
Classification-based Diagnosis Using Synthetic Data from Uncertain
Models

Ion Matei1, Maksym Zhenirovskyy2, Johan de Kleer3, and Alexander Feldman4

1,2,3,4 Palo Alto Research Center, Palo Alto, CA
ion.matei@parc.com

maksym.zhenirovskyy@parc.com
dekleer@parc.com

alexander.feldman@parc.com

Abstract

Machine learning based diagnosis engines require large data
sets for training. When experimental data is insufficient, sys-
tem models can be used to supplement the data. Such mod-
els are typically simplified and imprecise, hence with some
degree of uncertainty. In this paper we show how to deal
with uncertainty in synthetic training data. The data is pro-
duced using a model with uncertainties. The uncertainties
originate from inaccurate parameter values or parameters that
take different values based on the mode of operation. We
demonstrate how techniques from the uncertainty quantifica-
tion field can be used to reduce the numerical complexity of
the training algorithm. In particular, we use generalize poly-
nomial chaos to efficiently approximate the loss function. In
addition, we present a neural network architecture specifi-
cally designed to deal with uncertainties in the training data.
As an illustrative example, we show how our approach can be
used to detect faults in an elevator system.

1. Introduction

Our goal is to train a machine-learning based classifier to di-
agnose faults in a physical system. In our scenario, we do
not have sufficient training data, but we have a model of the
system. The model suffers from uncertainties whose sources
are traced to imprecise parameter values or modeling simpli-
fications. This scenario is rather common when dealing with
physical systems. Many such systems become faulty rarely
and hence often little data describing faulty behavior is avail-
able. In addition, they can be very expensive, and their op-
erators would like to detect faults early on, to prevent catas-
trophic failures. We encountered such cases in some of our
previous work (Matei, Ganguli, Honda, & de Kleer, 2015).
There is an additional scenario under which parameters are

Ion Matei et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

uncertain. Consider an elevator car. Its mass varies according
to the number of passengers inside the car. If the car mass is
not directly measurable, rather than having a fixed (average)
mass, we can model it as a random vector with some prob-
ability distribution. The reader may ask why do we have to
use a machine learning classifier when we could use a model-
based diagnosis method since a model in available. There is
a trade-off between the two approaches. Classifiers are ag-
nostic to the type of physical system and all the training ef-
fort is done off-line. They do require large data sets though.
In turn, model-based methods are more sensitive to the type
of system. For example, for linear systems with Gaussian
noise diagnosis engines based on Kalman filters (Kalman,
1960) work well. For nonlinear systems extensions of the
Kalman filter (extended or unscented) can be used. They
do not always work well. Extended Kalman filter requires
the Jacobian of the system model. This is rather difficult to
compute for a complex system. The unscented Kalman filter
is rather sensitive to its hyper-parameters. Alternatively, we
can use use a particle filter (Arulampalam, Maskell, & Gor-
don, 2002) that deal well with nonlinear systems and non-
Gaussian noise. The computational effort required to imple-
ment such filter online may be prohibitive though.

For the faults for which training data is insufficient or miss-
ing, we augment the model with physics-based failure behav-
ior corresponding to the respective faults. The augmented
model will have the capability to generate data that reflects
the behavior of the system under these faults. To train the
classifier, we first need to execute a data augmentation pro-
cess. The process will generate training data that include the
system behavior under the set of faults of interest. We use
model simulations to achieve this objective. Next, we need
to use a training algorithm that addresses the uncertainty in
the training data that originates in model. The training data
will be affected by uncertainty since it was generated us-
ing an uncertain model. Hence the training algorithm must
take this into account. We draw inspiration from the field

1

Annual Conference of the Prognostics and HealthManagement Society 2018

of uncertainty quantification (UQ) (Smith, 2013), and use a
method based on generalized chaos polynomial (gPC) expan-
sions (O’Hagan, 2013; Xiu, Lucor, Su, & Em Karniadakis,
2003). This method reduces the numerical complexity of the
training algorithm. The gPC expansions enable efficient eval-
uation of the training cost function using quadrature-based
approximations. A brute force approach to deal with uncer-
tainties is based on the Monte-Carlo method. It relies on a
potentially large number of repeated random sampling to ob-
tain numerical results. Hence, it is computationally expen-
sive. In this paper, reduced numerical complexity translates
to reduced number of model simulations.

Paper structure: We start with a description of the problem
in Section 2. We continue with introducing concepts related
to the gPC framework in Section 3. In Section 4 we show
the structure of the training algorithm that deals with data un-
certainty. In the same section we introduce a neural network
(NN) architecture adapted to our problem setup. Section 5
demonstrates our approach when diagnosing faults for an el-
evator with random car mass.

2. Problem setup

We consider physical systems whose behavior can be de-
scribed by a set of ordinary differential equations (ODEs) of
the form

ṡ = f (s,u;θ), (1)
z = h(s,u;θ), (2)

where s represents the state, u is a vector of inputs, z is
a vector of outputs, and θ denotes the vector of parame-
ters of the system. The vector θ is a vector valued ran-
dom variable. There are several sources of uncertainty in the
model. For example, one source of uncertainty has its ori-
gin in the manufacturing processes. They are almost never
deterministic. Hence, if we have the parameter values of
the model components, they are not deterministic. Another
source of uncertainty comes from the modeling process it-
self. We make simplifications or learn representations for
components when technical specifications are incomplete or
missing. We showed in (Matei, de Kleer, & Minhas, 2018)
how we can learn feasible acausal models that are not based
on first principles. These models are rarely perfect. We as-
sume that the probability distribution of θ is known. We make
an additional assumption. Namely, that the model was aug-
mented such that the behavior corresponding to a set of faults
F = { f0, f1, . . . , fL} can be simulated. Fault f0 denotes the
nominal behavior. The physics-based fault augmentation pro-
cess adds additional equations to the model. These new equa-
tions are dependent on parameters whose activation induces
the simulated faulty behavior. The type of faults introduced
are domain dependent. We cover electrical (short, open con-
nections, parameter drifts), mechanical (broken flanges, stuck

flanges, torque losses due to added friction, efficiency losses),
or fluid (blocked pipes, leaking pipes) domains. Fault aug-
mented models enabled us to execute a number of system
analytics tasks, ranging from fault diagnosis (Minhas et al.,
2014), reliability analysis (Honda et al., 2014) to maintenance
scheduling (Saha et al., 2014).

We use the model to generate data that correspond to each
of the fault modes. We can use a sliding window approach
to extract time series {stk:tk+T ,ztk:tk+T } that can be regarded as
raw data, where tk denotes time samples, and T represents
the window size (Figure 1). The raw data is processed fur-

Figure 1. Training data: a time window is moved over the
inputs and outputs of the system; each window generates a
feature vector

ther to extract features meaningful for the classification pro-
cess. Hence we obtain a training data set D = {(x{i},y{i})},
where x{i} corresponds to a time series {stk:tk+T ,ztk:tk+T }, y{i}

encodes a particular fault mode, and i denotes a training ex-
ample. In particular, y{i} is a L + 1 dimensional binary vector,
with y{i}j = 1 when x(i) was produced under fault mode f j, and
zero otherwise. The data-setD depends on the system param-
eters θ and hence it inherits the uncertainty in θ: x{i} = x{i}(θ).
Data set D can include experimental data as well, but that
specific chunk of data will not be dependent on θ in training
algorithm described in the following section.

The purpose of the training algorithm is to learn the classifier
model formulated as a mapping y = g(x;β) such that g(x{i};β)
and y{i} are close to each other with respect to some metric.
The classifier parameter vector β is computed by minimizing
a sum of loss functions L(β; x,y) with respect to β. The loss
function measures the discrepancy between the classifier’s
prediction and the true output y. A typical loss function for
classification is the cross entropy: L(β; x,y) =−

∑L+1
j=1 y j log ŷ j,

where ŷ = g(x;β). The parameter vector β is derived by solv-
ing the optimization problem

β̂ = argmin
β
L(β;D), (3)

2

Annual Conference of the Prognostics and HealthManagement Society 2018

where L(β;D) = 1
|D|

∑|D|
i=1 L(β; x{i},y{i})). In our setup, since

the training data depends on θ and hence is stochastic, the
cost function is stochastic as well. Hence, the optimization
problem is reformulated by averaging over the values of θ

β̂ = argmin
β
Eθ

[
L(β;D(θ))

]
, (4)

where the expectation is taken with respect to the distribu-
tion of θ. The key part in solving Eq. (4) is the evaluation
of the expectation Eθ

[
L(β;D(θ))

]
=

∫
L(β;D(θ))dPθ, where

dPθ is the probability measure of θ. A brute-force approach
based on Monte-Carlo is computationally expensive since it
requires a large number of simulations. This approach will
not scale with the size of the system and the number of param-
eters. Our goal is to provide an efficient way to approximate
the expectation shown in (4).

3. Preliminaries - Generalized Polynomial Chaos Expan-
sions

To train a classifier we need to solve the optimization prob-
lem (4). This in turn requires finding an efficient way to eval-
uate the expectation in terms of the probability distribution of
θ. To achieve this we make use of concepts from the theory
of uncertainty quantification. In particular, we use the gPC
framework, briefly introduced in what follows.

Based on the homogeneous chaos theory (Wiener, 1938)
and subsequent generalizations using Wiener-Askey scheme
(Ogura, 1972; R. H. Cameron, 1947), a second-order (finite
variance) random process Z(ω) can be represented as the in-
finite sum

Z =

∞∑
i=0

Ziψi(ξ), (5)

where ξ is a random variable and ψi(ξ)} are orthogonal poly-
nomials satisfying the orthogonality relation

〈ψi,ψ j〉 = ‖ψi‖
2δi j, (6)

where δi j is the Kronecker delta, and 〈·, ·〉 denotes the inner
product

〈 f (ξ),g(ξ)〉 =
∫

f (ξ)g(ξ)W(ξ)dξ, (7)

with W(ξ) the weighting function. Interestingly, some types
of orthogonal polynomials from the Askey-scheme have
weighting functions that are the same as the probability func-
tions of certain types of random variables (Table 1). If Z is
m-dimensional, we associate an independent random variable
ξi to each entry of Z. In this case Z =

∑∞
i=0 Ziψi(ξ), where ξ =

[ξ1, . . . , ξm]. A straightforward way to obtain the basis {ψi(ξ)}
is to construct tensor products of one-dimensional polynomi-
als corresponding to each random variable ξi, namely ψi(ξ) =

ψ ji1
(ξ1) . . .ψ jim

(ξm). For practical purposes, the infinite chaos
expansion is truncated to a finite sum. If P is the highest or-
der of the scalar polynomial ψ, the total number of expansion

Table 1. Correspondence between the type of Wiener-Askey
polynomial chaos and its underlying variable.

ξ ψ(ξ) Support
Gaussian Hermite-Chaos (−∞,∞)
Gamma Laguerre-Chaos [0,∞)

Beta Jacobi-Chaos [a,b]
Uniform Legendre-Chaos [a,b]
Poisson Charlier-Chaos {0,1,2, . . . , }

Binomial Krawtchouk-Chaos {0,1,2, . . . ,N}
Negative Binomial Meixner-Chaos {0,1,2, . . . , }

Hypergeometric Hahn-Chaos {0,1,2, . . . ,N}

terms is M + 1, with M = (m + P)!/(m!P!)− 1 (in the one-
dimensional case m = 1, we have that M = P). A significant
increase in P and m will have a high impact on the compu-
tational effort necessary for evaluating inner products of the
form (7). However, since the convergence of the Chaos ex-
pansion can be exponential (R. H. Cameron, 1947), we can
choose expansions of reasonable dimensions.

It is well known that at the core of Gauss-quadrature schemes
for numerical integration are orthogonal polynomials. In our
context, this provide an efficient way to approximate expec-
tations with respect to the probability distribution of ξ. For
example, let ξ be a scalar standard Gaussian random variable,
and let ψi(ξ) be the associate orthogonal polynomials. Then
the expectation of any function h(ξ) can be approximated us-
ing the Gauss quadrature:

E[h(ξ)] ≈
N∑

n=1

wnh(ξ(n)), (8)

where ξ(n) are collocation points which are the roots of the
N-degree polynomial ψN . As an example, if ξ ∼ N(0,1) and
therefore {ψi(ξ)} are (probabilists’) Hermite polynomials, we
can apply the Gauss-Hermite quadrature and obtain

E[h(ξ)] ≈
N∑

n=1

wnh(ξ(n)
√

2), (9)

where ξ(n) are collocation points, which are the roots of
the N-degree (physicists’) Hermite polynomial ψ̃N(ξ) =

2
N
2 ψN(ξ

√
2), with associated weights wn = 2N−1N!

N2[ψ̃N−1(ξ(n))]2 .
We are not bound to a particular choice of chaos orthogonal
polynomials. In the case ξ ∼ U(−1,1) with {ψi} Legendre
polynomials, we can apply the Gauss-Lengendre quadrature
to evaluate the expectation. As an example, the estimation er-
ror for the mean of a uniform random variable in the interval
[-1,1] using Gauss-Lengendre quadrature and 10 quadrature
points is 1.67e-15. By comparison, by randomly sampling 10
points (e.g., Monte Carlo approach), the average estimation
error is 0.146.

For higher dimensions ξ = (ξ1, . . . , ξm), an immediate so-
lution is to create a grid based on the Cartesian product

3

Annual Conference of the Prognostics and HealthManagement Society 2018

×m
j=1{ξ

(n)
j }

N
n=1, where {ξ(n)

j }
N
n=1 are collocation points corre-

sponding to the one dimensional case. As m and P increase,
the size of the grid increases as well. To deal with the expo-
nential increase in the number of tensor product terms (Pm),
sparse grid quadrature methods can be applied (Holtz, 2008).
These methods are based on using certain combinations of
tensor products of one-dimensional quadrature rules. They
can exploit the smoothness of {ψi} to overcome the curse of
dimensionality to certain extent.

4. Training algorithm

Feature vectors are generated through numerical simulations
of the physical system model. They are functions of the vec-
tor valued random variable θ, that is, x = x(θ). To use the gPC
expansion, we first need to represent θ in terms of ξ. Assum-
ing for simplicity θ is a scalar, the gPC expansion of θ is given
by θ =

∑M
i=0 θ jψ j(ξ). The coefficients θ j follow from the or-

thogonality property, provided a set of expectations in terms
of θ and ξ can be evaluated. However, since θ and ξ may
actually belong to different probability spaces, with different
event spaces and σ-algebras, we first need to map them on
the same probability space by applying a measure transfor-
mation. What this means is that we need to represent θ and
ξ as a function of a new random variable. Let dFθ(θ) and
dFξ(ξ) be the probability measures of θ and ξ, respectively.
We can define the random variable U ∼ U(0,1) and impose
du = dFθ(θ) = dFξ(ξ). Recall that du is in fact the pdf of U,
since dFU = f (u)du = du. Moreover, this gives us the trans-
formations θ = F−1

θ (u) and ξ = F−1
ξ (u). Thus, the coefficients

of the expansion θ =
∑M

i=0 θiψi(ξ) can be computed as

θ j =
1
‖ψ2

i ‖
〈θ,ψ j(ξ)〉 =

1
‖ψ2

j‖

∫
θψ j(ξ)dFξ(ξ) =

1
‖ψ2

j‖

∫ 1

0
F−1
θ (u)ψ j

(
F−1
ξ (u)

)
du. (10)

Due to the choice of distribution for U, the above integral can
be accurately approximated using Gauss-Legendre quadra-
ture. Using this procedure, we can express the feature vectors
as a function of ξ, that is, x = x(ξ). Representing θ in terms of
ξ enable the approximation of the expectation using quadra-
tures. In the case θ is a vector, ξ is a vector as well, where its
entries are independent random variables. It means that their
joint pdf can be evaluated as a product of pdfs corresponding
to scalar random variables. This simplifies the evaluation of
the expectation induced by the vector valued random variable
ξ. The expectation in the optimization problem (4) can be
approximated as

Eθ
[
L(β;D(θ(ξ)))

]
=

Eξ
[
L(β;D(ξ))

]
≈

N∑
n=1

wnL(β;D(ξ(n))), (11)

where ξ(n) are collocation points and wn are coefficients that
depend on the type of quadrature used. Table 1 enumerates
what quadrature are used based on the probability distribution
of ξ. Therefore, the optimization problem (4) can be approx-
imated as

min
β

N∑
n=1

wnL(β;D(ξ(n))). (12)

This implies that for each collocation point ξ(n) we need to
simulate the model of the physical system to generate a set
of features. We note a tradeoff between the accuracy of the
approximation and the numerical effort incurred by the simu-
lations. The use of gPC expansions guides the choice of col-
locations points, reducing the numerical effort as compared
to a Monte Carlo approach. Typical training algorithms are
based on stochastic gradient descent and its variants (Kingma
& Ba, 2014; Dozat, 2013). An instance of the gradient de-
scent algorithm for our optimization problem is given by

βk+1 = βk −α

N∑
n=1

wn∇βL(βk;D(ξ(n))), (13)

where α is the (possible time varying) iteration step size. This
algorithm requires the evaluation of the gradient of L at each
collocation point ξ(n). If we choose to model the classifier
as a neural network, the current platforms for training large
scale classifiers, such as Keras, Tensorflow or Pytorch can
be used, provided some custom made layers are built. To be
more concrete, let us first revisit the cost function:

E
[
L(β; x(ξ),y)

]
= −

L+1∑
j=1

E
[
y j log ȳ j(ξ)

]
≈

−

L+1∑
j=1

N∑
n=1

wny j log ȳ j(ξ(n)), (14)

where ȳ(ξ) = g(β; x(ξ)). We further have

E
[
L(β; x(ξ),y)

]
≈

−

L+1∑
j=1

y j log

 N∏
n=1

ȳ j(ξ(n))wn

 = −

L+1∑
j=1

y j log ŷ j, (15)

where ŷ j =
∏N

n=1 ȳ j(ξ(n))wn . This formula guides us to a par-
ticular type of neural network architecture as shown in Figure
2. We start with a neural network that has as input a feature
vector and has as output a softmax function that generates a
binary vector of dimension L + 1. We make N copies of this
neural network, each of then receiving as input x(n) = x(ξ(n)).
All copies share the same parameters β and generated out-
puts y(n)[1] 1. Next, each output y(n)[1] passes through a non-
linear layer that raises its values to the wn power, that is,

1Notation y(n)[1] refers to the nth subvector of y[1], where the notation [·]
represents the layer index. By y(n)[1]

i we represent the ith entry of y(n)[1]

4

Annual Conference of the Prognostics and HealthManagement Society 2018

Figure 2. Neural network architecture when using training data with uncertainties

y(n)[2] =
(
y(n)[1]

)wn . These outputs are concatenated into a
large vector y[3] = [y(1)[2], . . . ,y(n)[2]], which is passed through
a linear layer with constant weights matrix, y[4] = Py[3], where
P is a permutation matrix. Matrix P is defined in such a way
that jth, L + 1 dimensional component of y[4] has the form
y(j)[4] = [y(1)[2]

j , . . . ,y(n)[2]
j]. The last layer computes products

of the elements of each N dimensional sub-vectors of y[4],
that is, ŷ j =

∏N
n=1 y(j)[4]

n , where j denotes the jth sub-vector of
y[4]

n . There are L + 1 such sub-vectors.

Note that although we execute more computations, the num-
ber of parameters does not increase with the number of collo-
cation points. This is because first layer’s NNs share the same
parameters β, and all other layers have known parameters. In
addition, the operations performed by these last layers are dif-
ferentiable and hence we can generate the necessary gradients
for the backpropagation algorithm. Hence we can use main
stream NN training platform such as Tensorflow, Keras or Py-
torch for training.

The same idea can be applied to non-parametric statistical
models, such as decision tree or random forests. The training
algorithms for such models use loss functions whose expec-
tation when dealing with uncertain data can be approximated
using the gPC framework.

5. Illustrative example

We apply our approach for diagnosis faults in an elevator sys-
tem. The block diagram of the system is shown in Figure 3.
A velocity reference based on the car position is transmitted
to the velocity controller. This ensures that the electric motor

acting on the sheave follows the velocity reference. A typ-
ical velocity reference profile is shown in Figure 4. After a
command is given, the car starts to accelerate until it reaches
a cruising velocity. After passing a position sensor marking
the approach to the destination, the car starts to decelerate to
a complete stop. A model of the elevator was implemented

Figure 3. Block diagram of the elevator system

using Modelica language (Fritzson & Bunus, 2002). Our ob-
jective is to train a classifier able to detect two faults: motor
wear and presence of an obstacle in the shaft that impedes
the car’s motion. The model was augmented to allow sim-
ulation of the two faults. The fault components were added
on top of the original model. It is suitable to cases where ac-
cess to the details of the model is not permitted. We used this
approach in some of our previous fault augmentation work
(Honda et al., 2014; Saha et al., 2014). The motor wear was

5

Annual Conference of the Prognostics and HealthManagement Society 2018

Figure 4. Typical velocity profile

Table 2. Class definitions for the system behavior.

Classes Motor efficiency Friction parameter
(1)-Nominal [1,0.9] [0, 0.1]
(2)-Fault 1 (0.9,0.5] 0
(3)-Fault 2 (0.5, 0] 0
(4)-Fault 3 1 (0.1, 0.5]
(5)-Fault 4 1 (0.5, 1]

implemented by modeling a torque efficiency loss. The ob-
stacle wear was modeled by including a localized increase in
friction. To overcome the friction, the motor has to gener-
ate more torque in order to track the velocity reference. The
severity of the two fault modes is controlled by two parame-
ters. A motor efficiency parameter determines the wear of the
electric motor. A value of one for the parameter means that
the motor functions at full efficiency, while a zero value de-
scribes a complete failure of the motor. A zero value for the
friction is equivalent to the nominal case (no friction), while a
value one generates a friction force that blocks completely the
motion of the car. We define a total of five classes that reflect
the behavior of the elevator system, as shown in Table 2. We
considered single faults only, although we can easily extend
the analysis to the double faults case, by executing additional
simulations.

Next we generate simulated data that reflects the behavior of
the system under the five operating modes. We assume we
only have access to the empty car mass (100 Kg), and model
the car mass during operation as random variable with a uni-
form distribution between 100 Kg and 300 Kg. This repre-
sents the uncertainty in our model. Rather then generating
simulated data for a large number of mass values we apply
the uncertainty quantification-based approach to generate a
relatively small number of mass values. According to Table
1, we use chaos-Legendre polynomials to approximate the
optimization cost function. We choose an expansion with ten
terms (N=10). Hence we need to generate data for ten mass
values only. The weights wn of the expectation approximation

are computed according to the formula

wn =
1

(1− z2
n)P′(zn)2

, n = 1 . . . ,10, (16)

where zn are the roots of the tenth order Legendre polyno-
mial P(z) = 1

256 (46189z10 − 109395z8 + 90090z6 − 30030z4 +

3465z2 − 63) and P′(z) is the derivative of P(z) with respect
to z. The car mass values are given by b−a

2 zn + a+b
2 , where zn

are the roots of P(z), a=100, and b=300. For each mass value
we executed a number of 2000 simulations covering the five
classes. A simulation interval is given by the motion of the car
from an initial position to a final position and the return. Each
class has a number of 400 simulations obtained by varying
the fault parameters in the intervals associated to each class.
Hence we executed a number of 20,000 (10×5×400) simula-
tions. As test data we simulated the model for ten mass values
not included in the previous set of mass values. Using a sim-
ilar approach as in the case of the training data, we generated
a number of 100 simulations per each class and mass value.
Hence the test data contains 5,000 (10×5×100) samples. The
following variables are assumed measurable: car position and
velocity, motor current, control signal fed to the electric mo-
tor. A training example contains typical feature extracted
from time series representing the four variables over one sim-
ulation interval: min, max, mean, standard deviation and
median value. We obtain this way a feature vector of size
twenty (5 features multiplied by 4 variables).

For the training task we arranged the training data so that
it fits the NN architecture shown in Figure 2. Namely each
feature vector has the structure x = [x(1), x(2), . . . x(10)], where
x(i) is the feature vector corresponding to ith mass value in
the set of ten considered mass values. Hence, we have 2000
training samples, where each sample is a 10×20 matrix. The
NN shown in Figure 2 was implemented using the PyTorch
platform (Paszke et al., 2017). The identical NNs in the first
layer have three hidden layers of size 5 with a tanh activa-
tion function and a softmax function as last layer. We used
the Adam optimization algorithm for learning the parameters
of the NN with default values for the hyper-parameters. We
trained the parameters of the NN for 3000 iterations. After
training, we extract one of ten identical NNs in layer 1 of the
NN in Figure 2. This network corresponds to the map g(x;β)
defined in the problem setup section. For testing we revert to
the original form of the training and test data, that is we have
20,000 training samples and 5,000 test samples, where each
sample is a feature vector of dimension 20. Figure 5 depicts
the confusion matrices against the training and test data when
applying them on the map g(x;β).

Next, we use training data to train a new NN with the same
structure as g(x;β), that is, the same number of layers and
activation functions. We trained the network under the same
conditions mentioned above. This setup corresponds to the
case where wn = 1

N , hence we actually minimize a different

6

Annual Conference of the Prognostics and HealthManagement Society 2018

(a) Confusion matrix for the training data

(b) Confusion matrix for the test data

Figure 5. Confusion matrices after training the UQ-based
NN: (a) confusion matrix corresponding to the training data;
(b) confusion matrix corresponding to the test data

cost function. Therefore, different results are expected. The
confusion matrices corresponding to this case are shown in
Figure 6. The second NN performs worse than the UQ-based
NN since, where the comparison is performed with respect to
the values om the diagonals. This result should not come as a
surprise, since we actually minimize a different cost function:

E
[
L(β; x(ξ),y)

]
≈ −

1
N

L+1∑
j=1

N∑
n=1

y j log ȳ j(ξ(n)). (17)

Since the initial values for the NN parameters are randomly
initialized, the training results will slightly vary every time
we execute a new training session. The UQ-based NN does
perform better though. We do pay a price. Although the num-
ber of training parameters is the same, both the forward and
backward computations are more expensive since they need
to be done for N identical copies of the NN in the first layer.

(a) Confusion matrix for the training data

(b) Confusion matrix for the test data

Figure 6. Confusion matrices for a NN with a structure identi-
cal to g(x;β): (a) confusion matrix corresponding to the train-
ing data; (b) confusion matrix corresponding to the test data

6. Conclusions

We addressed the problem of learning a classification-based
diagnosis using synthetic data. The data is generated by a
model with uncertainties. We used concepts from the field of
uncertainty quantification such as generalized chaos polyno-
mials to represent the uncertainty in the training data. This
approach reduces the number of model simulations we need
to execute, as compared to a Monte-Carlo approach. We pro-
posed a NN architecture that considers training data uncer-
tainties. We applied our approach to learning a NN-based
classifier for detecting faults in an elevator system. Under
similar structural and training conditions, we demonstrated
that the UQ-based NN performs better than a standard NN.

7

Annual Conference of the Prognostics and HealthManagement Society 2018

References

Arulampalam, M. S., Maskell, S., & Gordon, N. (2002).
A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking. IEEE TRANSACTIONS
ON SIGNAL PROCESSING, 50, 174–188.

Dozat, T. (2013). Incorporating Nesterov Momentum into
Adam. ICLR Workshop.

Fritzson, P., & Bunus, P. (2002). Modelica – a general
object-oriented language for continuous and discrete-
event system modeling. In in proceedings of the 35th
annual simulation symposium (pp. 14–18).

Holtz, M. (2008). Sparse grid quadrature in high dimensions
with applications in finance and insurance. Springer.

Honda, T., Saund, E., Matei, I., Janssen, B., Saha, B., Bo-
brow, D. G., . . . Lattmann, Z. (2014, August). A simu-
lation and modeling based reliability requirements as-
sessment methodolog. In Proceedings of international
design engineering technical conferences and comput-
ers and information in engineering conference (asme
2014) (Vol. 7).

Kalman, R. (1960). A new approach to linear filtering
and prediction problems. Transactions of the ASME–
Journal of Basic Engineering, 82(Series D), 35–45.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochas-
tic optimization. CoRR, abs/1412.6980.

Matei, I., de Kleer, J., & Minhas, R. (2018). Learning con-
stitutive equations of physical components with con-
straints discovery. In in proceedings of the ieee ameri-
can control conference.

Matei, I., Ganguli, A., Honda, T., & de Kleer, J. (2015,
Aug). The case for a hybrid approach to diagnosis:
A railway switch. In Proceedings of the 26th interna-
tional workshop on principles of diagnosis (dx-2015)
(pp. 225–232).

Minhas, R., de Kleer, J., Matei, I., Saha, B., Janssen, B., Bo-

brow, D., & Kurtoglu, T. (2014). Using fault aug-
mented modelica models for diagnostics. In Proceed-
ings of the 10th international modelicaconference (pp.
437–445).

Ogura, H. (1972, September). Orthogonal functionals of the
poisson process. IEEE Trans. Inf. Theor., 18(4), 473–
481.

O’Hagan, A. (2013, may). Polynomial chaos: A tutorial and
critique from a statistician’s perspective (Tech. Rep.).
University of Sheffield, UK.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., De-
Vito, Z., . . . Lerer, A. (2017). Automatic differentiation
in pytorch.

R. H. Cameron, W. T. M. (1947). The orthogonal devel-
opment of non-linear functionals in series of fourier-
hermite functionals. Annals of Mathematics, 48(2),
385-392.

Saha, B., Honda, T., Matei, I., Saund, E., de Kleer, J.,
Janssen, W. C., . . . Bobrow, D. G. (2014, August,).
Model-based approach for optimal maintenance strat-
egy. In Proceedings of second european conference of
the prognostics and health management society.

Smith, R. C. (2013). Uncertainty quantification: Theory,
implementation, and applications. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics.

Wiener, N. (1938). The Homogeneous Chaos. American
Journal of Mathematics, 60(4), 897–936.

Xiu, D., Lucor, D., Su, C.-H., & Em Karniadakis, G.
(2003). Performance evaluation of generalized poly-
nomial chaos. In Computational science — iccs 2003:
International conference, melbourne, australia and st.
petersburg, russia, june 2–4, 2003 proceedings, part
iv (pp. 346–354). Berlin, Heidelberg: Springer Berlin
Heidelberg.

8

