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ABSTRACT

Flight data recorders provide large volumes of heterogeneous
data from arrays of sensors on-board to perform fault diagno-
sis. Challenges such as large data volumes, lack of labeled
data, and increasing numbers of sensors (multiple modali-
ties) exacerbate the challenges of being able to hand-craft the
features needed for state-of-the-art PHM algorithms to effec-
tively perform system diagnosis. In this paper, the authors
propose leveraging existing unsupervised learning methods
based on Deep Auto-encoders (DAE) on raw time series data
from multiple sensors to build a robust model for anomaly
detection. The anomaly detection algorithm analyzes the re-
construction error of a DAE trained on nominal data scenar-
ios. The reconstruction error of individual sensors is exam-
ined to perform fault disambiguation. Training and valida-
tion are conducted in a laboratory setting for various operat-
ing conditions. The proposed framework does not need any
hand-crafted features and uses raw time series data. Our ap-
proach is tested on data from the NASA open database and
demonstrates high fault detection rates (∼ 97.8%) with zero
false alarms. Our paper also demonstrates robust fault disam-
biguation on two different fault scenarios. Moreover, the pa-
per provides a strong rationale for utilizing deep architecture
(multi-hidden-layer neural network) via thorough comparison
with a single hidden-layer DAE.

1. INTRODUCTION

It is of paramount importance to detect, disambiguate and
monitor faults in an extremely complex system like aircraft
for maintaining adequate levels of aviation safety and relia-
bility. Effective fault diagnostics and monitoring also help in
scheduling condition-based maintenance (CBM) efficiently.
However, real-time fault diagnostics in an aircraft is a highly
challenging task, mainly due to the presence of multi-modal
sensors (e.g., thermocouple, accelerometer, pressure sensor,
speed sensor, current/voltage sensors etc), distributed electro-

Soumalya Sarkar et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

mechanical couplings, noisy data and various operating con-
ditions. Moreover, the task of fault disambiguation brings
more complexities into the picture because it is necessary to
analyze signatures from a multitude of sensors in a holistic
way to eventually separate faults with overlapping properties.
The recent rise of on-board PHM in the presence of ubiquity
and redundancy of sensors has also generated the demand for
robust diagnostic tools which can handle large amounts of
multi-modal and multi-scale data.

Fault diagnostics and disambiguation have been addressed
from various points of view for many years. There are multi-
ple techniques in literature and practice, which can be cat-
egorized into mainly three types: 1)model-based, 2) data-
driven, and 3) hybrid fault diagnostic approaches. Early di-
agnostics approaches were mainly based on analytical mod-
els (Gertler, 1988; Rizzoni & Min, 1991; Simani, Fantuzzi,
& Beghelli, 2000) of systems or sensors and they computed
the residuals of the runtime signal to detect the presence of
fault. There are few types of parity based approaches, namely,
Parity Space Approach (PSA) (Gertler, 1997), Parity Equa-
tion Approach (PEA) (S. Kim, Kim, & Park, 2004), General-
ized Likelihood Ratio Test (GLT), and Least Square Residual
Approach (LSRA). Other approaches are based on Bank of
observers (state estimators) (Chen & Saif, 2007; Tan & Ed-
wards, 2002; Kiyak, Cetin, & Kahvecioglu, 2008), Kalman
filter residual computation (Gustafsson, 2002; Hagenblad,
Gustafsson, & Klein, 2003), fault detection filters (Gertler,
1988), and parameter identification (Litt, Kurtkaya, & Du-
yar, 1994). The main challenges of model-based approaches
are centered around the lack of robustness due to insufficient
model fidelity and the simplifying assumptions impact on un-
certainty.

As system complexities rapidly increase, building adequate
models for them is more difficult. This is why, there have
been a surge of data-driven fault diagnostic techniques that
are built upon the theories of signal processing and machine
learning (Duda, Hart, & Stork, 2000). Regular data-driven
approaches consist of two steps, (i) feature extraction from
signals to capture fault signatures, and (ii) learning and clas-
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sification of the features to identify faults. Statistical features
or domain knowledge specific features (Seda, Kadir, & Do-
gru, 2007; S. J. Kim & Lee, 1999), Symbolic Dynamic Filter-
ing (SDF) based features (Das, Sarkar, Ray, Srivastava, & Si-
mon, 2013; Sarkar, Mukherjee, Sarkar, & Ray, 2013; Sarkar,
Sarkar, & Ray, 2014), wavelet features, cyclostationary fea-
tures (Gardner, Napolitano, & Paura, 2006), and few other
time domain or frequency domain features have shown signif-
icant promise in the area of data-driven diagnostics. In case
of the learning step, there are various machine learning tech-
niques such as Artificial Neural Network (ANN) (Balaban,
Saxena, Bansal, Goebel, & Curran, 2009), expert system
based methods, supervised and semi-supervised classifica-
tion approaches (Support Vector Machine, k Nearest neigh-
bor classifier) (Duda et al., 2000). Issues with data-driven ap-
proaches are related to their high sensitivity to the extracted
features and the challenges of generalizing across a range of
operating conditions.

The hybrid approaches include a combination of PEA and
wavelet based signal features (S. Kim et al., 2004), Prin-
cipal Component Analysis (PCA) based system models
(Hagenblad et al., 2003) etc. Faults diagnostics approaches
have employed sensor fusion at multiple levels which are
data level, feature level and decision level. An example of
data level and feature level fusion technique captures the
SDF-dependent cross relationship (Sarkar, Sarkar, Mukher-
jee, Ray, & Srivastav, 2013; Sarkar, Sarkar, Virani, Ray, &
Yasar, 2014) among multi-modal sensors for aircraft engine
fault diagnostics. For engine fault diagnosis, (Basir & Yuan,
2007) demonstrated a decision level sensor fusion via ap-
plying Dempster-Shafer evidence theory. Other than these
fusion-based diagnosis approaches, there are other model-
based fusion methods built upon Kalman filtering, particle
filtering.

The shortcomings with most of the fault diagnosis techniques
are generally related to the lack of high-fidelity non-linear
models, tedious hand-crafting (domain knowledge) of fault
features, lack of scalability to large data, insufficient robust-
ness to noise and the presence of various operating modes,
or presence of multi-modal sensors for fault disambiguation.
This paper proposes a Deep Auto-encoder (DAE) based fault
detection and disambiguation approach, which is built upon
the concepts of deep learning (Hinton & Salakhutdinov, 2006;
Bengio, Lamblin, Popovici, Larochelle, et al., 2007; Ngiam
et al., 2011). Deep learning methods have proven to be an ad-
vanced breakthrough in machine learning and are based upon
multi-layer neural network and optimized by stochastic back-
propagation (Hinton & Salakhutdinov, 2006). The recent (last
five years) discoveries in deep learning have greatly reduced
the classical problems relevant to neural networks such as
over-fitting and lack of generalizability. There are a hand-
ful of recent efforts that apply deep learning (e.g., deep belief
network, sparse auto-encoder on unimodal sensors) specifi-

Figure 1. Schematic of the deep auto-encoder framework

cally for PHM applications, namely, fault diagnosis of recip-
rocating compressor valves (Tran, AlThobiani, & Ball, 2014),
CBM of rotating machines (Verma, Gupta, Sharma, & Se-
vakula, 2013), and early detection of combustion instability
faults (Sarkar et al., 2015). The authors propose to capture the
nominal signature at various conditions by building and train-
ing a large DAE on multi-modal sensor data. The proposed
DAE-based framework is trained directly on raw time series
from heterogeneous sensors without hand-crafting any spe-
cific type of features. The paper demonstrates the functional-
ities and performance of the proposed technique by testing it
on a large set of real data. This paper also successfully dis-
ambiguates among different types of faults in an unsupervised
fashion. This data was collected from a multi-sensor electro-
mechanical actuator for various nominal and fault scenarios
(aircraft operation related) by Balaban et. al. (Balaban et al.,
2009, 2015).

The paper is organized in five sections, including the present
one. Section 2 describes the proposed framework along with
its core methodology via explaining the concepts of DAE.
Section 3 describes the data collection system in brief, which
serves as the data source for experimental validation of the
proposed architecture for fault diagnostics and disambigua-
tion. Section 4 presents the performances and advantages of
the proposed approach. Finally, the paper is summarized and
concluded in Section 5 with selected recommendations for
future research.

2. MULTI-MODAL DEEP AUTO-ENCODER (DAE)
FRAMEWORK

This section describes the proposed framework for the analy-
sis of multi-sensor time series for fault detection and disam-
biguation. Figure 1 shows the architecture in a modular fash-
ion. Each of the time series from different sensors are normal-
ized to zero mean and unit variance. Synchronized windows
are traversed over multi-modal time series with overlap and
windows from each sensor are concatenated. A large vec-
tor containing the sliced time series from all sensors are fed
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into the DAE. The parameters of DAE are learned by back-
propagation and stochastic gradient descent (Bengio et al.,
2007) based on nominal (no fault) data. More detailed de-
scription of DAE is in the following subsection. While test-
ing, the whole tool chain is operated in a feed-forward fashion
in real-time and provides the RMS reconstruction error for a
time window. The average reconstruction error of a time win-
dow over all sensors denotes how far it is from the nominal
condition and is used as an anomaly indicator. The distri-
butions of reconstruction error over multi-modal sensors are
leveraged to differentiate specific fault signatures. The fault
disambiguation in an unsupervised manner (without exposing
the model to all fault types in the training phase) is possible
due to the advanced representational capability of a DAE. A
DAE can capture a large amount of multi-scale and non-linear
features of multi-sensor data without significant over-fitting.
These statements are supported by adequate visualization and
analysis in the section 4.

2.1. Deep auto-encoder (DAE)

DAE are one of the significant variants of deep Learning and
put a strong emphasis on modeling multiple levels of data
abstraction (from low-level features to higher-order represen-
tations, i.e., features of features) from data (Erhan, Courville,
& Bengio, 2010). A DAE is constructed by a multi-layer neu-
ral network, where there is an input layer, single or multiple
hidden layers and an output layer. Each layer can have differ-
ent number of neural units as shown in the figure 1. A DAE
(Bengio et al., 2007) takes an input vector x ∈ Rd and first
maps it to the latent representation h ∈ Rd′ using a deter-
ministic sigmoid function of the type h = fθ = σ(Wx + b)
with parameters θ = {W, b}, where W is the weight and b
is the bias. This ”code” is then used to reconstruct the input
by a reverse mapping of f : y = fθ′(h) = σ(W ′h + b′)
with θ′ = {(W ′), b′}. The two parameter sets are con-
strained to be of the form W ′ =WT , using the same weights
for encoding the input and decoding the latent representa-
tion. Each training pattern xi is then mapped onto its code
hi and its reconstruction yi. The parameters are optimized
via stochastic gradient descent method (Bengio et al., 2007),
minimizing an appropriate cost function over the training set
Dn = {(x0, t0), ..., (xn, tn)}. In this paper, the cost function
L(xy) is assumed to be the root mean square error between
the input vector and reconstructed vector.

L(xy) = ||x− y||2 (1)

For a multi-hidden layer DAE, that is used in this paper, the
parameters of each individual layer are first optimized indi-
vidually according to the method mentioned above. After all
the hidden layers are stacked and a mirror version of them is
rolled out from bottleneck layer to output layer, the weights
of the whole DAE is fine-tuned by deep back-propagation

(Bengio et al., 2007) based on the final reconstruction error
for nominal training data.

3. DATA DESCRIPTION FOR VALIDATION

The data for validating the proposed algorithm is downloaded
from the NASA DASHlink open database. The original de-
sign of experiment and data collection were performed by
Balaban et. al. (Balaban et al., 2009, 2015). A brief descrip-
tion of the experimental setup, sensor suits, fault injection
methods and fault types are given below. For more details,
refer to Balaban et. al. (Balaban et al., 2009, 2015).

A set of electromechanical actuators (EMA), constructed by
Moog Corporation, were used by Balaban et. al. (Balaban
et al., 2009, 2015) for running different experiments. To in-
crease the horizon of available operating conditions, flyable
electromechanical actuator (FLEA) testbed was also con-
structed. This paper mainly deals with the fault scenarios
that are injected in laboratory setting under various operating
conditions. Coupling of test actuators to the load actuator is
accomplished via an electromagnetic system. Only one test
actuator at a time is normally coupled to the load actuator.
The data acquisition system consists of two National Instru-
ments 6259 cards and the Galil motor controller. In this paper,
the data contains 13 modalities sampled at 100Hz, which are
Time, Actuator Z Position, Measured Load, Motor X Current,
Motor Y Current, Motor Z Current, Motor X Voltage, Motor
Y Voltage, Motor Y Temperature, Motor Z Temperature, Nut
X Temperature, Nut Y Temperature, Ambient Temperature.
The accelerometers are connected through custom-fabricated
conditioner boards that supply them with excitation voltage
and remove the dc portion of the return signal. The current
sensors are built in the Galil motor controller. Specific num-
ber of nominal scenarios and different fault scenarios are de-
scribed in section 4.

Two faults under various operating conditions were injected
into the test articles in the following manner: 1) A jam fault
was injected via a mechanism mounted on the return channel
of the ball screw that can stop circulation of the bearing balls
through the circuit. 2) A spall fault was injected by intro-
ducing cuts of various geometries via a precise electrostatic
discharge process. The initial size and subsequent growth of
these cuts were confirmed by using an optical inspection and
measurement system.

4. RESULTS AND DISCUSSIONS

This section describes the training parameters and the perfor-
mance results that are obtained when the proposed framework
is applied on the validation data for fault detection and unsu-
pervised fault disambiguation.

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2 10 18 26 34 42 50 58 66 74 82 90 98 106 114 122 130 138 146 154 162 170 178 186 194 202 210 218 226 234 242 250

Normalized RMS error at different levels of compression (Average of all sensors of all training files) Baseline (Average of all sensors mean value)

(a)

0

0.05

0.1

0.15

0.2

0.25

Dimension 6

Dimension 14

Dimension 206

(b)

Figure 3. (a) Variation of normalized root mean square (RMS) error at the reconstructed output layer with increasing dimension
of the bottleneck layer, (b) Individual sensor-wise reconstruction errors at the output layer for 3 different bottleneck layer
dimensions

Figure 2. Actual signals and reconstructed signals for Motor
X voltage, Motor Y temperature, and load sensors (from top
to bottom) with bottleneck layer of 14 dimension

4.1. Training and Parameter Learning

For training, 51 nominal runs of length∼ 30s are considered.
The sampling rate of all 13 sensor data is 100Hz. They are
all performed during a certain operating condition in a labo-
ratory setting. To learn the parameters of a nominal DAE we

generate batches of nominal samples via a sliding-window.
A window length of 0.5s (50 data points) with an overlap of
0.49s is chosen. After concatenating the windows from all
the sensors, the dimension of a single input sample feeding to
the DAE is 650 (50× 13). The total number of training sam-
ples generated from those 51 runs by sliding-window method
is ∼ 100, 000. The nominal DAE is trained by mini-batch
wise stochastic gradient descent on a GPU with batch size of
128 samples. The dimensions of the first, second, third and
fourth hidden layers are 256, 196, 136 and 76 respectively for
a bottleneck layer dimension 14. The fifth layer is the bottle-
neck layer. Starting from the bottleneck layer, the first four
hidden layers are repeated in a reverse order to finally arrive
at the output layer with the same dimension as the input layer.
The DAE has 11 neural layers including one input, 9 hidden
layers, and one output layer. Some examples of the actual
signal and reconstructed signals for Motor X voltage, Motor
Y temperature and load sensors are illustrated in figure 2. The
average normalized RMS reconstruction errors for these three
sensors are 0.08, 0.09, 0.04 respectively.

To select the dimension of the bottleneck layer, it is varied
from 2 to 250 and the normalized root mean square (RMS)
error at the reconstructed output layer is demonstrated in fig-
ure 3(a). This is performed on the training data itself. It is
observed that the RMS error reduces as the bottleneck com-
pression is relaxed. Choosing a larger bottleneck layer di-
mension reduces the RMS reconstruction error, but will even-
tually lead to over-fitting.The abrupt onset if over-fitting can
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Figure 4. (a) Receiver operating characteristics (ROC) curves
via varying detection threshold λ on testing data for differ-
ent bottleneck layer dimensions of the 11-layer DAE and few
single layer DAE models, (b) Precision-Recall curves for the
same conditions as (a)

be observed and is discussed in the next subsection in the
context of fault diagnostics. We use this information for the
selection of an optimal bottleneck layer dimension for fault
disambiguation. Figure 3(b) shows sensor-wise reconstruc-
tion errors at the output layer for 3 different bottleneck layer
dimensions. Other than temperature sensors of nut X and nut
Y, and motor Z current sensors, all other sensors have recon-
struction errors less than 0.1.

4.2. Fault Diagnostics

During the testing phase, there are a total of 95 nominal runs
and 225 faulty runs. Out of 225 faulty runs, there are 15 sce-
narios of spall faults and 210 scenarios of ballscrew jam fault.
The scenarios are typically of length ∼ 30s. But the test sce-
narios are performed in few sets of different operating condi-
tions compared to the training scenarios. The sliding-window
method is applied on the testing scenarios to generate sam-

ples and those samples are fed through the nominal DAE to
obtain the final reconstruction (NRMS) errors averaged over
all sensors. A detection threshold λ is applied on the aver-
age NRMS error such that a test run with larger NRMS error
than λ would be diagnosed as a fault. Varying λ, multiple
receiver operating characteristics (ROC) curves are generated
and showed in figure 4(a) for different bottleneck layer di-
mensions and few single hidden-layer DAE models. It is
observed that the ROC curve for 14-dimensional bottleneck
layer case performs the best in fault detection. For λ = 0.56,
the fault detection rate is 97.8% with 0.0% false alarm. As
the number of fault scenarios is much larger than the number
of nominal runs in the testing phase, i.e., the testing data set
is not balanced, a series of precision-recall curves (Duda et
al., 2000) are also shown on figure 4(b). By also consider-
ing the proximity to the upper-right corner of precision-recall
plots, it can be concluded that the 11-layer DAE model with
14-dimensional bottleneck layer performs best in fault diag-
nostics. According to the ROC curves, a single hidden-layer
DAE model with 512-dimensional bottleneck layer performs
similarly to the proposed 11-layer DAE with 14-dimensional
bottleneck layer. The reason, for which the proposed DAE
is superior compared to a single hidden-layer DAE model, is
explained in the following subsections.

4.3. Fault Disambiguation and Comparison with Single
Hidden-Layer Auto-encoder

After fault detection, the next step is to disambiguate among
multiple fault ensembles or to identify specific fault types.
This is a very challenging task because fault signatures often
overlap with each other. As shown in figure 5, multiple spider
charts visualize the NRMS errors across different sensors for
nominal scenarios, spall fault scenarios, and ballscrew jam
fault scenarios during testing phase. It is observed that, even
without any training on specific type of fault data, the pro-
posed 11-layer DAE with 14-dimensional bottleneck layer
can emerge distinguishable patterns of NRMS error distribu-
tion (across sensors) for different fault scenarios. The dimen-
sion of the NRMS error distribution is same as the number of
sensors, i.e., 13.

Figure 6 shows the comparison between the consolidated spi-
der charts that are obtained by using the single hidden-layer
DAE model with 512-dimensional bottleneck layer and the
11-layer DAE with 14-dimensional bottleneck layer. It is
clear that the proposed model disambiguates the faults via
identifiable patterns in the sensor NRMS distributions, visu-
alized on a spider chart, whereas the single hidden-layer DAE
model shows minimal separability of individual fault classes.
To further showcase the robustness of the fault disambigua-
tion capability, principal component analysis (PCA) (Duda et
al., 2000) is performed on 13-dimensional NRMS error dis-
tributions for all the testing scenarios. Figure 7 shows the
clusters for all testing scenarios over two largest principal
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Figure 5. Spider charts showing the NRMS error across different sensors during testing phase for (a) nominal scenarios, (b)
spall fault scenarios, and (c) ballscrew jam fault
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Figure 6. Spider charts of the average (over nominal and fault
scenarios) NRMS error across different sensors during test-
ing phase for (a) single hidden-layer DAE model with 512-
dimensional bottleneck layer and (b) proposed 11-layer DAE
with 14-dimensional bottleneck layer
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Figure 7. Clusters of two largest principal components ob-
tained from PCA on 13-dimensional NRMS error distribu-
tions over all testing scenarios for two models: (a) single
hidden-layer DAE model with 512-dimensional bottleneck
layer and (b) proposed 11-layer DAE with 14-dimensional
bottleneck layer
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components using two models: (i) single hidden-layer DAE
model with 512-dimensional bottleneck layer and (ii) pro-
posed 11-layer DAE with 14-dimensional bottleneck layer.
It is apparent from the figure 7 that, even in a reduced dimen-
sion, the proposed model can identify different faults with
high confidence in an unsupervised fashion. However, the
single hidden-layer DAE model can not distinguish between
the faults in lower dimension because it does not have enough
representational capacity for the multi-modal sensor data. Al-
though it has comparable anomaly detection performance, it
can not classify different faults as well as the proposed 11-
layer DAE model due to over-fitting.

5. CONCLUSION AND FUTURE WORK

The authors propose a Deep Auto-encoder (DAE) based fault
detection and disambiguation framework, which is built upon
the concepts of deep learning. This work is one of the few
recent efforts utilizing the large representational capability
of deep architectures for addressing complex PHM prob-
lems. The paper attempts to capture the nominal signature
under a variety of conditions by building and training an 11-
layer DAE on multi-modal sensor data. The proposed frame-
work is trained directly on raw time series from heteroge-
neous sensors without hand-crafting any features based on
domain knowledge. The paper demonstrates the training ap-
proach and performance of the proposed technique via test-
ing it on a large set of realistic data. A high fault detection
rate (∼ 97.8%) along with zero false alarm are achieved by
the the 11-layer DAE model. This paper also successfully
disambiguates among different types of faults with high con-
fidence in an unsupervised way, i.e., via clustering. A thor-
ough comparison (via visualization of sensor-specific NRMS
errors) of the proposed DAE model with a single hidden-layer
DAE model demonstrates the necessity of deep architecture
for building a robust algorithm for fault detection and diag-
nostics. Some future research tasks are:

• further validation on a larger number of fault types,

• introduction of supervised classification of faults,

• testing at simultaneous multi-fault scenarios.
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