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ABSTRACT 

Currently, the wind energy industry is swiftly changing its 

maintenance strategy from schedule based maintenance to 

predictive based maintenance. Condition monitoring 

systems (CMS) play an important role in the predictive 

maintenance cycle. As condition monitoring systems are 

being adopted by  more and more OEM and O&M service 

providers from the wind energy industry, it is crucial to 

effectively interpret the data generated by the CMS and 

initiate proactive  processes to efficiently reduce the risk of 

potential component or system failure which often leads to 

down tower repair or gearbox replacement. The majority of 

CMS are designed and constructed based on vibration 

analysis which has been refined over the years by 

researchers and scientists. This paper provides detailed 

description and mathematical interpretation of a 

comprehensive selection of condition indicators for gears, 

bearings and shafts. Since different condition indicators are 

sensitive to different kind of failure modes, the application 

for each condition indicators were also discussed. The Time 

Synchronous Averaging (TSA) algorithm was applied as the 

signal processing method before the extraction of condition 

indicators for gears and shafts. Time Synchronous 

Resampling algorithm was applied to stabilize the shaft 

speed before the extraction of bearing condition indicators. 

Several case studies of real world wind turbine component 

failure detection using condition indicators were presented 

to demonstrate the effectiveness of certain condition 

indicators. 

1. INTRODUCTION 

As the global market of wind energy continuously grows 

over the recent years, the maintenance strategy of wind 

farms is evolving from schedule base maintenance to 

condition based maintenance. Scientists, researcher and 

engineers specialized in condition based monitoring 

techniques designed and utilized condition indicators to 

monitor and track the health status of the assets of interest. 

Condition indicators can be extracted from various signal 

sources including tradition vibration based signal from 

accelerometers, acoustic emission signal, oil condition 

signal and signal collected from SCADA systems. Different 

condition indicators were designed for different 

applications. Ideally, vibration based condition based 

monitoring techniques are very capable of detecting 

component fault signatures at high speed or intermediate 

sections of the wind turbine while acoustic emission based 

techniques are more capable of low speed or planetary 

section component fault detection.  

Previously, Vecer et al (2005) summarized a comprehensive 

selection of condition indicators for gears along with some 

typical vibration signal analysis algorithms. Also, the 

National Renewable Energy Laboratory (NREL) published 

a document named ‘Wind Turbine Gearbox Condition 

Monitoring Round Robin Study – Vibration Analysis’ in 

2012 covered detailed information regarding lots of the 

common condition indicators. This paper summarized a 

great amount of the information from the above mentioned 

two reports. And the authors provided an industry 

perspective on how to utilize different CIs including those 

not only for gears but also for bearings and shafts on 

machine health status monitoring.  

In general, the definition of condition indicators consists of 

two parts, the analysis algorithm and the statistical features. 

Analysis algorithm can be narrowband analysis, residual 

analysis and frequency/amplitude modulation analysis and 

so on. Statistical features include root mean square (RMS), 

kurtosis, crest factor, skewness, peak, peak to peak etc. A 

typical condition indicator can be expressed as narrowband 

kurtosis or residual RMS. Therefore, as a matter of fact, 

condition indicators are designed to describe the time or 

frequency domain signal waveform or analysis result from 

specific analysis algorithm in a statistical manner. Typical 

condition monitoring system data processing flowchart for 

gears is presented in Figure 1. In Figure 1, the incoming raw 

vibration signal were collected from the accelerometers and 

then goes into the Time Synchronous Averaging Algorithm 

(TSA) to remove noises that were not synchronous with the 

shaft rotating frequency. Time synchronous average signal 
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is calculated by dividing the vibration signal into one 

revolution sections (based on the once-per-revolution 

tachometer signal). Each single revolution section is 

resampled into a common length to eliminate variations in 

speed. Then all the equal length sections are combined and 

averaged. TSA is a vibration signal processing algorithm 

that calculates the average vibration caused by one 

revolution of the shaft under analysis. It converts the 

vibration from the time domain into the revolution (or order) 

domain and significantly reduces all vibration that is not 

synchronous with the shaft. Bechhoefer explained the 

algorithm and its derivation (Bechhoefer and Kingsley, 

2009). The signal then goes through residual analysis 

algorithm. After that, statistical features are extracted from 

the residual analyzed vibration signal. Similarly, the raw 

vibration signal goes through narrowband analysis, energy 

operator analysis, Amplitude Modulation (AM) analysis and 

Frequency Modulation (FM) analysis. Accordingly, 

statistical features are extracted from the analyzed signals 

which are defined as condition indicators. 

 

Figure 1. Vibration signal processing flow chart. 

The first section of this paper gave an introduction to the 

techniques. The second section of this paper covered the 

definition of the statistical features, their definitions and 

applications. Then, the third section went over the analysis 

algorithms for different components including gears, 

bearing and shafts. The general descriptions of the analysis 

algorithm along with their applications were discussed. 

After that, the 4th session covered several case studies of 

real world wind turbine component failure detection using 

condition indicators to demonstrate the effectiveness of 

some of the described condition indicators. The last section 

summarized this paper. 

2. STATISTICAL FEATURES 

In general, statistical features were designed to describe the 

result of a specific vibration signal analysis algorithm. 

Common statistical features include Root Mean Square 

(RMS), Delta RMS, Peak, Peak to Peak, Kurtosis, Crest 

Factor, and Skewness, which were shown in the following 

respectively. 

2.1. Root Mean Square (RMS) 

RMS describes the energy content of the signal. RMS is 

used to evaluate the overall condition of the components. 

Therefore, it is not very sensitive to incipient fault but used 

to track general fault progression (Vecer et al, 2005). 

     √
 

 
∑    

 

 

   

 (1) 

     is the root mean square value of dataset s 

   is the i-th member of points in dataset s. 

N is the number of data points in dataset s. 

2.2. Delta RMS 

Delta RMS is the difference between two consequent RMS 

values.  

                          (2) 

If the gear damage occurs, the vibration level will be 

increased more rapidly than in a normal case without gear 

damage (Vecer et al, 2005). 

2.3. Peak 

Peak value is the maximum amplitude of the signals within 

a certain time interval.  

                        (3) 

Peak value is usually not used very often compared to peak 

to peak value. 

2.4. Peak to Peak 

Peak to peak value is the distance between the maximum 

amplitude and the minimum amplitude of the signal. Peak to 

peak is a measurement of spread in the signal. 

                     (4) 

2.5. Kurtosis 

The shape of the amplitude distribution is often used as a 

data descriptor. Kurtosis describes how peaked or flat the 

distribution is. A kurtosis value close to 3 indicates a 

Gaussian-like signal. Signals with relatively sharp peaks 

have kurtosis greater than 3. Signals with relatively flat 

peaks have kurtosis less than 3. The following equation 

calculates the kurtosis (Vecer et al, 2005). 

         
  ∑      ̅   

   

{∑      ̅   
   } 

 (5) 

N is the number of points in the history of signal s 

   is the i-th point in the time history of signal s 
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Kurtosis provides a measure of size of the tails of 

distribution and is used as an indicator of major peaks in a 

set of data. As a gear wears and breaks, this feature should 

signal an error due to the increased level of vibration. 

2.6. Crest Factor 

Crest factor is the ratio of the single side peak value of the 

input signal to the RMS level (Vecer et al, 2005). 

   
     

    

 (6) 

CF is the crest factor 

           is the single side peak of the signal 

     is the root mean square value of the vibration signal 

This value is normally between 2 to 6. Crest factor value 

over 6 indicates possible machine failure. There are certain 

variations on the definition of crest factor. The numerator 

could be the single side peak value (maximum or minimum) 

or a mean of the maximum and minimum of the signal of 

interest. Crest factor can be used to indicate faults in an 

early stage. This feature is used to detect changes in the 

signal pattern due to impulsive vibration sources such as 

tooth breakage on a gear. 

2.7. Skewness 

Skewness indicates the symmetry of the probability density 

function (PDF) of the amplitude of a time series. A time 

series with an equal number of large and small amplitude 

values has a skewness of zero. The following equation 

calculates skewness (Vecer et al, 2005). 

         
  ∑      ̅   

   

{√∑      ̅   
   }

  (7) 

N is the number of points in the history of signal s 

   is the i-th point in the time history of signal s 

A time series with many small values and few large values 

is positively skewed (right tail), and the skewness value is 

positive. A time series with many large values and few 

small values is negatively skewed (left tail), and the 

skewness value is negative. 

3. ANALYSIS ALGORITHMS 

Analysis algorithms were applied before the extraction of 

statistical features. These algorithms were developed to 

enhance the component fault signatures. The statistical 

features extracted from the result of the algorithm are called 

condition indicators. Different condition indicators were 

developed to detect various faults on different components. 

This section categorizes them into three categories including 

bearing, shaft and gear. The typical analysis algorithm for 

different components were listed and explained along with 

the extracted condition indicators. 

3.1. Bearings 

Time Synchronous Resampling algorithm was applied to 

stabilize the shaft speed before the extraction of bearing 

condition indicators. In the CMS industry, it is common to 

have a hard threshold over certain shaft speed that triggers 

the data collection. Combined with TSR, the shaft speed can 

be controlled to a maximum extend in terms of speed 

fluctuation. In general, bearing fault characteristic 

frequencies are used to diagnose and localize the bearing 

fault induced by pitting, spall, cracking and etc. The specific 

bearing fault characteristic frequency of different 

components can be obtained from the bearing kinematic 

information. There are 4 common condition indicators for 

bearings which are ball energy, cage energy, inner race 

energy and outer race energy, respectively. A window of 

observation is usually set around the fault frequency of the 

bearings. This is designed to ensure even if the shaft speed 

is somewhat inaccurate, the amplitude of the bearing fault 

frequency can still be captured. 

3.1.1. Ball Energy 

Ball energy represents the energy of the bearing vibration 

signal at/around the rolling element fault frequency. 

 

           √
 

 
∑       
 

   

 (8) 

   is the fault frequency of the rolling element 

  is half of the window of observation  

3.1.2. Cage Energy 

Cage energy represents the energy of the bearing vibration 

signal at/around the cage precession frequency. 

 

           √
 

 
∑       
 

   

 (9) 

   is the fault frequency of the cage 

  is half of the window of observation  

3.1.3. Inner Race Energy 

Inner race energy represents the energy of the bearing 

vibration signal at/around the inner race fault frequency. 
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 (10) 

   is the fault frequency of the inner race 

  is half of the window of observation  

3.1.4. Outer Race Energy 

Outer race energy represents the energy of the bearing 

vibration signal at/around the outer race fault frequency. 

 

                 √
 

 
∑       
 

   

 (11) 

   is the fault frequency of the outer race 

  is half of the window of observation  

3.2. Shafts 

All the condition indicators mentioned in this section were 

extracted after the original signal was processed through 

TSA algorithm. Typical condition indicator for shafts 

includes shaft order 1, shaft order 2, shaft order 3 and so on. 

Shaft condition indictors are used to detect shaft faults 

including shaft imbalance, misalignment etc. 

3.2.1. RPM 

Number of shaft revolution per minute. RPM is 

measurement of shaft speed. The 1/rev derivative of the 

RPM is a measurement of rated change of RPM at the 1/rev 

frequency. This measurement is capable of rotor shaft 

imbalance indication. 

3.2.2. Shaft Order 1 (SO1) 

Shaft Order 1 represents the magnitude of the first 

harmonics of the shaft of interest in frequency domain. SO1 

is an indicator of mass imbalance or a bent shaft. 

3.2.3. Shaft Order 2 (SO2) 

Shaft Order 2 represents the magnitude of the second 

harmonics of the shaft of interest in the frequency domain. 

SO2 is sensitive to coupling failures (misalignment) or bent 

shaft. 

3.2.4. Shaft Order 3 (SO3) 

Shaft Order 3 represents the magnitude of the third 

harmonics of the shaft of interest in the frequency domain. 

SO3 is sensitive to coupling failures. For the main rotor, 

SO3 is driven by combined effect of tower shadow and 

wind shear. 

3.2.5. TSA RMS 

The root mean square value of the TSA signal 

3.2.6. TSA Peak to Peak 

The peak to peak value of the TSA signal 

3.2.7. Shaft Order 1 Phase Angle 

Phase angle can be calculated as four-quadrant inverse 

tangent of the complex conjugate FFT transform of the raw 

vibration signal.  The phase angle of the shaft order 1. SO1 

Phase Angle is an indication of imbalance. 

3.2.8. 1/Rev Derivative of RPM 

Rated shaft RPM change per revolution. 

3.3. Gears 

Among the condition indicators used on different 

components, condition indicators for gears normally 

involves a specific signal processing algorithm and a 

statistical feature. This section shows the common signal 

processing algorithm for gears and the condition indicators 

extracted from the analysis result that are often used. 

3.3.1. Residual Analysis 

The residual signal for a gear can be calculated by removing 

the shaft harmonics and the gear mesh frequency and 

harmonics from the time synchronous average signal. But 

the residual analysis algorithm can vary depends on the 

information the researchers trying to acquire or remove. 

Residual Signal is effective for detecting gear scuffing, 

tooth pitting and tooth crack faults. Periodic faults like tooth 

breakage normally can have impact of 1 per rev show up in 

the TSA signal.  The residual analysis allows fault impact 

signatures to become prominent in the time domain. 

Combined with the above mentioned statistical features, 

common condition indicators extracted from residual 

analysis are residual RMS, residual peak to peak, residual 

kurtosis, and residual crest factor. 

3.3.2. Energy Ratio 

Energy ratio is the ratio between the energy of the 

difference signal and the energy of the original meshing 

component (Vecer et al, 2005). 

   
    

    
 (12) 

     is the standard deviation of the difference signal 

     is the standard deviation of the original signal  



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

Energy ratio is very good indicator for heavy wear, where 

more than one tooth on the gear is damaged. The energy 

ratio will trend towards 1 as a fault progresses. 

3.3.3. Energy Operator 

Energy operator is computed as the normalized kurtosis 

from the signal where each point is computed as the 

difference of two squared neighborhood points of the 

original signal (Vecer et al, 2005). 

   
  ∑        ̅   

   

{∑        ̅   
   } 

 (13) 

  ̅ is the mean value of signal    

        
    

   

N is the number of data point in the dataset x  

Energy Operator is a type of residual of the autocorrelation 

function. It is designed to reveal the amplitude modulations 

and phase modulations of the signal of interest. For a 

nominal gear, the predominant vibration is gear mesh. 

Surface disturbances and scuffing generate small higher 

frequency values, which are not removed by autocorrelation. 

Large energy operator indicates server pitting or scuffing. 

Combined with statistical features, common condition 

indicators extracted from energy operator analysis are EO 

RMS, EO peak to peak, EO kurtosis, and EO crest factor. 

3.3.4. FM0 

FM0 is defined as the peak to peak level of the TSA signal 

divided by the sum of the amplitude at the gear mesh 

frequency and its corresponding harmonics (Vecer et al, 

2005; Lebold et al, 2000). 

    
          

∑      
   

 (14) 

FM0 is the zero-order figure of merit 

           is the peak to peak value of the TSA signal. 

A(i) is the amplitude of the i
th

 mesh frequency harmonics 

FM 0 is a statistic used to detect major changes in the 

meshing pattern. For heavy wear, the peak to peak value 

remains constant while the meshing frequency decreases, 

causing the FM0 parameter to increase. FM0 is a 

generalized gear fault indicator, sensitive to gear 

wear/scuffing/pitting and tooth bending due to crack root. 

However, FM0 is not a good indicator for minor tooth 

damage. 

3.3.5. Sideband Modulation Lifting Factor (SMLF) 

Sideband modulation lifting factor (SMLF) or sideband 

level factor (SLF) is defined as the sum of the first order 

side band about the fundamental gear mesh frequency 

divided by the standard deviation of the signal of interest 

(Vecer et al, 2005). 

     
∑              

 
   

    
 (15) 

si is the amplitude of the i
th

 sideband around fundamental 

gear meshing frequency 

     is the standard deviation of the time signal average. 

This parameter is based on the idea that tooth damage will 

produce amplitude modulation of the vibration signal. This 

CI is designed to detect gear misalignment. 

3.3.6. G2 

G2 is defined as the amplitude of the 2nd harmonics of gear 

meshing frequency over the amplitude of the gear meshing 

frequency in the frequency domain. 

3.3.7. Narrowband (NB) Analysis 

Narrowband analysis operates the TSA signal (or other time 

domain signal of interest) by filtering out all the tones 

except that of the gear mesh and with a given bandwidth. 

Narrowband signal is calculated by zeroing the bins in the 

Fourier transform of the TSA except the gear mesh. 

Statistics features of the narrowband signal can be 

calculated to enhance the fault feature. Narrowband 

represents the vibration associate with the primary gear 

mesh frequency. Narrowband analysis can capture sideband 

modulation of the gear mesh due to misalignment, or detect 

a cracker/soft/broken tooth. 

Combined with statistical features, common condition 

indicators extracted from narrowband analysis are NB RMS, 

NB peak to peak, NB kurtosis, and NB crest factor. 

3.3.8. Amplitude Modulation (AM) Analysis 

Amplitude Modulation (AM) analysis is the absolute value 

of the Hilbert transform of the narrowband signal 

(Bechhoefer, 2012), since primary gear meshing 

characteristics extracted from narrowband analysis is the 

subject of interest. However, AM analysis is not limited to 

narrowband signal.  

Modulation is a non-linear effect in which several signals 

interact with one another to produce new signals with 

frequencies not present in the original signals. Amplitude 

modulation is defined as the multiplication of one time-

domain signal by another time-domain signal. For a gear 

with minimum transmission error, the AM analysis feature 

should be a constant value of gear tooth displacement. Gear 

defects or faults can increase the kurtosis of the signal 

significantly. AM is sensitive to eccentric gears and broken 

or soft tooth faults. 
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Combined with statistical features, common condition 

indicators extracted from AM analysis are AM RMS, AM 

peak to peak, AM kurtosis, and AM crest factor. 

3.3.9. DAM 

DAM is defined as the derivative of the amplitude 

modulation (AM) signal. DAM is sensitive to both soft and 

broken gear tooth faults. 

Combined with statistical features, common condition 

indicators extracted from DAM analysis are DAM RMS, 

DAM peak to peak, DAM kurtosis, and DAM crest factor. 

3.3.10. Frequency Modulation (FM) Analysis 

Frequency Modulation (FM) is the derivative of the angle of 

the Hilbert transform of narrowband signal (Bechhoefer, 

2012), since primary gear meshing characteristics extracted 

from narrowband analysis is the subject of interest. 

However, FM analysis is not limited to narrowband signal. 

Modulation is a non-linear effect in which several signals 

interact with one another to produce new signals with 

frequencies not present in the original signals. Frequency 

modulation (FM) is the varying in frequency of one signal 

by the influence of another signal, usually of lower 

frequency. The frequency being modulated is called the 

carrier. Frequency Modulation analysis is in radians. 

Frequency modulation (FM) analysis is a powerful tool 

capable of detecting changes of phase due to uneven tooth 

loading, characteristics of a number of fault types. For 

certain gear architectures, FM analysis is more sensitive to 

fault than either the narrowband or amplitude modulation 

analysis. 

Combined with statistical features, common condition 

indicators extracted from FM analysis are FM RMS, FM 

peak to peak, FM kurtosis, and FM crest factor. 

3.3.11. FM4 

FM4 is a simple measure if the amplitude distribution of the 

difference signal is peaked or flat. The mathematical 

representation is shown below. NA4 is determined by 

dividing the fourth statistical moment of the residual signal 

by the current run time averaged variance of the residual 

signal, raised to the second power (Vecer et al, 2005; 

Lebold et al, 2000). 

    
  ∑      ̅   

   

{∑      ̅   
   }

  (16) 

   is the i-th point of the differential signal in the time 

record 

N is the total number of points in the time record  

The parameter assumes that a gearbox in good condition has 

a difference signal with a Gaussian amplitude distribution 

(kurtosis of 3), whereas a gearbox with a major peak or a 

series of major peaks results in a less peaked amplitude 

distribution (kurtosis greater than 3). For single tooth defect 

fault progression, the data distribution becomes peaky and 

the kurtosis increases. For multiple teeth fault progression, 

the data distribution becomes flat and the kurtosis value 

decreases. 

3.3.12. NB4 

NB4 is designed from the NA4 parameter.NA4 is calculated 

from the residual signal while NB4 uses the envelop of a 

band-passed segment of the time synchronous averaged 

signal.NB4 is determined by dividing the 4th statistical 

moments of the envelop signal, raised to the 2nd power. 

(Lebold et al, 2000; Lebold et al, 2000). 

    
  ∑      ̅   

   

{
 
 

∑ ∑        ̅ 
  

   
 
   }

  (17) 

E is the envelop of the band passed signal 

 ̅ is the mean value of the enveloped signal. 

N is the total data points in time record. 

M is the current time record in the run ensemble. 

                   | ̅   |  √       ̃                        (18) 

| ̅   | is the envelope of the analytic signal 

     is an input analog signal 

 ̃   Is the Hilbert transform of the input signal 

A few damaged gear teeth will cause transient load 

fluctuations that are different from normal tooth load 

fluctuations. The theory suggests these fluctuations will be 

manifested in the envelop of a signal which is band-pass 

filtered about the dominant meshing frequency. 

3.3.13. NA4 

NA4 is determined by dividing the fourth statistical moment 

of the residual signal by the current run time averaged 

variance of the residual signal, raised to the second power 

(Vecer et al, 2005; Lebold et al, 2000). 

    
  ∑      ̅   

   

{
 
 

∑ ∑        ̅ 
  

   
 
   }

  (19) 

   is the i-th point in the time record of the residual signal. 

    is the i-th point in the j-th time record of the residual 

signal. 

j is the current time record 

i is the data point number per reading 

M is the current time record in the run ensemble 
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N is the number of points in the time record 

3.3.14. NA4* 

NA4* is an enhanced version of NA4. The improvement is 

achieved by normalizing the fourth statistical moment with 

the residual signal variance for a gearbox in good condition 

instead of the running variance, which is used for NA4 

(Vecer et al, 2005; Lebold et al, 2000). 

     
  ∑      ̅   

   

          
 

 (20) 

         is the variance of the residual signal  for a 

gearbox in good condition (obtained from a well-

functioning gearbox) 

When gear damage progresses, the averaged variance value 

increases rapidly which results in the decrease of the      

parameter. To overcome this problem      is developed to 

be more robust when progressive damage occurs. 

4. CASE STUDIES 

This section presents three case studies covering gear, 

bearing and shaft. All the case studies are from the wind 

energy industry where there is a pressing need for condition 

monitoring systems. For the next three case studies, all data 

was collected and processed by TurbinePhD system. 

4.1. Wind Turbine High Speed Pinion 

The purpose of installing a condition monitoring systems is 

to help mitigate the high financial risk of unplanned 

maintenance and establish the framework for a new 

predictive maintenance program.  A well developed 

condition monitoring systems should be capable of 

monitoring every bearing, gear and shaft in the gearbox as 

well as the generator and main bearing.   

A condition monitoring system is designed to detect faults 

early on so that wind farm operators have the longest 

possible time to plan a maintenance action.  This early 

detection is critical in avoiding secondary damage from 

catastrophic failure and the subsequent additional financial 

cost.  Additionally, the system uses numerous complex 

algorithms to track the condition of a component, which in 

turn are then normalized and combined to estimate the 

overall health of the component.  The result is excellent 

fault discrimination, which is arguably one of the most 

important aspects of a condition monitoring system.  Fault 

discrimination is the ability to separate out a faulted 

component from good components.  If the fault 

discrimination is good, then the alarms the system provides 

are trustworthy and actionable.  On the other hand, if the 

fault discrimination is poor, then the likelihood of false 

alarms and missed detections increases.  Finally, the system 

uses a patented automated diagnostic capability to provide 

the user with an easy to read display of which turbines need 

attention all through a cloud-based client interface.  Thus, 

eliminating the need for complex data processing and 

interpretation before a maintenance decision can be made.      

After installation, the condition monitoring systems 

gathered wind turbine fleet vibration data for two weeks at 

which point alarm and warning thresholds were generated.  

These thresholds are data driven values obtained by 

statistically eliminating the outlying abnormal components 

on each turbine that define if a component is damaged.  

Once the thresholds were established, an alarm was 

triggered for the High Speed Pinion (the last gear in the 

gearbox before the generator) on one of the turbines.  

Alarms are triggered when one or more Condition Indicators 

or CIs were elevated over the generated thresholds.  In this 

case, several CIs were elevated while others were not.  

Since different CIs are sensitive to different fault modes, the 

type of fault can be estimated solely based on which CIs are 

elevated and which are not.  From the list of CIs that 

responded to this fault, there was strong evidence that the 

alarm was   triggered by a broken tooth. The wind farm 

operators were notified and an up tower visual inspection 

revealed the cracked tooth.    

One of the Condition Indicators that is very sensitive to gear 

tooth pitting, scuffing and bending is called the FM0.  It 

compares the general vibration level with the amplitude of 

gear meshing. A high FM0 value indicates the general 

vibration level is higher than normal and the gear meshing 

characteristic frequency is submerged in the high noise 

floor. In this case, FM0   was elevated to the point where the 

fault discrimination was perfect, meaning there were 

absolutely no overlapping values between the FM0 tracking 

the broken pinion and the FM0 tracking normal pinions on 

other turbines as seen in the following Figure 2. This means 

the probability of a false alarm or missed detection was 

extremely low. 

 

Figure 2. Fault discrimination based on FM0 

While the FM0 Condition Indicator contributed to the 

triggered the alarm, other condition indicators were less 

sensitive to the fault.  As explained previously, a condition 

monitoring system should offer clients the capability of 
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determining not only which component is not operating at a 

nominal condition but also performing diagnostics.  This is 

critical information when it comes to cost savings, as 

different fault modes require different maintenance actions.  

In this case, the AM Kurtosis CI, which is a sensitive 

indicator of  eccentric gears but less so  at capturing tooth 

damage, remained at the nominal level as seen in the 

following Figure 3. 

 

Figure 3. Fault discrimination based on AM Kurtosis 

This specific turbine was shut down and inspected, the 

initial inspection found tooth damage on the high speed 

pinion as shown in the following Figure 4. 

 

Figure 4. High speed pinion inspection result 

Detecting this broken tooth early is critical for maintenance 

cost savings.  When a gear loses a tooth, the remaining 

meshing teeth experience significant increases in load and 

subsequent stress and strain. This can cause cascading 

damage on the gear, which in turn will fill the gearbox with 

metal debris.  Before long, other components are damaged 

and the gearbox potentially needs to be removed from the 

tower and rebuilt.  A full gearbox rebuild, which requires 

the mobilization of a crane, can cost upwards of $150,000 

and results in significant downtime, especially when climate 

can affect the ability to get a crane to the turbine.  

Additionally, a gear with a broken tooth, if left to run, will 

transfer damage to any gear that it is mated with.  When this 

happens, both gears must be replaced.  In this case, by 

implementing a well developed condition monitoring 

system, the wind farm operators obtained actionable 

information that left them with the option of performing an 

up-tower repair of just the High-Speed Pinion. The cost 

differential between performing this up-tower repair and a 

gearbox rebuild is estimated at $250,000. This proves that 

condition monitoring systems are valuable as a crucial part 

of the wind turbine maintenance cycle. 

4.2. Wind Turbine High Speed Bearing 

As mentioned earlier, the purpose of implementing a 

condition monitoring system is to help the wind farm 

operators to maximize the fleet availability by means of 

detecting the early damage of the drive train assembly 

before secondary damage occurs. Most retrofit condition 

monitoring systems need a certain period of time to gather 

data and thresholding, a process that defines the data 

characteristics of healthy components.  Following the 

system thresholding, the Health Indicator (HI) of a “High 

Speed Bearing” (The bearing that holds the high speed 

generator shaft) started trending in March. The HI exceeded 

the warning and alarm limit around May. 

The recommendation is when the HI exceeds the threshold 

of 1, an inspection should be performed on this component. 

The wind farm O&M team confirmed the bearing inner race 

fault and replaced the HS bearing. When the turbine started 

up and condition monitoring recommenced, the HI value 

dropped to below 0.2 indicating a nominal component. 

 

Figure 5. High speed bearing health indicator 

The High speed bearing detail components CIs are also 

listed in the client interface as shown in Figure 6. From the 

pattern of the CI data log, the outer race, cage and rolling 

element energy showed no signs of degradation except the 

energy of the inner race. The inner race energy started 

increasing at March. Around May, the at the same time high 

speed bearing HI exceeds alarm limit, the inner race CI also 

exceed its own alarm threshold. This confirms that the HS 

bearing inner race cased the failure. The inner race fault had 

been located in March. The TurbinePHD systems tracked 

the fault progressing over a 2 month period. After HS 
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shaft/bearing replacement, the inner race energy dropped 

back to nominal. 

 

Figure 6. High speed bearing component trend 

Based on the inner race details presented in Figure 3 and 4, 

which is available using the client web interface of 

TurbinePHD. One can observe that the condition indicator 

has pick up the inner race fault and starts trending 2 month 

before the condition indicator exceeded the alarm threshold. 

In the component detail page of the Web interface (Figure 

4) the spectral information is displayed in the frequency 

domain.  A high magnitude peak around the inner race fault 

frequency with characteristic sidebands that are a product of 

the shaft modulation can be seen. 

 

Figure 7. A detail look at the inner race condition indicator 

 

Figure 8. Spectrum analysis showed a high magnitude peak  

around  the inner race fault frequency 

After the O&M bore scope inspection, a large crack was 

found on the inner race which confirms the TurbinePHD 

diagnostics as shown in Figure 9. 

 

Figure 9. Bore scope inspection of the inner race 

4.3. Wind Turbine Rotor Imbalance 

There can be many reasons behind a imbalanced rotor. In 

general, wind turbine rotor imbalance can be differentiating 

in the 2 types, Mass imbalance and aerodynamic 

imbalances. The imbalance can be induced by main reasons 

and some of them are listed as follow. 

 Improper component manufacturing. 

 Uneven buildup of debris on rotors, vanes or blades 

(ice, etc.). 

 The addition of shaft fittings without an appropriate 

counter balancing procedure. 

 Vane/blade erosion, crack or thrown balance weights. 

Fluid inclusion in the rotor blades. 

 Rotor division error. 

 Blade bearing jammed. 

 Gearbox support structure excessive wear and tear. 

 Generator alignment loss and coupler damage. 

 Support structure and main frame damage. 

 Yaw system/yaw breaks excessive wear and tear. 

 Door frame damage, cracks at welds top and bottom, 

steps. 

 Foundation bolt failure. 

The effects of rotor imbalance include the following. 

 35% of all wind turbines have rotor caused vibrations 

which exceed the designed specifications. These 

vibrations cause unusual structure loads, an increased 
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wear, adverse startup conditions and often vibration 

causing emergency turn off. 

 Rotational excitations cause higher dynamic load 

beyond design specification on bearing which leads to 

bearing failure from early fatigue. Fatigue, in a bearing, 

is the result of stresses applied immediately below the 

load carrying surfaces and is observed as appalling 

away of surface material. 

 A wind turbine with an unbalanced rotor will lose some 

of its low wind production capability. 

 High level of rotor vibration that appear as high 

magnitude of 1st harmonics of shaft rotating frequency. 

 High levels of vibration caused by rotor imbalance 

results in turbine efficiency loss. 

Rotor unbalance is a leading contributor to the need for 

frequent and costly maintenance action on yaw systems and 

fastening hardware. The unbalanced force on the rotor 

causes a reaction on the yaw system twice per revolution, 

accelerating the wear on the yaw gear teeth through impact 

loading and adding to the fatigue loading of the tower shell 

and mounting bolts.  

A Leading wind energy operator asked Renewable NRG 

Systems to instrument their MW class turbine fleets with the 

TurbinePHD Condition Monitoring System to help them 

maximize the turbine availability by means of detecting the 

early damage of the drive train assembly before any 

secondary damage occurs. Following the standard 

commissioning procedure, the system ran for two weeks 

gathering data and was then thresholded, a process that 

establishes data driven definitions of when a component is 

no longer nominal.  Following the system thresholding it 

was immediately apparent that “Nacelle X” (a component 

that watches the sway of the turbine tower) was not 

“nominal”. 

 

Figure 10. TurbinePHD Cloud Based Client Interface 

A quick click on the red component revealed the Health 

Indicator (HI) value was elevated because the tower was 

swaying at the rotational frequency of the main rotor.  This 

condition is a typical characteristic of a heavy blade and the 

subsequent imbalance (once per revolution imbalance). The 

recommendation is that when the HI exceeds the threshold 

of 1 an inspection needs to be performed on these 

component/components. In this case the HI value was 

floating around 1 between March 12th and June 13th. The 

wind farm O&M team inspected the blades and found that a 

heavy blade was causing the imbalance. The other turbine 

blades had a weight adjustment and subsequently the HI 

value dropped to nominal. After the 13th there was no data 

for a month because the turbine was down for maintenance.  

When the turbine started up and condition monitoring 

recommenced, the HI value had dropped to below .2 

indicating a nominal component. 

 

Figure 11. Health Indicator Trend 

The Health Condition (HI) represents the data fusing result 

of all the Condition Indicators (CI). In TurbinePHD The 

shaft condition indicators includes shaft order 1 (SO1), shaft 

order 2 (SO2), shaft order 3 (SO3), 1 per revolution delta 

RPM and etc. 

In this case, compared to SO2 and SO3, SO1 is trending 

along with the HI. The trending pattern correlates well 

between SO1 and component HI. The trending of SO1 

confirmed the reason behind the high HI is because of the 

imbalance of the Rotor. Meanwhile, the CI on the Tach 

component, 1/rev dRPM, showed the same patter between 

March and October. 

 

Figure 12. 1st shaft order (SO1), a measurement of the 

energy associated with the rotational frequency of the rotor.  

SO1 is one of several Condition Indicators (CIs) that are 

used to calculate the HI. 

 

Figure 13. 1/rev dRPM, a measurement of rated change of 

RPM at the 1/rev frequency. 1/rev dRPM is one of the 

several Condition Indicators that are used to calculate 

Component HI of the Tach. 

5. CONCLUSION 

Condition indicators play a significant role in machine 

health status monitoring and tracking. Over the years, 

scientists and researchers have developed a great selection 
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of condition indicator for various components and 

applications. These condition indicators provides insights of 

the components condition and increase the signal storage 

and transmitting efficiency at the same time. Therefore, 

condition indicators are widely accepted by researchers and 

engineers for vibration signal analysis, acoustic emission 

signal analysis and sometimes oil debris and oil condition 

analysis as well. 

This paper provided a detailed description and mathematical 

interpretation of a comprehensive selection of condition 

indicators developed for gears, bearings and shafts. Since 

different condition indicators are sensitive to different kind 

of failure modes, the application for each condition 

indicators were explained and discussed. The Time 

Synchronous Averaging (TSA) and Time Synchronous 

Resampling (TSR) algorithm was applied as the signal 

processing method before the extraction of condition 

indicators by the authors. Several case studies of real world 

wind turbine component failure detection using condition 

indicators were presented to demonstrate the effectiveness 

of certain condition indicators. 

REFERENCES 

Antoni, J., (2002), Differential Diagnosis of Gear and 

Bearing Faults. Journal of Vibration and Acoustics, 

Vol. 124, No. 2, 2002; pp. 165 - 171. 

http://dx.doi.org/10.1115/1.1456906 

Antoni, J., Randall, R.B. (2006), The Spectral Kurtosis: 

Application to the Vibratory Surveillance and 

Diagnostics of Rotating Machines,  Mechanical 

Systems and Signal Processing, Vol. 20, No. 2, 2006, 

pp. 308 - 331. 

Barszcz, T. & Randall, R.B. (2009), Application of spectral 

Kurtosis for Detection a Tooth Crack in the Planetary 

Gear of a Wind Turbine, Mechanical Systems and 

Signal Processing, Vol. 23, pp. 1352 – 1365. 

Bechhoefer, E., & Kingsley, M. (2009). A Review of Time 

Synchronous Average Algorithms, Proceedings of the 

Annual Conference of the Prognostics and Health 

Management Society, San Diego, CA Sep. 27  –  Oct. 1, 

2009 

Bechhoefer, E (2004), Method and Apparatus For 

Determining The Health Of A Component Using 

Condition Indicators, US Patent No. US6728658. 

Bechhoefer, E., (2013), An Enhanced Time Synchronous 

Averaging for Rotating Equipment Analysis, 

Proceedings for the joint conference: Machinery 

Failure Prevention Technology 2013 and International 

Instrumentation Symposium 2013, May 13 – May 17, 

Cleveland, OH. 

Bechhoefer E. & Mayhew E., (2006), Mechanical 

Diagnostics System Engineering in IMS HUMS, 

Proceedings of the International IEEE Aerospace 

Conference, pp. 1 - 8. 

Bechhoefer E., (2012), Analysis Algorithms and 

Diagnostics Results from NRG Systems, Wind Turbine 

Gearbox Condition Monitoring Round Robin Study – 

Vibration Analysis, Technical Report, NREL/TP-5000-

54530, July 2012, contract no. DE-AC36-08GO28308 

Bonnardot, F., El Badaoui, M., Randall, R.B., Daniere, J, 

and Guillet, F., 2005, Use Of The Acceleration Signal 

Of a Gearbox in Order To Perform Angular Resampling 

(With Limited Speed Fluctuation), Mechanical Systems 

and Signal Processing, Vol. 19, No. 4, pp. 766 – 785. 

Braun S., (2011), The Synchronous (Time Domain) 

Average Revisited, Mechanical Systems and Signal 

Processing, Vol. 25, pp. 1087 - 1102. 

Combet, F., & Gelman, L., (2010), Novel Adaptation of the 

Demodulation Technique for Gear Damage Detection 

to the Variable Amplitude of Mesh Harmonics, 

Mechanical Systems and Signal Processing, Vol. 25, 

pp. 839 - 845. 

Combet, F., & Gelman, L., (2007), An automated 

methodology for performing time synchronous 

averaging of a gearbox signal without speed sensor, 

Mechanical Systems and Signal Processing, Vol. 21, 

issue 6, August 2007, pp. 2590 - 2606. 

Crabtree C., Zappala D. & Tavner P., (2014), Survey of 

Commercially Available Condition Monitoring Systems 

for Wind Turbines, Technical Report, Durham 

University School of Engineering and Computing 

Sciences and the SUPERGEN Wind Energy 

Technologies Consortium. 

Decker H., & Zakrajsek J., (1999), Comparison of 

Interpolation Methods as Applied to Time Synchronous 

Averaging, NASA/TM – 1999 – 209086, ARL – TR – 

1960. 

Dempsey, P., (2000), A Comparison of Vibration and Oil 

Debris Gear Damage Detection Methods Applied to 

Pitting Damage, Proceedings of the 13th International 

Congress on Condition Monitoring and Diagnostic 

Engineering Management, December 3 - 8, 2000, 

Houston, Texas. NASA/TM-2000-210371. Cleveland, 

OH: National Aeronautics and Space Administration 

(NASA), Glenn Research Center, 2000; 18 pp. 

Dempsey P., Afjeh A., (2002), Integrating Oil Debris and 

Vibration Gear Damage Detection Technologies Using 

Fuzzy Logic, International 58
th

 Annual Forum and 

Technology Display, Quebec (Canada), Junda 11 – 13, 

2002. 

Felten, D., 2003, Understanding bearing vibration 

frequencies, Mechanical Field Service Department, 

L&S Electric, Inc., Schofield, Wisconsin, pp. 1 – 3. 

Germanischer Lloyd. (2007), Guidelines for the 

Certification of Condition Monitoring Systems for 

Wind Turbines, Hamburg, Germany, 2007. 

Hochmann, D. & Sadok, M. (2004), Theory of Synchronous 

Averaging, Proceedings of the 2004 IEEE Aerospace 

Conference, March 6 - 13, 2004, Big Sky, Montana. 

Washington, DC: IEEE, 2004; pp. 3636 - 3653. 

http://dx.doi.org/10.1115/1.1456906


ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

12 

Jardine, A.K.S., Lin D., & Banjevic D., (2006), A Review 

on Mahinery Diagnostics and Prognostics 

Implementing Condition-based Maintenance, 

Mechanical Systems and Signal Processing, Vol. 20, 

pp. 1483 – 1510. 

LaCava, W., van Dam, Jeroen., McNiff, B., Sheng, S., 

Wallen, R., McDade, M., Lambert, S., & Butterfield, S., 

(2011), Gearbox Reliability Collaborative Project 

Report: Findings from Phase 1 and Phase 2 Testing. 

NREL/TP-5000-51885. Golden, CO: National 

Renewable Energy Laboratory, June 2011. 

Lebold, M., McClintic K., Campbell, R., Byington C., & 

Maynard K.  (2000), Review of Vibration Analysis 

Methods For Gearbox Diagnostics and Prognostics, 

Proceedings of the 54
th

 meeting of the Society for 

Machine Failure Technology, Virginia Beach, VA, 

May 1 – 4, 2000, pp. 623 – 634. 

Mba, D. and Rao, R., (2006), Development Of Acoustic 

Emission Technology For Condition Monitoring And 

Diagnosis Of Rotating Machines; Bearings, Pumps, 

Gearboxes, Engines And Rotating Structures, The 

Shock and Vibration Digest, Vol. 38, No. 1, pp. 3 – 16. 

McFadden P.D., (1986), Detecting Fatigue Cracks in Gears 

by Amplitude and Phase Modulation Of The Meshing 

Vibration, ASME Journal of Vibration, Acoustics, 

Stress, and Reliability in Design, Vol. 108, pp. 165 - 

170. 

McFadden, P.D., (1987), A Revised Model For The 

Extraction Of Periodic Waveforms By Time Domain 

Averaging, Mechanical Systems and Signal Processing, 

Vol. 1, No. 1, pp. 83 – 95. 

McFadden, P.D., (1991), A Technique For Calculating The 

Time Domain Averages Of The Vibration Of The 

Individual Planet Gears And The Sun Gear In An 

Epicyclic Gearbox, Journal of Sound and Vibration, 

Vol. 144, No. 1, pp. 163 – 172. 

McFadden, P.D.; Smith, J.D., (1984), Vibration Monitoring 

of Rolling Element Bearings by the High-Frequency 

Resonance Technique - A Review, Tribology 

International,  Vol. 17, No. 1,  pp. 3 - 10. 

McFadden, P., & Smith, J. (1985), A Signal Processing 

Technique for Detecting Local Defects in a Gear from a 

Signal Average of the Vibration., Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of 

Mechanical Engineering Science, Vol. 199, No. 4, 

1985; pp. 287 - 292. 

McFadden, P. D. and Toozhy, M. M., (2000), Application 

Of Synchronous Averaging To Vibration Monitoring 

Of Rolling Element Bearings, Mechanical Systems and 

Signal Processing, Vol. 14, No. 6, pp. 891 – 906. 

Randall, R.B., (2011), Vibration-based Condition 

Monitoring: Industrial, Aerospace and Automotive 

Applications, Wiley Publication, ISBN-13: 978-

0470747858, ISBN-10: 0470747854 

Randall, R.B., Antoni, J., (2011), Rolling Element Bearing 

Diagnostics-A Tutorial, Mechanical Systems and Signal 

Processing, Vol. 25, No. 2, 2011; pp. 485 - 520. 

Sawalhi N., Randall R., & Forrester D., (2012), Techniques 

for Separation and Enhancement of Various 

Components in the Analysis of Wind Turbine Vibration 

Signals, Wind Turbine Gearbox Condition Monitoring 

Round Robin Study – Vibration Analysis, Technical 

Report, NREL/TP-5000-54530, July 2012, contract no. 

DE-AC36-08GO28308. 

Sharma S. & Mahto D., (2013), Condition Monitoring of 

Wind Turbines: A Review, International Journal of 

Scientific Engineering Research, Vol. 4, Issue 8, PP. 35 

– 50, August, 2013, ISSN 2229 – 5518. 

Sheldon J., Watson M., Mott G. & Lee H., (2012), 

Combining Novel Approaches with Proven Algorithms 

for Robust Wind Turbine Gearbox Fault Detection, 

Wind Turbine Gearbox Condition Monitoring Round 

Robin Study – Vibration Analysis, Technical Report, 

NREL/TP-5000-54530, July 2012, contract no. DE-

AC36-08GO28308 

Sheng, S. (2012). Wind Turbine Gearbox Condition 

Monitoring Round Robin Study – Vibration Analysis, 

Technical Report, NREL/TP-5000-54530, July 2012, 

contract no. DE-AC36-08GO28308 

Sheng, S. (2011), Investigation of Various Condition 

Monitoring Techniques Based on a Damaged Wind 

Turbine Gearbox., Proceedings of the 8th International 

Workshop on Structural Health Monitoring, 13-15 

September 2011, Stanford, CA. NREL/CP-5000-51753. 

Golden, CO: National Renewable Energy Laboratory, 

2011. 

Siegel D., Lee J., & Dempsey P., (2014), Investigation and 

Evaluation of Condition Indicators, Variable Selection, 

and Health Indication Method and Algorithms for 

Rotorcraft Gear Components, Proceedings of the 

Machine Failure Prevention Technology Conference 

2014,  Virginia Beach, VA, May 20 – 22. 

Siegel D., Zhao W., Lapira E., AbuAli M., & Lee J., (2012), 

Review and Application of Methods and Algorithms in 

Wind Turbine Gearbox Fault Detection, Wind Turbine 

Gearbox Condition Monitoring Round Robin Study – 

Vibration Analysis, Technical Report, NREL/TP-5000-

54530, July 2012, contract no. DE-AC36-08GO28308. 

Spectra Quest Tech Note. (2006), Analyzing Gearbox 

Degradation Using Time-Frequency Signature 

Analysis,  March, 2006. 

Vecer, P., Kreidl, M., &Smid, R.  (2005), Condition 

Indicators for Gearbox Condition Monitoring Systems. 

ACTA Polytechnica. Vol. 45, No. 6, pp. 35 – 43. 

 

BIOGRAPHIES 

Junda Zhu received his B.S. degree in Mechanical 

Engineering from Northeastern University, Shenyang, 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

13 

China, and M.S. degree in Mechanical Engineering from 

The University of Illinois at Chicago in 2009, and Ph.D. 

degree in Industrial Engineering and Operational Research 

from The University of Illinois at Chicago in 2013.  Dr. 

Junda Zhu is a Systems Engineer in the Turbine Health 

Monitoring Group in Renewable NRG Systems. His current 

research interests include rotational machinery health 

monitoring, diagnosis and prognosis with vibration or 

acoustic emission based signal processing techniques, 

lubrication oil condition monitoring and degradation 

simulation and analysis, physics/data driven based machine 

failure modeling. 

Tom Nostrand received his BS in Engineering from the 

University of New Hampshire. He is currently an 

Engineering Manager at Renewable NRG Systems, Turbine 

Products Group.  He has been working in the wind power 

industry for 6 years. Prior to this he spent 20 years in the 

aerospace electronics field working on many different 

commercial aircraft platforms and systems.  

Cody Spiegel received his B.S. in Mechanical Engineering 

from The University of Vermont in 2013.  He began a 

mechanical engineering internship at Renewable NRG 

Systems in 2011 and is now an Associate Mechanical 

Engineer working in the Turbine Health Monitoring Group.  

His current work includes condition monitoring diagnostics 

and support as well as R&D of new condition monitoring 

systems.   

Brogan Morton received his B.S. and M.S. in Mechanical 

Engineering from The University of New Hampshire in 

2000 and 2002 major in estimation and controls.  He 

received MBA from the Idaho State University major in 

technology development and deployment. Brogan is 

currently the product manager for the TurbinePHD 

condition monitoring system in Renewable NRG Systems. 

He is responsible for the full product life cycle of several 

technologically advanced products in the wind energy 

industry.  

 

 

 

 


