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ABSTRACT 

In this paper, a new method is proposed for the bearing 

prognosis based on the energy entropy, in which the 

normalized energy in the frequency spectrum is calculated 

over the cycles, frequency band is selected that shows greater 

decrease relative to the others, and entropy is computed as a 

trending feature. As opposed to the traditional features, which 

exhibit noisy fluctuation, non-monotonic change or only an 

abrupt increase near the end of life, the proposed energy 

entropy shows the smooth and constant decrease over the 

cycles which may represent the degree of fault progression. 

In order to illustrate the advantage, four traditional features - 

RMS, kurtosis, MAS kurtosis and envelope and the new 

feature - energy entropy are examined and compared using 

the three cases of bearing data named FEMTO, IMS and 

LOCAL, all from the bearing life test. 

1. INTRODUCTION 

Bearing is one of the most important components in rotating 

machineries because it can cause catastrophic failure in the 

whole system when not maintained properly. In order to 

prevent failures while extending its use over the bearing’s life, 

many researches have been made under the name of 

prognostics and health management (PHM), which includes 

the data acquisition from the sensor, feature extraction via 

signal processing, and fault diagnosis or failure prognosis to 

aid decision on the maintenance action. Many review articles 

are available that have addressed the state-of-the-art of the 

related techniques, among which some representative ones 

are given in (Lebold et al. 2000, Jardine 2016, Heng et al. 

2009, Lee et al. 2014). To date, most of the studies have been 

made for the diagnostics that estimates the fault severity at 

the current time of operation, which is useful for immediate 

interruption to avoid failures. On the other hand, prognostics 

literature is much smaller, which is to predict how soon the 

failure will take place under the future operation, which 

requires the modeling of fault progression and inherent 

uncertainty for long-term prediction. Compared to the 

diagnostics, the prognostics provides much more advantage 

that it allows operation to its full end of life while enabling 

the maintenance readiness in advance. In this sense, the 

prognostics is a new promising area, which has to be explored 

with more depth.  

In the bearing prognostics, the most common practice is to 

employ vibration sensor that measures the acceleration. The 

challenge of this method is that the raw sensor data are not 

consistent in terms of their degradation pattern and the end-

of-lives, even if they are from the identical bearings and 

operating conditions. Also, they rarely exhibit degradation 

information in its apparent form except near the end of life. 

Therefore, many studies have been devoted to find out proper 

features that can identify the incipient fault and monitor the 

trend over time as the fault develops. Traditionally, the 
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features have been classified into two groups: time domain 

and frequency domain features. Among these, the traditional 

features that are often used in the literature are the root mean 

square (RMS) and the kurtosis in the time domain, and the 

spectral kurtosis and envelope analysis in the frequency 

domain (Yan et al., 2008 & Siegel et al., 2011). Siegel et.al 

(2011) studied prognostics of helicopter oil-cooler bearing by 

extracting and trending these features using the data provided 

by Impact Technologies. Sutrisno et al (2012) and Wang et. 

al (2012) have studied the FEMTO experimental data for the 

IEEE 2012 PHM data challenge competition, in which the 

Moving Average Spectral (MAS) kurtosis and envelope 

analysis were applied respectively.  

Siew et.al (2015) used the data from Bearing Prognostics 

Simulator provided by SpectraQuest, to study fault trending 

using the RMS, kurtosis and envelope parameters. Randall et 

al (2011) has addressed in his tutorial paper the detail of 

several essential techniques necessary to the majority of 

bearing diagnostics, which includes the spectral kurtosis and 

envelope analysis. He also applied the techniques to the three 

cases ranging from high speed bearing for turbine engine to 

the low speed main bearing on a radar tower. The results in 

these studies have shown valuable indication that the features 

can represent the fault severity with reasonable degree. 

However, they have some limitations that make the features 

less useful from the prognostic perspectives. The features 

fluctuate substantially over time even after the signal de-

noising or do not show a distinct pattern of degradation which 

lack the monotonicity in their change over the cycles or show 

only the abrupt increase near the end of life. All these aspects 

render the features difficult to apply to the prognostics.  

In order to overcome this problem, the authors (An et al., 

2016) have recently proposed a new method using the 

entropy decrease which is more suitable for the purpose of 

prognostics. The idea is based on the observation that the 

entropy decreases at certain specific frequencies as the fault 

progresses. As a result of implementation, we have found that 

the entropy feature shows substantial and smooth decrease 

from the early stage of the fault progression. The 

disadvantage is that it is empirical with little physical 

understanding. In this study, an enhanced version is presented 

which shows better performance and provides more physical 

interpretation. The final aim of the prognosis is to predict the 

remaining useful life (RUL) using the degradation trend until 

the specified threshold is reached. This is however not 

addressed in this study. Instead, we focus only on 

investigating the best feature in view of prognostic 

performance. To this end, three cases of the bearing 

experiments are considered, which are the FEMTO data used 

in (Sutrisno et al., 2012 & Wang et al., 2012), IMS data used 

in (Qiu et al., 2006 & Caesarendra et al., 2010), and the data 

from local manufacturer which was made during their 

accelerated life tests. For these data, four existing features: 

RMS, kurtosis, MAS kurtosis and envelope peaks at the fault 

frequencies are examined, trended over cycles and compared 

with the authors’ entropy method to evaluate the performance 

of one over the others. 

2. DATA SET DESCRIPTION 

In this section, three cases of the bearing experimental data 

are described, which are designated as the FEMTO given 

from the PHM conference competition in 2012, the IMS in 

the prognostic data repository by NASA Ames research 

center and the LOCAL from a manufacturer in Korea. Note 

that all of the data are made from the life tests with constant 

speed and loadings conducted in the lab instead of the real 

field operations. Therefore, there is less need to address other 

considerations such as the denoising, order tracking or time 

synchronous averaging to remove influence from the other 

components frequency or the fluctuating speeds. The life 

duration of FEMTO and LOCAL are very short because they 

are made from accelerated tests whereas the IMS data is long 

extending to 30-40 days, which means that the load is normal. 

2.1. FEMTO data 

More detail explanation of FEMTO data and experimental 

configuration is given in the Figure 1. Vibration signals are 

monitored under the radial load given in horizontal direction 

from the two sensors in horizontal and vertical directions. 

Raw data are taken during 0.1 second with 25.6 kHz at every 

10 seconds, which produces 2560 samples in each cycle. 

Operating conditions and number of data are listed in Table 

1. Two data sets are made under three different operating 

conditions respectively. Based on the raw signals, failure is 

assumed when the vertical acceleration reaches 20g. 

 

Figure 1. Experimentation platform 

 

Table 1. Experimental condition 

 

 Radial force Rotating speed 

Condition 1 4000 N 1800 rpm 

Condition 2 4200 N 1650 rpm 

Condition 3 5000 N 1500 rpm 

2.2. IMS data 

The data can be downloaded from ‘Bearing Data Set’, IMS, 

University of Cincinnati NASA Ames Prognostics Data 

Repository. They were used for the study in (Qiu et al 2006 
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& Caesarendra et al. 2010). Four double row bearings (16 

rollers) are installed on a shaft as shown in Figure 2, and the 

rotating speed and radial load are, respectively, 2000 RPM 

and 6000 lbs. Three sets are made from the repeated 

experiment under this condition. Vibration data was collected 

every 20 minutes with sampling rate 20kHz and the data 

length was 20,480points. The test was carried out for 35 days 

until a significant amount of metal debris was found on the 

magnetic plug of the test bearing. 

 
Figure 2. Bearing test rig 

2.3. LOCAL data 

Under the combined loads with radial and thrust being 617 

and 370 kgf, the bearings are operated with 1000 rpm until 

the acceleration level reaches a certain predetermined value. 

The bearing and installed sensor are shown in Figure 3. Three 

and one data set are collected with 8 kHz and 32 kHz 

sampling rate respectively. In all the failed bearings, the 

failure modes are spalling of balls inboard in common. As 

expected, the failure time varies significantly from 3.5 to 11.2 

hours, despite the identical bearings under the same loading 

condition.  

 
Figure 3. Bearing test rig and installed sensor 

3. EXISTING APPROACHES FOR PROGNOSTIC FEATURES 

Before extraction of time domain features, the raw data go 

through a smoothing process by exponential filter with factor 

 =0.9 (Wang  2012). Then the time series RMS and kurtosis 

at each cycle are calculated as follows. 
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The method for MAS kurtosis is explained in (Sutrisno et al. 

2012). At first, time series kurtosis is obtained using a band 

pass filtered signal over a given frequency range. Then 

moving average filter is applied with a specific window size 

to the results and trend the value over time. The monotonicity 

of the increasing trend is quantified by Spearman’s rank 

correlation coefficient between the MAS kurtosis and time. If 

the value is close to 1, it represents perfect monotonic 

increase over time. To maximize the monotonicity of the 

trend, the frequency range is divided by a small interval over 

the spectrum, coefficient is calculated at every interval, and 

determine the optimum range that maximizes the coefficient. 

It should be noted that the spectral kurtosis mentioned here is 

different from those addressed in the literature (Randall 

2011). The word “spectral” may have been assigned due to 

the band pass filtering of the raw signal, which is however 

not the same approach.  

The envelope analysis is explained in (Randall 2011, 

Mclnerny 2003). This method was developed more than 30 

years ago and is now used as a benchmark method. The 

procedure is that the raw signal is band pass filtered in a high 

frequency band in which the fault impulses are amplified by 

structural resonances. It is then amplitude demodulated to 

form the envelope signal using the Hilbert transform. The 

final step is the spectrum analysis of the envelope signal to 

extract the desired diagnostic information at the bearing fault 

frequencies (ball pass frequency, spin frequency and so on) 

and its harmonics. The drawback of the envelope analysis is 

the difficulty in the frequency band selection, which is one of 

the most critical steps that can have a large influence on the 

results. Amon the many criteria suggested for this, the band 

chosen previously from the MAS kurtosis study is used for 

the envelope analysis. 

4. NEW APPROACH USING ENTROPY 

Recently, the authors have developed a new approach based 

on the entropy decrease at specific frequencies. While the 

details are given in (An 2016), the process is briefly 

summarized here for convenience. The steps are illustrated in 

Figure 4, and is summarized as follows. 
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Figure 4. Procedure of entropy feature extraction 

Step 1: Convert the raw data in time domain at each cycle into 

frequency domain using FFT to get the amplitudes as a 

function of frequency.  

Step 2: Reshape the FFT results frequency-wise. That is, the 

amplitude change is given in terms of cycles at each 

frequency (e.g., Frq: 1), which is called frequency-wise plot 

here.  

Step 3: Calculate entropy using the following equation and 

select specific frequencies showing entropy decrease (e.g., 

Frg: 1) among the results over the entire frequencies. 
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Among the several frequencies with entropy decrease, those 

with biggest decrease are selected, average is taken, and this 

is used as the feature. The results by this method for the 

FEMTO data are given in Figure 5(a), in which the curve 

exhibits smooth and gradual degradation. The uniqueness of 

this method is in this behavior, which the authors believe that 

it may represent the fault progression introduced from the 

early stage of the cycles. If we can set a proper threshold for 

the failure to this, the RUL can be predicted with much more 

clarity than the traditional methods.  

 

(a) FEMTO data 

 

(b) LOCAL data with 8kHz sampling rate 

Figure 5. Original entropy for the two cases: FEMTO and 

LOCAL data 

 

The method, however, lacks the physical interpretation about 

why this represents the fault progression. Besides, it has 

failed to show the monotonic degradation for the other cases, 

as shown in Figure 5(b) for the LOCAL data with 8K 

sampling rate. To overcome this, an enhanced version is 

developed in this study, which shows better performance and 

enables more physical interpretation. The procedure is 

outlined as follows. 

Step 1: Convert the raw data in time domain at each cycle into 

frequency domain using FFT, and calculate the energy as in 

the following equation. Then draw the 3-D plot with the 

height being the energy magnitude at the domain of cycle 

versus frequency. This is shown in Figure 6(a) for the IMS 

data set 2, bearing 1. 
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Step 2: Select frequency band which includes the maximum 

value at the initial stage, which is around 1000 Hz in the 

figure. The reason to select this is because the normalized 

energy at this frequency band at the initially state is reduced 

because the energy value grows at the other frequency 

regions due to the fault creation and progression. This is 

evidenced in Figure 6(b), which shows the constant behavior 

at the initially normal state until the 600 cycles, followed by 

the energy increase at the other regions 3000~6000 Hz. Due 

to this, the normalized energy at 1000 Hz is reduced, which 

represents the degree of fault progression.  

Step 3: Calculate entropies at the selected frequency band as 

suggested by Step 2, make average and use it as the feature. 

In the Figure 6(c), the feature curve is shown again for the 

LOCAL data with 8K sampling rate, which exhibits the 

behavior of monotonic decrease. 
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(a) Amplitude trend of IMS data (Set2, Bearing1) 

 

(b) Energy trend of IMS data (Set2, Bearing1) 

 

(c) Energy entropy (LOCAL data) 

Figure 6. Process of entropy extraction from energy trend 

5. RESULTS AND DISCUSSIONS 

In order to examine the performance of four traditional 

features and the entropy of our method quantitatively from 

prognostics viewpoint, Spearman’s rank correlation 

coefficient mentioned earlier is employed. Note that the 

values of all the traditional feature unanimously increase 

whereas the entropy of our method decreases as a measure of 

fault progression. The higher absolute value represents the 

superior performance showing more monotonic degradation 

(increase or decrease) behavior over time.  

5.1. FEMTO data 

For the FEMTO data, trending curves are plotted for the first 

three features – RMS, kurtosis and MAS kurtosis, in which 

the six curves are given for the two data sets from three 

different conditions as was defined in Table 1. In case of 

MAS kurtosis, the whole spectrum of 0~12.8kHz is divided 

by the interval of 500 Hz and find out the range 5500-6000 

Hz is the best. This is used for the MAS kurtosis and envelope 

study. The correlation coefficient values are also given in 

Table 2. As can be seen, the features severely fluctuate (C1S2 

(Condition 1, Set 2) in kurtosis for example) even after the 

exponential smoothing to cancel the noise, do not show 

monotonicity (C2S2 in RMS for example) or increase 

abruptly only near the end (C3S2 in MAS kurtosis), which 

make it hard to make prediction model for prognosis. In the 

Table 2, the coefficient value of C3S1 in MAS kurtosis show 

the best value of 0.9570, which is however not so in practice. 

Therefore, another metric should be introduced in addition in 

the future to complement the drawback of coefficient 

evaluation. 

 

(a) RMS trend 

 

(b) Kurtosis trend 

 

(c) Moving average spectral kurtosis 

Figure 7. Feature trends of FEMTO data 
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Table 2. Spearman’s rank correlation coefficient of FEMTO 

 

 RMS  Kurtosis MAS kurtosis 

C1S1 0.8638 0.9111 0.7747 

C1S2 -0.0226 0.1334 0.8005 

C2S1 0.3428 0.7087 0.8473 

C2S2 0.7998 0.8669 0.8162 

C3S1 -0.6021 0.3974 0.9570                                                                                                                                                                                                                                                                                                                                                                       

C3S2 -0.1878 0.6039 0.6676 

 

In case of envelope, there are four fault frequencies based on 

bearing dimension to keep track of as a measure of fault 

severity, and the results are in Figure 8. Since the inclusion 

of all the data set may make the figure more complex, only 

the ones with the best trend, i.e., the highest coefficient value, 

are given here. Likewise, the features show the same trend as 

above.  

 

(a) Frequency energy trend of BPFO 

 

(b) Frequency energy trend of BPFI 

 

(c) Frequency energy trend of BFF 

 

 (d) Frequency energy trend of FTF 

Figure 8. Envelope analysis of C1S1 

In Figure 9, the result of energy entropy proposed in this 

study is plotted and the coefficient values given in table 3. As 

opposed to the traditional features, the curves show smooth 

and gradual but remarkable degrading behavior, which may 

be useful for the prognostics. 

 

Figure 9. Energy entropy 

Table 3. Spearman’s rank correlation of energy entropy of 

FEMTO 

 

 Entropy trend 

C1S1 -0.9924 

C1S2 -0.9924 

C2S1 -0.9863 

C2S2 -0.9365 

C3S1 -0.9723 

C3S2 -0.9867 

5.2. LOCAL data 

Three sets are examined which are from the 8K sampling rate. 

The frequency band for the MAS kurtosis and envelope 

analysis is 2200-2300 Hz in this case. Results for the RMS, 

kurtosis, MAS kurtosis and energy entropy are given in 

Figure 10 and Table 4. The similar behavior is observed in 

the LOCAL data too. For the envelope analysis, the result is 

not presented here since the similar behaviors to the FEMTO 

are observed. 

 

(a) RMS trend 
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(b) Kurtosis trend 

 
(c) Moving average spectral kurtosis trend 

 

(d) Energy entropy trend 

Figure 10. Feature trends of LOCAL data 

 

Table 4. Spearman’s rank correlation coefficient of LOCAL 

 

 RMS  Kurtosis MAS kurtosis Entropy 

S1 0.8013 0.3050 0.1721 -0.9939 

S2 0.8044 -0.2461 0.1021 -0.9727 

S3 0.5385 0.6867 0.7859 -0.9864 

5.3. IMS data 

Among the three sets of data for one condition, which 

includes the data from two accelerometers, four bearings, the 

set 1 for the bearing 3,4, set 2 for the bearing 1, and set 3 for 

the bearing 3 are chosen to illustrate the result because they 

have reached failure whereas the others did not. The 

frequency band for the MAS kurtosis and envelope analysis 

is 1000-1500 Hz in this case. Results for the RMS, kurtosis, 

MAS kurtosis and energy entropy are given in Figure 11 and 

Table 5. The similar behavior is observed in the LOCAL data 

too. For the envelope analysis, the result is omitted for brevity. 

Set 1 for the bearing 3 : S1, set 1 for the bearing 4 : S2,  

set 2 for the bearing 1 : S3, and  set 3 for the bearing 3 : S4. 

 

(a) RMS trend 

 

(b) Kurtosis trend 

 

(c) Moving average spectral kurtosis 

 

(d) Energy entropy trend 

Figure 11. Feature trends of IMS data 

 

Table 5. Spearman's rank correlation coefficient of IMS 

 

 RMS  Kurtosis MAS kurtosis Entropy 

S1 0.8852 0.8940 0.8456 -0.9953 

S2 0.8050 0.3695 0.6823 -0.9961 

S3 0.8377 0.5982 0.8464 -0.9716 

S4 0.6849 -0.1191 0.3283 -0.9837 

 

As found in the several case studies, the traditional features 

have shown the undesirable behaviors such as the fluctuation, 

non-monotonicity or abrupt increase at the end. On the other 

hand, the energy entropy has shown the unique degradation 
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behavior with smoothness and monotonic decrease for all the 

test cases, which is much more useful for prognostic feature. 

Once the feature is chosen and trended with confidence, the 

remaining step is to set a threshold using the feature. This is 

however another challenge to be solved in the future study. 

Also the method should work well in the real field application 

which involves much greater noise with intervening 

components and variable operating conditions.  

6. CONCLUSIONS 

In this study, new feature, energy entropy, is introduced for 

the purpose of prognostics, and compared against the several 

traditional features available in the literature, which are the 

RMS and kurtosis in the time domain and the MAS kurtosis 

and envelope in the frequency domain. As found in the three 

case studies using FEMTO, IMS and LOCAL, all the results 

showed the same conclusion: the traditional features exhibit 

the noisy fluctuation, non-monotonic change and abrupt 

increase near the end of life, all of which are less useful for 

the prognostics. On the other hand, the proposed energy 

entropy shows smooth and constant decrease over the cycle, 

which may be an indicator of the fault development. Many 

steps are remained for the feature to be valuable in the real 

field applications, and they are left as a future study. 
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