8
84 18

3
20

0
18

0
19

9
36

9 98 99 14
0

16
7

10
4

10
8

12
7

10
3

22
24 29

13
3

13
6

23
4

13
5

13
8

39
7

10
0

16
6 3

78
35

1
33

4
36

5
17

3
25

1
30

8
13

46
6

16
11 14

15
10 12

5
7 8

6
4 9

0
10

20
30

40
50

60
70

Cluster Dendrogram

hclust (*, "average")
d

H
ei

gh
t

Figure 4. Hierarchical clustering

Figure 6. Reaction wheels (OFF=0, ON=1)

spacecraft stopped rotating, and, therefore, one side became
too hot, and the other side too cold. To keep the temperature
balanced several heaters went on which led to high current
in the SATORI #2 subsystem. Figure 7 shows normalized
SATORI # 2 current during group 2.

4.3.3. Group 3: The lunar orbit insertion

As it is shown in Figure 5 group 3 consists of three time in-
tervals which occur in three different days. A high variation
in the PAPI # 2 (propulsion, see Figure 1 ) subsystem’s cur-
rent distinguishes this group from the rest of the dataset. Fig-
ure 8 shows normalized PAPI # 2 current during this group.
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Figure 7. Normalized SATORI # 2 current during group 2

Moreover, the valve driver unit which controls the propulsion
subsystem, and the pressurant tanks heaters which also be-
longs to the propulsion subsystem (see Figure 1) goes ON in
all the three time intervals. This group represents a unique
behavior in the dataset, however, the experts confirmed that
this does not represent an anomaly behavior and we should
classify this group as a special operation mode. The experts
informed us that this group represents the lunar orbit insertion
process. In fact, there were three firing process in the propul-
sion subsystem to get into lunar orbit and our algorithm was
able to classify them in a single group.
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Figure 8. Normalized PAPI # 2 current during group 3

4.3.4. Group 4: The laser communication test

This mode of operation consists of two time windows where
each of them is almost 20 minutes long. To explain this mode,
we should notice that a laser communication test occurs dur-
ing each time window. These tests are part of the mission
plan and occur multiple times during the mission. However,
because of the new moon, the solar array current is almost
zero during this mode. The high current demand due to the
laser communication test in the absence of solar energy puts
too much pressure on the battery and leads to a battery voltage
drop. Figure 9 shows the normalized battery voltage during
each time window.
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Figure 9. Normalized battery voltage during group 4

This group represents an abnormal behavior because the laser
test in the absence of solar energy leads to unintended conse-
quences.

4.3.5. Group 5: The eclipse

This group is related to the eclipse. The time interval is al-
most 5 hours long, because the sampling rate gets very low

Figure 10. Normalized battery voltage during the mission

at the end of the mission. The solar array current is zero dur-
ing the first 2 hours. Then it starts turning on, and switches
between zero and none zero after that. Several heaters went
on to keep different subsystems temperatures in normal range
in the absence of sun light. This increases the load current.
A simultaneous increase in the load current and decrease in
the solar array current put an unprecedented pressure on the
battery, which leads to battery voltage drop. We can classify
the eclipse as an abnormal behavior because the battery is not
designed to operate in this situation. Figure 10 shows the nor-
malized battery voltage during the mission. We can see the
eclipse at the end of the mission (day 219).

4.3.6. Group 6: The safe mode

The system goes to the safe mode right after the eclipse. Dur-
ing this mode, several loads were switched off to limit en-
ergy consumption and provide enough current for the bat-
tery recharge. This group represents a unique behavior in the
dataset, however, it does not represent an anomaly behavior
and we should classify this group as a special operation mode.

5. CONCLUSIONS, AND FUTURE WORK

In this paper, we presented a data-driven anomaly detection
method. We defined the problem and presented a new ap-
proach for anomaly detection. Our approach uses an unsuper-
vised learning method to detect the outliers that may represent
special modes of operation, or they may be anomalies. To dif-
ferentiate between special modes and anomalies, the method
uses a supervised approach of consulting human mission ex-
perts. We applied our approach to detect anomalies during the
LADEE mission. To detect anomalies, we looked for the fea-
tures that were significant actors in differentiating the outliers
from the nominal set. We also considered the binary switches
during each time interval as the indicators of mode changes.
Finally, we used domain experts to validate the anomalies.
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Table 1. Abstract overview of detected modes and anomalies

Group Detected Mode or
Anomaly

Voltage or Current Switches

1 Normal operation mode
2 Reaction wheels anomaly

• SATORI # 2 current had a
higher variance

• Propulsion heater turned on
• Star tracker went off

3 Lunar orbit insertion mode
• PAPI # 2 current had large

variations
• SATORI # 2 current had

large variations

• Pressurant tank heater went
on

• Valve driver unit went on

4 Laser communication test
anomaly • Solar array current was

zero because of new moon
• Battery voltage dropped be-

cause of high current de-
mand of the laser commu-
nication test

• Laser communications
switch went on

5 Eclipse mode
• Solar array current was

zero during the first 2
hours, and had high fluctu-
ation afterward.

• Several heaters went on
(e.g. Propulsion heater)

6 Safe mode
• Battery current shows a

high fluctuation
• Several loads (e.g. star

tracker) turned off

We found that a number of detected anomalies were quite in-
teresting to the experts including a fault in reaction wheels
control system, and a laser test that caused a drop in the bat-
tery voltage. In both cases the experts confirmed the anoma-
lies and flagged them for further investigation. The proposed
approach performs well when the number of outliers is small
enough for examining them one by one. In future work, we
will investigate different algorithms to further automate the
process.
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