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ABSTRACT 

In asset-intensive services, a well-known challenge is to 

maintain high availability of the physical assets while 

keeping the total maintenance cost low.  In applications of 

high-value machinery such as heavy industrial equipment, a 

traditional approach is to perform periodic maintenance 

according to a runtime-based schedule.  Most equipment 

vendors publish a maintenance schedule based on a 

“standard” or “average” working environment. In addition, 

it is a common practice that maintenance schedules from 

equipment vendors are highly conservative in order to 

reduce in-field failures which gives an adverse perception of 

a vendor’s reputation. Therefore, such a schedule may not 

result in satisfactory performance as measured according to 

the owner’s business objectives. Also, the assumption of 

normal operating condition may not apply in some 

situations. For example, stresses due to frequent overloading, 

continuous usage of engine at a high rate in tough 

environments, machine usage beyond its designed capacity 

can serve as good contributors to excessive wear and 

premature failures. In this paper we propose a novel 

computational framework to build a data-driven 

economically optimized vital sign indicator for a given 

component type and an economic criterion (e.g., average 

maintenance cost per unit runtime) by combining different 

sources of historical data such as total runtime hours, load 

carried, fuel consumed and event information from sensors. 

This new vital sign indicator can be viewed as a transformed 

time scale and used to find the optimal threshold value (or 

“scheduled replacement time equivalent”) for a component 

replacement policy.  Our case study was based on the 

collected data from 50 mining haul trucks over about 6 

years in one of the largest mining service companies in the 

world. We present that the new vital sign indicator-based 

replacement policy for a critical component type largely 

improves on the traditional runtime-based schedule in terms 

of a given economic criterion, achieving a lower total 

maintenance cost of the enterprise. 

1. INTRODUCTION 

A traditional replacement policy for components in asset-

intensive service business is often based on runtime hours-

based fixed time interval (“scheduled replacement time”) 

that the manufacturer of equipment recommends for 

scheduled maintenance. This is based on standard usage in 

an average situation assumed by the manufacturer. Most 

equipment vendors publish a maintenance schedule based 

on a “standard” or “average” working environment. In 

addition, it is a common practice that maintenance schedules 

from equipment vendors are highly conservative in order to 

reduce in-field failures which gives an adverse perception of 

a vendor’s reputation. Therefore, such a schedule may not 

result in satisfactory performance as measured according to 

the owner’s business objectives. Also, the assumption of 

normal operating condition may not apply in some 

situations. For example, stresses due to frequent overloading, 

continuous usage of engine at a high rate in tough 

environments, machine usage beyond its designed capacity 

can serve as good contributors to excessive wear and 

premature failures.  

In asset-intensive services, a well-known challenge is to 

maintain high availability of the physical assets while 

keeping the total maintenance cost low (Jardine & Tsang, 

2013). The optimization of replacement decision policy 

based on component failure predictions has been critical in 

the area of condition-based predictive asset management.  

One of the most popular approaches involves modeling a 

proportional hazard function (Cox PHM) with time-

dependent covariates and a Weibull baseline hazard function 
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(Banjevic, Jardine, Makis, & Ennis, 2001)(Jardine, 

Banjevic, Montgomery, & Pak, 2008).  In practice, the 

modeled hazard function using this approach is not 

guaranteed to be monotonically increasing, and thus, it often 

involves a complicated algorithm to compute the optimal 

policy (Wu & Ryan, 2011). Furthermore, a non-monotonic 

hazard function is not very intuitive and cannot be viewed 

as a new kind of time scale. Equipment managers would 

often like to have a time scale-like monotonically increasing 

measure for the component replacement policy.  Then, they 

could use this new vital sign indicator measure exactly in 

the same way they used the runtime measure for 

replacement decisions.   

In this paper we propose a novel computational framework 

to build a data-driven economically optimized vital sign 

indicator for a given component type and an economic 

criterion (e.g., average maintenance cost per unit runtime) 

by combining different sources of historical data such as 

total runtime hours, load carried, fuel consumed and event 

information from sensors. A vital sign indicator can provide 

a measure that contains useful information with respect to 

the “health” of a piece of a component or equipment, and 

can therefore support improved decision making in terms of 

maintenance planning and execution, as well as production 

maximization. This new vital sign indicator can be viewed 

as a transformed time scale and used to find the optimal 

threshold value (or “scheduled replacement time equivalent”) 

for a component replacement policy.  We provide an 

individualized maintenance plan for each component based 

on its real usage.  Our approach involves classification and 

regression techniques for estimating a hazard rate and uses 

the “individualized” cumulative failure probability model 

for building a vital sign indicator.   

Our case study was based on the collected data from 50 

mining haul trucks over about 6 years in one of the largest 

mining service companies in the world. We present that the 

new vital sign indicator-based replacement policy for a 

critical component type largely improves on the traditional 

runtime-based schedule in terms of a given economic 

criterion, achieving a lower total maintenance cost of the 

enterprise. 

2. COMPONENT REPLACEMENT POLICIES 

2.1. Runtime-based Replacement Policy 

Figure 1 shows an example of the failure probability density 

function with T* (optimal scheduled replacement time) for a 

component type. Assuming that a company has run a 

scheduled replacement policy at T*, at the time of collecting 

the component data for our analysis,  the historical list of all 

components of this component type over a group of 

equipment include running components (at the time of data 

collection), schedule-replaced components, and failure-

replaced components. In Figure 1 each circle represents a 

component in the list. All blue circles before T* correspond 

to running components and their observed runtimes at the 

time of data collection. All blue circles after T* correspond 

to schedule-replaced components. Note that companies in 

practice often do not keep the exact replacement schedule at 

T*.  All red circles before T* correspond to in-field failure 

replacements. Note that running and scheduled replacement 

components are considered “right-censored” samples in 

survival analysis. That is, we know that the components 

survived at the time of data collection or scheduled 

replacement, but cannot tell when those components would 

actually fail in the future.    

 
 

Figure 1. An example of failure probability density function 

with the optimal scheduled replacement time T* 

 

 
Figure 2. An example of vital sign indicator with the 

optimal scheduled replacement vital sign value v*  

 

Note in Figure 1 that the standard deviation of the failure 

probability density function is very large; thus, we have too 

many in-field failure-replaced components  

2.2. Vital sign-based Replacement Policy 

Now we conceptually explain the development of our new 

vital sign indicator model.  For the historical list of all 

components, we also have the corresponding time-stamped 

logs of runtime hours (meter), total fuel consumption, total 

work (load) and sensor events. Imagine that for the 

component data and the failure probability density function 

shown in Figure 1, we can design a vital sign indicator 
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(vertical axis) in Figure 2 using some features derived from 

all available information. Note that the time/color of each 

circle in Figure 2 are exactly the same as those of the 

corresponding circle in Figure 1, and the color (failure 

replacement (red), running or scheduled replacement (blue)) 

of each path is based on the collected component data (i.e., 

the traditionally employed runtime-based replacement 

policy), not according to the new vital sign-based 

replacement policy.  

Then, we propose a vital sign indicator-based scheduled 

replacement policy that replaces components when their 

vital sign value reaches a threshold value v*.  In Figure 2, 

the dotted line shows the threshold value. Each path in the 

runtime vs. vital sign indicator 2-dimensional plot 

corresponds to a component and shows its vital sign 

indicator profile over the runtime. Note that the runtime (= 

the value in the horizontal axis) at the intersection point 

between the threshold line and the path for a component 

indicates the actual replacement time using the policy.   

Keep in mind that the failure probability density function in 

terms of the vital sign indicator axis depends on our model 

of a vital sign indicator. Intuitively, one desirable 

characteristic for being a good vital sign indicator is a small 

standard deviation in the vital sign indicator axis.  This 

contributes to a better classification, using a constant v*, 

between the failure-replaced components (above the v* line) 

and the other running/schedule-replaced components (below 

the v* line). In other words, if this vital sign indicator-based 

scheduled replacement policy had been used in the past, 

most of failure-replaced components in the collected data 

(red circles) would have been replaced on schedule (at v*) 

before the actual in-field failures. However, this 

characteristic about the failure probability is not a sufficient 

condition to be a good vital sign indicator model, since the 

average runtime to scheduled replacements (i.e., the average 

of actual runtimes from intersection points at v*) and the 

average runtime to failure replacements should also be large 

values. For this reason, we should look into the shape of 

vital sign paths in the runtime vs. vital sign indicator 2-

dimensional plot. We will explain it using economic 

optimization equations below in more detail.  

3. ECONOMIC OPTIMIZATION 

3.1. Runtime-based Replacement Policy 

Let 



F(t)  be the cumulative failure probability function at 

runtime t (=



Pr(T  t)  where 



T
 
is a random variable 

denoting the runtime at failure), 



S(t) 1F(t)  be the 

survival probability function at t. When we deal with the 

dataset from real industry practice, it is very likely that there 

is no failure data after the scheduled replacement time the 

company has employed during the period of the dataset. 

Therefore, we would not make a good estimate on the exact 

shape of the function over the time after the current 

scheduled replacement time. However, in this paper we 

assume that the survival probability function can be 

estimated using a parametric Weibull fit (Fox, 2002) to the 

runtime and failure data. 

For our economic optimization analysis, we are provided the 

economic and logistic parameters including 



C f  = in-field failure replacement cost, which includes the 

part and labor cost to replace the component, the retrieval 

cost of equipment from the field, and lost revenue due to 

blocking other equipment when it fails in the field (called 

“circuit break”), 



C p  = scheduled replacement cost, which includes the part 

and labor cost to replace the component, 

dc  = cost per unit downtime of the equipment, including 

lost revenue that could have been contributed by that piece 

of equipment, 



DT f = down time due to an in-field failure, 



DTp  = down time due to a scheduled replacement. 

In general, in-field failure replacement cost and downtime 

are greater than scheduled replacement cost and downtime, 

respectively ( pf CC  , pf DTDT  ).  

Denote by 



t p  the scheduled replacement time for the policy, 

which is our optimization target.  With this scheduled 

replacement policy, the mean time to failure replacement 

that happens before 



t p  
is denoted by ft

 
and estimated as: 

    
ft




1

F(t p )
tf (t)dt

0

t p

  t p 

F(t)dt
0

tp


F(t p )

 

A new component lifetime cycle starts at the installation 

time of a component. The component may be replaced due 

to an in-field failure or a scheduled replacement finishing its 

lifetime cycle.  

For a runtime-based replacement policy, we choose tp to 

minimize the average maintenance cost per unit runtime. 

average total time per cycle  

= 



(t f DTf )F(tp ) (tp DTp )(1F(tp )) 

average run time per cycle  = ))(1()( pppf tFttFt   

average maintenance cost per unit runtime  

= 
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=
))(1()(

 ))(1)(()()(

pppf

ppdppfdf

tFttFt

tFDTcCtFDTcC





 

=
X

DTcC
X

tF
DTDTcCC pdp

p

pfdpf

1
)(

)(
))((   

where  X  = average run time per cycle 

                  = ))(1()( pppf tFttFt   

As tp (= the scheduled replacement time) is set to a higher 

value, there is more chance of in-field failure replacements, 

that is, )( ptF (= the total probability of in-field failure 

replacements) becomes larger (See Figure 3). 

 

 
Figure 3. The trade-off between the average runtime per 

cycle and )( ptF (= total in-field failure probability) 

 

Since 



DT f  > 



DTp  and 



C f  > 



C p  in general, the 

optimization goal of minimizing the average maintenance 

cost per unit runtime is achieved by increasing average 

runtime per cycle (X = ))(1()( pppf tFttFt  ) and 

decreasing in-field failure probability per cycle )( ptF . Note 

that there is a trade-off between decreasing )( ptF
 
and 

increasing the average runtime per cycle.  In general, 

decreasing )( ptF  that would involve fewer failure 

replacements can be obtained by decreasing pt , but this 

then reduces the average run time per cycle.  Note that ft
 

< pt  in general. Also, note that as )( ptF
 
becomes smaller, 

pt  becomes more weighted in the estimate of average run 

time per cycle. Given fdpf DTcCCtF   , , , ),(  and



DTp , the 

average maintenance cost per unit runtime is a function of 



t p , which is denoted as



g.    

)( g pt
 ))(1()(

 ))(1)(()()(

pppf

ppdppfdf

tFttFt

tFDTcCtFDTcC





 

It is important to note that the cumulative failure probability 

function



F(t)  is fixed and can be estimated using the failure 

data for the component type we analyze. Note also that 



t f  

depends on ).(tF Then, the optimized time threshold for the 

scheduled replacement policy is ) ( g maxarg*
p

t
p tt

p

 . 

3.2. Vital Sign-based Replacement Policy 

Let v be vital sign indicator. 



ˆ F (v)  be the cumulative failure 

probability function at vital sign v (=



Pr(V v)  where 



V
 
is a 

random variable denoting the vital sign at failure),



ˆ S (v) 1 ˆ F (v)  be the survival probability function at v.  

Note that we estimate this survival probability function by a 

local regression (loess) on the Kaplan-Meir (KM) estimate 

(Therneau, 2000) using the vital sign and failure data.  

Denote by 



v p  the vital sign threshold value for scheduled 

replacements for the vital sign-based scheduled replacement 

policy, which is our optimization target. Then, )(ˆ
pvF  is the 

total expected probability of failure replacements, and 

)(ˆ1 pvF  is the total expected probability of scheduled 

replacements. With this scheduled replacement policy, the 

expected time to scheduled replacement at 



v p  is denoted by 



ˆ t p . Also, the expected time to failure replacement is 

denoted by 



ˆ t f .  In this paper we estimate  and  under 

reasonable assumptions.  

Let            denote the set of all components whose 

vital sign value reaches 



v p  in the dataset, whereas 

           denotes the set of all components whose 

vital sign value 



v  vp  for all time t in the dataset. 

Let         denote the actual ratio of the number of 

components in             to the total number of 

components in the dataset. The actual ratio         is 

equal to or smaller than  (= total expected 

probability of scheduled replacement), since the total 

expected probability takes right-censored components 

(running at the time of data collection) into account. There 

are running components that would fail with       We 

assume that those components contribute to scheduled 

replacements corresponding to the difference between the 

expected probability and the actual ratio (= 

         ) and that they are schedule-replaced at    with 

the cumulative probability function of the replacement time, 

)(ˆ1)(ˆ tStF
pp vvvv    where )(ˆ tS

pvv  is the survival 

probability function estimated using a Weibull fit to the 

runtime and failure data of           . In other words, 

we assume that )(ˆ tF
pvv  estimated using             is 

uniformly applied to all the range of     .  Thus, the 

mean scheduled replacement time over those components 

corresponding to   [    ] is the same as the 

mean failure time over      [    ], which is denoted by 

r and estimated as r = 



0

)(ˆ dttS
pvv . Thus, 

Runtime
pt

)( ptF

Failure probability 

density function



ˆ t p



ˆ t f

)(ˆ1 pvF

)(ˆ1 pvF

)(ˆ1 pvF
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= expected time to failure replacement  = .   



ˆ t p = expected time to scheduled replacement 

     =      [    ]                   [    ]  + 

      (         ) r } / ( ). 

Note that                   [    ]   is the average of 

scheduled replacement times at      over     [    ]. 

  

Alternatively, we may assume that components in 

           that would fail after tc contribute to 

scheduled replacements for the difference (= 

         ), whereas components in            that 

would fail before tc  are failure-replaced. Also, we can 

estimate tc from the constraint )(ˆ
pvF = )(ˆ

cvv tF
p  (   

        . That is, the total expected probability of failure 

replacements over all components (= ) should be the 

same as the actual ratio of the number of components in 

           to the number of total components in the 

dataset (=          ) multiplied by the total expected 

probability of failure replacements before tc  over 

           (= ). Thus, 

= expected time to failure replacement   

     = 
)(ˆ

)(ˆ
0

cvv

t

vv

c
tF

dttF

t

p

c

p




 . 

Then, the mean scheduled replacement time over those 

components corresponding to   [    ] is 

denoted by r and estimated as 

r = {    }/( )(ˆ1 cvv tF
p ).  

 = expected time to scheduled replacement 

     =      [    ]                   [    ]  + 

      (         ) r } / ( ). 

 

For this vital sign-based replacement policy, we choose 



v p  
to minimize the average maintenance cost per unit runtime. 

Average maintenance cost per unit runtime 

= 
                                  

                         
 

=
))(ˆ1(ˆ)(ˆˆ

 ))(ˆ1)(()(ˆ)(

pppf

ppdppfdf

vFtvFt

vFDTcCvFDTcC





 

=
X

DTcC
X

vF
DTDTcCC pdp

p

pfdpf ˆ

1
)(

ˆ

)(ˆ
))((   

where X̂  = average run time per cycle 

                  = ))(ˆ1(ˆ)(ˆˆ
pppf vFtvFt   

 

Figure 4.  Vital-sign indicator functions steeply increasing 

around 



v p : no strong trade-off between the average runtime 

per cycle and 



ˆ F (v p )  (= total in-field failure probability) 

 

As in the analysis of the runtime-based policy, the 

optimization goal of minimizing average maintenance cost 

per unit work is achieved by increasing average run time 

per cycle (= ))(ˆ1(ˆ)(ˆˆ
pppf vFtvFt  ) and decreasing in-

field failure probability per cycle 



ˆ F (v p ) .  However, in 

contrast to the runtime-based policy, with vital-sign 

indicator functions steeply increasing around 



v p , there is 

no strong trade-off between decreasing )(ˆ
pvF  and 

increasing the average run time per cycle.  In other words, 

decreasing 



ˆ F (v p )  that would involve fewer failure 

replacements can be obtained by decreasing pv
 
but this 

does not necessarily lead to a large decrease of pt̂  (= the 

average of scheduled replacement times at



v p  ) when the 

vital-sign indicator functions are steeply increasing around 



v p  (compared with slowly increasing shaped functions). 

More importantly, considering the definitions of pt̂  

(involving the term                  [    ]  ) and ft̂  

(involving or )(ˆ tF
pvv ), if decreasing pv  would 

allow failures that happen later in time to be schedule-

replaced, this would tend to increase both pt̂  and ,ˆ
ft as 

well as decreasing 



ˆ F (v p ) ; thus, this helps the optimization 



ˆ t f 



0

)(ˆ dttS
pvv
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
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goal. Also, if decreasing pv  would allow failures that 

happen earlier in time to be schedule-replaced, this would 

tend to decrease pt̂  but still tend to increase ft̂  and 

decrease 



ˆ F (v p ) . Note that in contrast to the runtime-based 

policy, ft̂  is not necessarily smaller than than pt̂  for a vital 

sign-based policy. That is, decreasing  pt̂  does not lead to 

decreasing ft̂ . The values of pt̂  and ft̂  at the optimization 

of 



v p  rely on the complete distribution and paths in the 

runtime vs. vital sign indicator 2-dimensional plot.  

It is critical to note that the shape of cumulative failure 

probability function )(ˆ vF  for any candidate threshold v 
 

can be changed according to our modeling parameters to 

design a vital sign indicator. Note also that  and ft̂  for 

any candidate threshold v   (i.e., functions of v  ) depend on 

the designed vital sign indicator.  

Given , , ,, , pfdpf DTDTcCC ),(ˆ vF   )(ˆ vt p   and )(ˆ vt f 
 
for 

a designed vital sign indicator, the average maintenance cost 

per unit runtime is a function of 



v p  
, which is denoted as



ˆ g .    

) )(ˆ),(ˆ  ),(ˆ|(ˆ vtvtvFvg fpp 
 
= 

 
))(ˆ1)((ˆ)(ˆ)(ˆ

 ))(ˆ1)(()(ˆ)(

pppppf

ppdppfdf

vFvtvFvt

vFDTcCvFDTcC




 

Thus, the value of



ˆ g  at 



v p  
is determined by our design of the 

vital sign indicator, which is what the paths of vital sign 

over time look like.  

Then, the optimized vital sign threshold value for the 

scheduled replacement policy using this vital sign indicator 

is ) )(ˆ),(ˆ ),(ˆ|(ˆ maxarg* vtvtvFvgv fpp
v

p

p

 . 

We compare the runtime-based component replacement 

policy with the new designed vital sign-based replacement 

policy in terms of the average maintenance cost per unit 

runtime. That is, we compare 



g (t p
*

)
 
with 

)).(ˆ),(ˆ ),(ˆ|(ˆ * vtvtvFvg fpp     

If  ))(ˆ),(ˆ ),(ˆ|(ˆ * vtvtvFvg fpp 
 
> 



g (t p
*

), this means that the 

designed vital-sign based replacement policy is more 

beneficial in terms of the economic criterion. 

4. BUILDING A VITAL SIGN INDICATOR BASED ON 

CLASSIFICATION AND REGRESSION 

 

 

(a) Convex-shaped vital sign indicator model 

 

(b) Concave-shaped vital sign indicator model 

Figure 5. Comparing convex-shaped and concave-shaped 

vital sign indicator models 

 

In Figure 5(a) and (b), we compare two hypothetical vital 

sign indicator models (convex-shaped and concave-shaped) 

when the failure probability density functions in the vital 

sign indicator axis are the same, although this would hardly 

happen in practice. For the same vital sign threshold value 



v p , the convex shape in Figure 5 (a) would have a greater 

average runtime to scheduled replacement  (



ˆ t p = the 

average of runtimes from all intersection points) than the 

concave shape in Figure 5 (b). The convex paths would 

predict the upcoming failures near the actual failure times, 

whereas the concave paths would predict the upcoming 

failures too early.  The concave paths would have a smaller 

average runtime due to too early replacements.  Thus, in 

general, the convex-shaped vital sign indicator model would 

be more desirable than the concave-shaped one.  This is also 

why we should look into the complete vital sign paths, not 

just examining the shape of failure probability density 

function or 



ˆ F (v p ) . 

Before explaining our vital sign indicator model, we first 

introduce the notion of “individualized cumulative failure 

pt̂
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probability function”.  For each individual component, let us 

consider a hypothetical population of components that share 

the same history of covariates as that component has. Then, 

we can define a cumulative distribution function of the 

failure time for the population. We call it the individualized 

cumulative failure probability function for the component. 

In addition, the individualized cumulative failure probability 

function       of component j has the following relationship 

with the individualized cumulative hazard function      : 

       = 1 –        = 1 – exp(      ) where       is the 

individualized survival probability function.  

In this paper we model the vital sign indicator using the 

individualized cumulative failure probability function. That 

is, the vital sign indicator for a component is the same as its 

individualized cumulative failure probability over runtime.  

In the runtime-based policy we select the best scheduled 

replacement time so that the cumulative failure probability 

)( ptF  optimizes the economic criterion. In contrast, in the 

vital sign-based policy for scheduled replacements, we 

apply a selected vital sign threshold value to the 

individualized cumulative failure probability functions       

of components. This is the same as applying a common 

threshold to the individualized cumulative hazard functions 

        Note that this individualization in cumulative failure 

probability (or cumulative hazard) is critical to allow each 

component to have its own transformed time scale for the 

replacement policy.  

The individualized cumulative hazard       assesses the 

total amount of accumulated risk that the component j has 

faced from the beginning of time until the present, while the 

(instantaneous) hazard rate assesses the risk that a 

component which has not yet had the failure so will 

experience it within a unit of runtime (Singer & Willett, 

2003). Compared to using the hazard rate in designing a 

scheduled replacement policy, applying the individualized 

cumulative hazard       has some advantages. First, in 

contrast to the hazard rate, the individualized cumulative 

hazard may capture the accumulated wear and tear over the 

component runtime. Second, the individualized cumulative 

hazard is always increasing, whereas the hazard rate may be 

fluctuating up and down over the runtime. Note that the 

characteristic of monotonically increasing is necessary 

because the vital sign indicator is conceptualized as a 

transformed time scale.  In addition, people usually think 

that the accumulated wear and tear is always increasing over 

the runtime, that is, the quality of a component becomes 

worse with runtime. 

Considering that our dataset includes daily-interval samples, 

we define the daily hazard       on date d for component j 

by the total hazard during the daily runtime. That is, daily 

hazard = hazard rate × daily runtime.  Then, we can estimate 

the individualized cumulative hazard by summing up all 

daily hazards until the present time t: 

       ∑                                where Meter(j,d) is 

the  accumulated runtime hours over days up to and 

including date d. 

 

 

Figure 6. An example of the “designed” daily hazard as a 

regression target variable  

 

It is important to note that the “estimated” daily hazard 

depends on our selection of covariates and the model.  Also, 

daily hazard estimates from a desirable model would predict 

its failure near the date of actual failure time. Wrong 

predictions or too early predictions of failures would lead to 

the reduction of average runtime. Thus, it will be better to 

find the covariates and model that enable the daily hazard 

estimates to be convex-shaped and very close to the 

maximum value (= 1) near the date of actual failure time 

(e.g., Figure 6). In practice, however, we do not require the 

daily hazard estimates to be necessarily convex-shaped, 

because it may not be possible with our selected features 

and modeling choice.  We only want the individualized 

cumulative hazards to satisfy some desired characteristics 

(monotonically increasing, high values of 



ˆ t p  and 



ˆ t f , high 

vital sign values on the failure times) for the economic 

criterion. Thus, we set up our problem of designing a vital 

sign indicator model as a regression task where the 

regression target variable is the “designed” daily hazard 

 ̃     we specify on any date  d  for component j  as follows:  

- If the component was failure-replaced,  ̃     
                             where Meter(j,d) is the 

total runtime hours up to and including date d, TF(j) is the 

finally observed date (or the replaced date), and     . 

- If the component was schedule-replaced or actively 

running,   ̃                       
  where      

                    ] = the maximum total runtime hours 

over all components in the dataset, and           a small 

positive number close to 0 (e.g.,       .  

Runtime

Daily Hazard

Red circle 

(failure 

replacement)

Blue circle

(running 

or scheduled 

replacement) 
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That is, shown as in Figure 6, the first equation satisfies the 

condition that failure-replaced components have the 

maximum value (= 1) near the date of actual failure time. 

Also, the second equation allows the running/schedule-

replaced components to have low values over their runtimes.  

We build vital sign indicator models by performing 

regression tasks with differently designed daily hazard 

setups (different   and    values), and find the best vital 

sign indicator model in terms of the economic optimization 

criterion estimate by leave-one-component-out cross-

validations.  We will describe it below in detail. 

Provided that we have the list of past replaced components 

(failure or scheduled replacements) and current running 

ones for a component type over a group of equipment as 

well as the corresponding time-stamped logs of runtime 

hours (meter), total fuel consumption, total work (load) and 

sensor events, we propose a framework of building a vital 

sign indicator for the component type using regression. 

Suppose that there are totally J components that were past 

replaced or are actively running for the target component 

type.  For component j (=1, …, J), the start date of service is 

TS(j), and the final date of observation is TF(j). Note that the 

final date of observation is defined as the replaced date for 

past components or the last observed date for running 

components. For this task, the overall dataset includes all 

points x(j,d) over component j (=1, …, J) and date d (=TS(j), 

…,TF(j)).   

Input data:  

From the start date of service of component j,  

 Meter(j,d) = accumulated runtime hours over days up to 

and including date d 

 Fuel(j,d)  = accumulated fuel consumption over days up 

to and including date d 

 Load(j,d) = accumulated number of loads (total work) 

over days up to and including date d 

 EventCount(j,d) = accumulated number of relevant 

sensor events for the target component type over days 

up to and including date d 

 

Note that Meter(j, TS(j)) = 0,  Fuel(j, TS(j)) = 0, Load(j, 

TS(j)) = 0, and EventCount(j, TS(j)) = 0.  Here we assume 

that the relevant sensor event types for the component type 

are selected using the significance test in a univariate Cox 

proportional hazard model for each event type (Hastie, 

Tibshirani, Friedman, & Franklin, 2005)(Bair, Hastie, Paul, 

& Tibshirani, 2006). But other techniques including 

frequent sequence mining (Zaki, 2001) on component 

failure and event data can be exploited for the same purpose.   

Given the parameters such as  

 Nsmooth = positive integer for a smoothing filter,  

 Nfuel = positive real threshold value for counting the number 

of dates with high daily fuel rate,  

 Nload = positive real threshold value for counting the number 

of dates with high daily load rate,  

we compute intermediate variables as follows. Note that 

these intermediate variables are used to calculate features. 

Also, the purpose of Nfuel and Nload is to count outliers. 

Although we present this simple rule-based outlier detection 

here, our framework allows other sophisticated anomaly 

detection algorithms to be applied for more effective feature 

generation.   

Intermediate variables:  

 DailyMeter(j,d)  = daily meter hours on date d 

= Meter(j,d) – Meter(j,d-1) 

 DailyFuel(j,d)  = daily fuel consumption on date d  

= Fuel(j,d) – Fuel(j,d-1)  

 DailyLoad(j,d)  = daily number of loads on date d  

= Load(j,d) – Load(j,d-1) 

 SmoothedDailyMeter(j,d) = average daily meter hours 

over past Nsmooth days on date d  

 SmoothedDailyFuel(j,d) = average daily fuel 

consumption over past Nsmooth days on date d 

 SmoothedDailyLoad(j,d) = average number of loads 

over past Nsmooth days on date d 

 DailyFuelRate(j,d) = SmoothedDailyFuel(j,d) /  

SmoothedDailyMeter(j,d) 

 DailyLoadRate(j,d) = SmoothedDailyLoad(j,d) / 

SmoothedDailyMeter(j,d) 

 HighFuelRateCount(j,d) = accumulated count of days 

in which the daily fuel rate > Nfuel over days up to and 

including date d 

 HighLoadRateCount(j,d) = accumulated count of days 

in which the daily load rate > Nload  over days up to and 

including date d 

 

Before doing the regression task, we perform a classification 

task to estimate the probability of having the component 

failure within next M runtime hours from each date. This 

estimated failure probability can be used as a key predictor 

variable in the later regression task.  We observed that this 

failure probability improved fitting to the designed daily 

hazard in the regression task.   

 

For the classification task, we now explain how to compute 

features and assign labels to model the predicted failure 

probability.  

 

Features for the classification task: 

 HighFuelRateCountPerMeter(j,d) = 

HighFuelRateCount(j,d) / Meter(j,d) 

 HighLoadRateCountPerMeter(j,d) =  

HighLoadRateCount(j,d) / Meter(j,d) 

 TotalFuelRate(j,d) = Fuel(j,d) / Meter(j,d) 

 TotalLoadRate(j,d) = Load(j,d) / Meter(j,d) 

 TotalEventRate(j,d) = EventCount(j,d) / Meter(j,d) 
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Label assignment for the classification task: 

We assign the classification label L(j,d) to each point x(j,d) 

that corresponds to date d for component j.  Note that x(j,d) 

is a multi-dimensional vector of classification features. 

Among all historical data of component replacements, there 

are two types of replacement on the final date of 

observation: scheduled replacement and in-field failure 

replacement. The goal of the classification task is to 

estimate the failure probability within the next M runtime 

hours from each date d.  With binary classification labels of 

Failure and No Failure classes, 

 For a point x(j,d) on a failure-replaced component j, 

when Meter(j, d) is within  M  meter hours of the failure 

replacement (that is, Meter(j,d) > Meter(j, TF(j)) - M ), 

classification label L(j,d) is assigned Failure class. 

Otherwise, classification label L(j,d) is assigned No 

Failure class. 

 For any point x(j,d) on a schedule-replaced component 

j, classification label L(j,d) is assigned No Failure class. 

 For any point x(j,d) on running component j, 

classification label L(j,d) is assigned No Failure class. 

To measure the performance of our model, we propose and 

use leave-one-component-out cross validation. That is, for 

each run corresponding to a component j (= 1,…, J), we 

split the overall dataset into the test dataset of all points 

from component j and the training dataset of all points from 

all J-1 remaining components k ( j), build a vital sign 

indicator model based on the training dataset only and 

compute the vital sign indicator values on all points in the 

test dataset.   In more detail, we have J runs in total, and in 

each run corresponding to a component j we perform the 

steps below.  

Initial Parameters:   and    (designing daily hazards), 

Nsmooth, Nfuel, Nload (computing features), M (modeling failure 

probability) 

Step 1. Divide the overall dataset into the test dataset of all 

points from one component j and the training dataset of all 

points from remaining components. 

Step 2. Using only the training dataset, perform the 

classification to build a binary classifier (e.g., applying 

Support Vector Classification (Cristianini & Shawe-Taylor, 

2000)) to compute the failure probability Pfailure(j, d) (= 

probability of being Failure class) on each point.  This 

estimated probability can be viewed as the failure 

probability within the next  M  runtime hours from date d. 

 

Step 3. Design the target variable for the regression task. 

This regression target variable  ̃     for any component k 

( j) in the training dataset should have the desired 

characteristic of the daily hazard such as being 

monotonically increasing, convex-shaped, and the 

maximum value on failure.  

Step 4. Using only the training dataset, build the regression 

model (e.g., applying Support Vector Regression 

(Scholkopf & Smola, 2002) to target daily hazard  ̃     

with feature variables such as Meter(k,d), Fuel(k,d), Load(k, 

d), EventCount(k,d) and Pfailure(j, d). 

Step 5.  Apply the built regression model to obtain the 

estimated daily hazard        for each point x(j,d) on 

component  j  in the testing dataset. 

Step 6. Compute the individualized cumulative hazard on 

component j,         ∑                               . 

Step 7. Compute the individualized cumulative failure 

probability on component j,       = 1 – exp(      ). 

After all J runs in leave-one-component-out cross 

validations, we can obtain the vital sign indicator values 

over all components. Given these values, we perform an 

optimization task to obtain the optimal threshold value for 

the replacement policy in terms of the economic 

optimization criterion such as the average maintenance cost 

per unit runtime.  Note that in a threshold-based 

replacement policy, a component should be replaced when 

the vital sign indicator value reaches a threshold value. 

Optionally, we may use this estimated optimal threshold 

value to normalize the vital sign indicator.  Then, a 

component should be replaced when its vital sign is 100% 

of wear.  

In general, the parameter selections   ,  , Nsmooth, Nfuel, Nload, 

M) influence the ultimate model. Thus, we need to find the 

optimal parameters to obtain the best vital sign indicator 

model in terms of our optimization criterion. 

5. CASE STUDY 

Our proposed framework of building the vital sign indicator 

and optimizing the economical profit was tested with one of 

the largest mining service companies in the world.  The 

collected data includes the logs of daily fuel consumption, 

daily number of loads moved, daily meter hours, sensor 

event data, and component replacement history on 50 

mining haul trucks over the period from January 1st 2007 to 

November 11th 2012. Each truck is equipped with a set of 

sensors triggering events on a variety of vital machine 

conditions. Note that the estimated overall cost of downtime 

for one of these haul trucks amounts to about 1.5 million 

USD per day.  Therefore, the financial impact of reducing 

the downtime is very large.  This is because not only is the 

scheduled maintenance cost high, the total cost due to 

unscheduled in-field failure is even higher. When one piece 

of equipment breaks down, in addition to stopping its own 

production, it may block other equipment from producing. 

The goal of our vital sign indicator is to optimize the 

tradeoff between scheduled replacement cost and 

unscheduled failure cost, to achieve a lower total 

maintenance cost of the enterprise. 
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(a) (b) 

  

(c) (d) 

Figure 7. The individualized cumulative hazard and the vital 

sign indicator, (a) and (b) from SVC+SVR model, (c) and (d) 

from SVC+Cox model.  Red = Failure replacements, Green 

= Scheduled replacements, and Blue = Running at the time 

of data collection  

 

 

In this section we present our application and results 

focused on one specific component type (called “X1”).  To 

use our framework explained in the steps above, we should 

choose a pair of classification and regression algorithms. In 

general we can apply any algorithms for this purpose, but 

here we mainly present our results using Support Vector 

Classification (SVC) and Support Vector Regression (SVR).  

We found out that these algorithms using kernel tricks 

worked better than other basic algorithms including 

linear/quadratic discriminant analysis, generalized linear 

models and Cox PH regression. Also, we compared vital 

sign indicator models obtained using different parameter 

settings of   ,   (designing daily hazards), Nsmooth, Nfuel, Nload 

(computing features) and M (modeling failure probability) 

in terms of our optimization criterion. Here we show the 

result with the RBF kernel and the best setting of    
       , Nsmooth = 60, Nfuel = 190, Nload =3.0, M = 4890  in 

our application.  

 
 

(a)  ̃     (b) )(tS  

  

(c) )(ˆ vS  (d)  

Figure 8.  (a) Designed daily hazard (          , (b) 

Survival probability in runtime (KM, Weibull), (c) Survival 

probability in vital sign indicator (KM, loess), (d) Survival 

probability for            (KM, loess) 

 

 

Table 1. Comparison between the traditional runtime-based 

policy and the vital sign indicator-based policy  

 

  Runtime-

based policy 

Vital sign-

based policy 

Threshold 
pt = 16500  pv = 0.50 

Total failure probability )( ptF =0.63 



ˆ F (v p )=0.21 

Expected time to scheduled 

replacement  
pt  = 16500 = 14848 

Expected time to failure 

replacement 
ft = 8708 = 7311 

Avg runtime per cycle 11592 13201 

Avg failure replacement 

cost per unit runtime 

$30.6 $9.3 

Avg scheduled replacement 

cost per unit runtime 

$15.6 $27.9 

Avg maintenance cost per 

unit runtime 

$45.6 $37.2 

 

)(ˆ tS
pvv



ˆ t p



ˆ t f
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The economic and logistic parameters for the target 

component type are as follows:



C f  = failure replacement 

cost = $443600, 



C p  = scheduled replacement cost = 

$374400, dc  = cost per unit downtime of the equipment = 

$2000, 



DT f = down time due to an in-field failure = 64.8 

hrs, 



DTp  = down time due to a scheduled replacement = 48 

hrs.  Note that ( fdf DTcC  )/( pdp DTcC  ) = 1.22. 

Figure 7(a) and (b) show the individualized cumulative 

hazard and the vital sign indicator, respectively, for the 

model based on SVC and SVR.  In the figures, each line 

corresponds to a component.  The color of the line and 

corresponding end point indicates whether the component 

had a failure replacement at the end (red), were running at 

the time of data collection (blue, right-censored) or had a 

scheduled replacement at the end (green, right-censored).  

Figure 8(a) shows the designed daily hazard. The optimized 

vital sign threshold was 0.50. Based on two different 

approaches explained to estimate  and , we obtained 

almost similar values of the criterion ($37.1 and  $37.2). 

Figure 8(b),(c) and (d) show survival probabilities such as 

),(tS  )(ˆ vS  and ).(ˆ tS
pvv  Considering that the cumulative 

failure probability corresponds to 1 − survival probability 

(that is, )(tF = ),(1 tS  )(ˆ vF = )(ˆ1 vS ), note that )( ptF = 

0.63 > 



ˆ F (v p )  = 0.21.  This significant reduction in total 

expected failure probability is a necessary condition for 

being a good vital sign indicator.  Also, comparing  

 and )(tS  in  Figure 8(b) and (d),  we find that the 

expected lifetime of            alone is significantly 

longer than that of all components in the dataset.  

Table 1 compares the runtime-based and vital-sign based 

replacement policy in terms of the average maintenance cost 

per unit runtime. There is about 20% cost reduction with the 

vital-sign based policy, compared to the runtime-based 

policy. The new vital-sign based policy with vital sign 

threshold = 0.5 has some false failure predictions so 

involves higher average scheduled replacement cost per unit 

runtime than the runtime-based policy ($27.9 > $15.6), but 

the vital-sign based policy has significantly smaller average 

failure replacement cost per unit runtime ($9.3 << $30.6) 

and thus, overall it is better than the runtime-based policy. 

We tested Cox PH regression in combination with SVC in 

our framework. In fact we compared several Cox PH 

regression models using differently selected features as 

time-dependent covariates. Then, we observed that the Cox 

PH regression simply using the SVC-estimated failure 

probability as the only one time-dependent covariate worked 

best among them. Figure 7(c) and (d) show the 

individualized cumulative hazard and the vital sign indicator 

from this model.  But, this still performed a bit worse ($38.0) 

than the SVR-based model ($37.2). Note that while Cox PH 

regression considers only the covariate values at sampled 

failure times (i.e., maximizing the partial likelihood), SVR 

can consider covariate values at all times (i.e., maximizing 

the fit to the complete paths of the designed target daily 

hazards).    

6. CONCLUSION AND DISCUSSION 

We compared our vital sign indicator-based policy with a 

traditional runtime-based policy in terms of the average 

maintenance cost per unit runtime. When the failure 

replacement cost of a component is extremely high, it is 

critical to reduce the total number of in-field failures by 

following the recommended option for decreasing the total 

expected probability of failures. We modeled our vital sign 

indicator based on “individualized” cumulative failure 

probability function for each component. This new indicator 

as a transformed time scale allows us to have an 

individualized maintenance plan for each component based 

on its real usage.  Our case study demonstrates that the new 

vital sign indicator-based replacement policy can obtain 

greater economic value in terms of the average maintenance 

cost per unit runtime.  

Future work will include a remaining useful lifetime (RUL) 

model based on this vital-sign indicator.  This will involve 

the estimation of paths in the runtime vs. vital sign indicator 

2-dimensional plot. Another future direction is to 

incorporate a constrained regression to make vital sign 

indicators suitably convex-shaped, eventually leading to 

lower optimal costs.  
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