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ABSTRACT

With increasing complexity of engineering systems, fault di-
agnostics plays a significant role in ensuring that they operate
safely. Such systems most often exhibit mixed discrete and
continuous, i.e., hybrid, behavior, and may encounter both
parametric faults (unexpected changes in system parameters)
as well as discrete faults (unexpected changes in component
modes). Diagnosis becomes computationally very complex
due to the large number of possible system modes, and pos-
sible mode changes that occur near the point of fault occur-
rence. This paper presents a qualitative fault isolation frame-
work for integrated diagnosis of both parametric and discrete
faults in hybrid systems, based on structural model decom-
position. Fault isolation is performed by analyzing the quali-
tative information of the residual deviations, and considering
observation delay. The great advantage of structural model
decomposition for this problem is that it essentially defines
several smaller independent diagnosis problems that become
more efficient to solve, and makes the overall diagnosis prob-
lem more scalable. To demonstrate and test the validity of
our approach, we use a hydraulic multi-tank system as the
case study in simulation. Results illustrate that the approach
is both efficient and scalable.

1. INTRODUCTION

Fault diagnostics plays a critical role in ensuring that complex
engineering systems operate in a safe manner. Most industrial
systems are best represented as hybrid systems that have dis-
crete behavioral modes, with each mode having its own con-
tinuous dynamics. Such systems, once fielded, typically en-
Matthew Daigle et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
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counter both parametric faults and discrete faults. Parametric
faults are characterized by unexpected changes in the system
parameters, e.g., a leak in a hydraulic tank; while discrete
faults are characterized by unexpected changes in component
modes, e.g., an electrical relay stuck open. The diagnosis of
hybrid systems is computationally complex due to the large
number of possible system modes and mode changes that oc-
cur before and during fault detection and isolation.

In previous work, approaches for hybrid systems diagnosis
have focused on either hybrid system modeling (Rienmüller,
Bayoudh, Hofbaur, & Travé-Massuyès, 2009; Bayoudh,
Travé-Massuyès, & Olive, 2008), hybrid state estima-
tion (Hofbaur & Williams, 2004), or a combination of on-line
state tracking and residual (the difference between observed
and predicted behavior) evaluation (Benazera & Travé-
Massuyès, 2009). However, in all those approaches, the
proposed solutions involve modeling and pre-enumeration
of the set of all possible system-level modes, which grows
exponentially with the number of switching components,
and so do not scale well. Other works have instead built
hybrid system models in a compositional way, where modes
are defined at a local level (e.g., at the component level),
and the system-level mode is defined implicitly by the local
component-level modes thus avoiding the pre-enumeration
of all the system-level (Narasimhan & Brownston, 2007;
Trave-Massuyes & Pons, 1997).

Following the compositional modeling approach, in previ-
ous work (Daigle, Bregon, & Roychoudhury, 2015; Bre-
gon, Daigle, & Roychoudhury, 2016), we proposed such a
modeling framework for hybrid systems. A system is mod-
eled as a set of interacting components, with each compo-
nent defined by its own set of (local) modes, with a differ-
ent set of mathematical constraints describing the continuous
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dynamics in each mode. For a given system mode, struc-
tural model decomposition (Roychoudhury, Daigle, Bregon,
& Pulido, 2013) is used to construct minimal submodels for
residual generation, and, based on efficient causality reassign-
ment (Daigle, Bregon, & Roychoudhury, 2015), local sub-
models can be efficiently reconfigured upon mode changes.
In (Bregon et al., 2016), we presented an approach for qual-
itative fault isolation of parametric faults in hybrid systems
using submodel-based residuals.

In this paper, we extend this framework to also isolate discrete
faults. We present how discrete faults can be described within
the same qualitative fault isolation framework, thus enabling
seamless integrated diagnosis of both types of faults. Allow-
ing for observation delay, we also reason about the system
mode in which the observations may come from, which com-
plicates the diagnosis problem. Unlike previous approaches
based on this methodology (P. J. Mosterman & Biswas, 1999;
Daigle, Koutsoukos, & Biswas, 2009; Narasimhan & Biswas,
2007), we make use of structural model decomposition, and
show how it improves the efficiency and scalability of the
diagnosis task compared to global model-based approaches.
Effectively, local independent diagnosis subproblems are de-
fined that can be easily solved, because they have only a frac-
tion of the faults and residuals, and each local submodel has
only a small set of local modes that must be reasoned over,
compared to a large set of system-level modes when using a
global system model for residual generation. We use a hy-
draulic multi-tank system as a case study for demonstrating
that our approach can correctly isolate single, persistent faults
in hybrid systems in the presence of observation delay.

The paper is organized as follows. Section 2 summarizes the
compositional modeling approach and introduces the multi-
tank case study. Section 3 formulates the problem we solve
in this paper. Section 4 describes the qualitative fault isolation
approach for diagnosing both parametric and discrete faults in
hybrid systems. Section 5 demonstrates the approach for the
case study. Section 6 reviews the related work and current
approaches for hybrid systems fault diagnosis and puts our
work into context. Finally, Section 7 concludes the paper.

2. COMPOSITIONAL HYBRID SYSTEMS MODELING

In this section we review the compositional modeling ap-
proach for hybrid systems proposed in (Daigle, Bregon, &
Roychoudhury, 2015). The basic idea in (Daigle, Bregon, &
Roychoudhury, 2015) is that models are made up of a set of
user-defined components, where each component is defined
by a set of modes. Each mode is then described by a differ-
ent set of constraints specifying the continuous dynamics. In
the following, we summarize the main details of the modeling
framework and the structural model decomposition approach.
For additional details, we refer the reader to (Daigle, Bregon,
& Roychoudhury, 2015).

Pipe12 Pipe23
Tank1 Tank3Tank2

u1 u2 u3

Figure 1. Three-tank system running example.

2.1. System Modeling

In each mode, the continuous dynamics of a component are
modeled using a set of variables and a set of constraints. A
constraint is defined as follows:

Definition 1 (Constraint). A constraint c is a tuple (εc, Vc),
where εc is an equation involving variables Vc.

A component is defined by a set of constraints over a set of
variables. The constraints are partitioned into different sets,
one for each component mode. A component is then defined
as follows:

Definition 2 (Component). A component κ with n discrete
modes is a tuple κ = (Vκ, Cκ), where Vκ is a set of variables
and Cκ is a set of constraints sets, where Cκ is defined as
Cκ = {C1

κ, C
2
κ, . . . , C

n
κ}, with a constraint set, Cmκ , defined

for each mode m = {1, . . . , n}.

To illustrate our proposal, throughout the paper we will use
a three-tank system, shown in Fig. 1. The components of
the three-tank system, defined in Table 1, are three tanks,
Tank1, Tank2 and Tank3; and two connecting pipes Pipe12

and Pipe23. The connecting pipes have binary on/off valves,
so each has two modes. Thus, there are four total modes in
the system. For Tanki, mi is the fluid mass, ui is the input
flow, pi is the tank pressure, Ki is the tank capacity, qi is the
flow out a drainage pipe, and Ri is the resistance of that pipe.
For Pipeij , qij is the flow through the pipe, and Rij is the
resistance of the pipe.

Example 1. Consider the component Pipe12. It has two
modes: off (represented as mode 1 in Table 1) and on (repre-
sented as mode 2). In the off mode, the flow through the pipe
is set to 0, and in the on mode, it is dependent on the pressure
difference between the two adjacent tanks.

We define a system model as a set of components:

Definition 3 (Model). A modelM = {κ1, κ2, . . . , κk} is a
finite set of k components for k ∈ N.

The set of variables for a model, VM, is the union of all
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Table 1. Components of the three-tank system.

Component Mode Constraints
Tank1 1 ṁ1=u1 − q1 − q12

p1=m1/K1

q1=p1/R1

q∗1=q1
m1=

∫ t

t0
ṁ1

Pipe12 1 q12=0
2 q12=(p1 − p2)/R12

Tank2 1 ṁ2=u2 + q12 − q2 − q23
p2=m2/K2

q2=p2/R2

q∗2=q2
m2=

∫ t

t0
ṁ2

Pipe23 1 q23=0
2 q23=(p2 − p3)/R23

Tank3 1 ṁ3=u3 + q23 − q3
p3=m3/K3

q3=p3/R3

q∗3=q3
m3=

∫ t

t0
ṁ3

the component variable sets, i.e., for d components, VM =
Vκ1
∪Vκ2

∪. . .∪Vκd . VM consists of five disjoint sets, namely,
the set of state variables, XM; the set of parameters, ΘM;
the set of inputs (variables not computed by any constraint),
UM; the set of outputs (variables not used to compute any
other variables), YM; and the set of auxiliary variables, AM.
Parameters, ΘM, include explicit model parameters that are
used in the model constraints (e.g., fault parameters). Auxil-
iary variables, AM, are additional variables that are used to
simplify the structure of the equations.

Example 2. In the three-tank system model, we have XM =
{m1,m2,m3}, ΘM = {R1, R2, R3, R12, R23,K1,K2,K3},
UM = {u1, u2, u3}, and YM = {q∗1 , q∗2 , q∗3}. Remaining
variables belong to AM. Here, the ∗ superscript is used to
denote a measured value of a physical variable, e.g., q3 is the
flow and q∗3 is the measured flow.

The interconnection structure of the model is captured us-
ing shared variables between components, i.e., components
κi and κj are connected if Vκi ∩ Vκj 6= ∅.

Example 3. In the three-tank system model, component κ2

(Pipe12) is connected to κ1 (Tank1) through q12 and p1, and
to κ3 (Tank2) through q12 and p2.

In our work, a fault is the cause of an unexpected, persistent
deviation of the system behavior from the acceptable nom-
inal behavior. Differently to our previous work in (Bregon
et al., 2016), we consider both parametric and discrete faults
and link faults to the set of parameters ΘM and to the set
of switching components, respectively. More formally, faults
are defined as follows.

Definition 4 (Parametric Fault). A parametric fault f is a per-
sistent constant deviation of exactly one parameter θ ∈ ΘM
of the system modelM from its nominal value.

Definition 5 (Discrete Fault). A discrete fault f is persistent
change in the mode of exactly one component κ ∈ M from
its nominal value.

The model constraints, CM, are the union of the component
constraints over all modes, i.e., CM = Cκ1 ∪Cκ2 ∪ . . .∪Cκd .
Constraints are exclusive to components, that is, a constraint
c ∈ CM belongs to exactly one Cκ for κ ∈M.

To refer to a particular mode of a model we use the concept
of mode vector. A mode vector m specifies the current mode
of each of the components of a model. So, the constraints for
a mode m are denoted as Cm

M.

For shorthand, we will refer to the modes only of the compo-
nents with multiple modes. For the three-tank system, since
connecting pipes can be either on or off, we use a 0 to denote
on and a 1 to denote off. So, for example, mode [1, 0] means
that Pipe12 is off (mode 1), and Pipe23 is on (mode 2).

The switching behavior of each component can be defined in
many different ways, such as using a finite state machine or a
similar type of control specification. For the purposes of this
paper, we view the switching behavior as a black box where
the mode change event is given, and refer the reader to many
of the approaches already proposed in the literature for mod-
eling the switching behavior (Henzinger, 2000; P. Mosterman
& Biswas, 2000).

2.2. Structural Model Decomposition for Hybrid Systems

Our framework is based on structural model decomposition
to divide the system model into submodels for the purpose
of computing residuals, i.e., the difference between observed
and predicted system behavior, which are then used for diag-
nosis as we describe later in Section 4. The main advantage of
structural model decomposition, in contrast to using a global
model for residual generation, is that each residual only re-
sponds to a subset of the faults, thus decreasing the com-
plexity of the diagnosis process. Further, it allows the diag-
nosis task to be distributed, improving scalability, as proven
in (Bregon et al., 2014). Later, in Section 4, we will show
the specific advantages that structural model decomposition
provides for diagnosis of hybrid systems.

In order to derive submodels, we need to assign causality
to the system. Given a constraint c, belonging to a specific
mode of a specific component, the notion of a causal assign-
ment is used to specify a possible computational direction,
or causality, for the constraint c. This is done by defining
which v ∈ Vc is the dependent variable in equation εc. For a
given mode, we have the set of causal assignments over the
entire model in that mode, and with that we can compute the
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Figure 2. q∗2 submodel graphs for the four modes of the system.

minimal submodels, using the GenerateSubmodel algo-
rithm described in our previous work (Roychoudhury et al.,
2013). The algorithm finds a submodel, which computes a
set of local outputs given a set of local inputs, by search-
ing over the causal model. It starts at the local inputs, and
propagates backwards through the causal constraints, find-
ing which constraints and variables must be included in the
submodel. When possible, causal constraints are inverted in
order to take advantage of local inputs. Additional informa-
tion and the pseudocode are provided in (Roychoudhury et
al., 2013).

In the context of residual generation, we set the local output
set to a single measured value, and the local inputs to all other
measured values and the (known) system inputs. That is, we
exploit the analytical redundancy provided by the sensors in
order to find minimal submodels to estimate values of sensor
outputs. In this framework, we consider one submodel per
sensor, each producing estimated values for that sensor. As-
suming that the set of sensors does not change from mode to
mode, we will always have one submodel per sensor. Since
the set of constraints changes from mode to mode, the set of
submodels will change as well, however, by taking advantage

of causality information, reconfiguring the submodels can be
done efficiently (Daigle, Bregon, & Roychoudhury, 2015).

Example 4. Submodels can be represented visually using a
graph notation, where vertices correspond to variables, and
edges correspond to constraints with causal assignments, i.e.,
a directed edge from vi to vj means that vj is computed us-
ing vi. The submodel graphs for q∗2 for all possible modes
are shown in Fig. 2. Note that in all modes, the submodel
for q∗2 is decoupled from the dynamics of the states of its
neighbording tanks, by taking the flow measurements in the
neighboring tanks as inputs. So, in an n-tank system, the
submodel for tank i would have at most four local modes, be-
cause any switches beyond the tank’s neighbording connect-
ing pipes will be decoupled by the decomposition. Further,
any faults in tanks other than i, i + 1, and i − 1 would have
no effect on the residual for tank i. Note also that changes in
Ki+1 and Ki−1 are decoupled from the residual for tank i.

3. PROBLEM FORMULATION

In (Daigle, Roychoudhury, & Bregon, 2015) we presented our
qualitative fault diagnosis approach that works by reasoning
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over measurement deviations from their expected nominal be-
havior. These observations are formed from a qualitative ab-
straction of residual signal deviations. Residuals are com-
puted as the difference between predicted nominal, ŷ(t), and
measured, y(t), system variables, i.e. a residual r(t) is com-
puted as r(t) = y(t)− ŷ(t). In our proposed framework, pre-
dicted system variables ŷ(t) are computed using the minimal
submodels as mentioned in the previous section. Once residu-
als are computed, fault detection is performed by determining
statistically significant nonzero deviations in the residuals,
which are then abstracted into a symbolic representation to
form fault signatures. These symbols are computed from the
residuals using symbol generation, as described in (Daigle,
Roychoudhury, & Bregon, 2015). Finally, fault isolation is
carried out by comparing predicted signatures against ob-
served signatures.

In the context of hybrid systems, the structure of the resid-
ual generators changes from mode to mode, causing the set
of fault signatures to also change. Observing mode change
events can help to match the observations to both the fault and
the mode in which they occurred. Further, if there is a delay
in the observation of fault signatures, then the mode in which
the deviation actually occurred may not be the current mode
in the system in which it was observed, and consequently,
the fault signature for the estimated fault could mismatch the
fault signature for the current mode. A hybrid system diag-
nosis algorithm must handle each of these challenges.

We restrict the problem to single, persistent faults.

Assumption 1. Only single faults occur in the system.

Assumption 2. Faults are persistent.

Thus, we define a diagnosis as follows.

Definition 6 (Diagnosis). For a system with fault set F , a
diagnosis is a fault f ∈ F that is consistent with a given
finite sequence of observations. A set of diagnoses is denoted
as D.

The diagnosis problem can then be formally defined as fol-
lows.

Problem 1. For a system with fault set F , given a finite se-
quence of observations O, find the set of diagnoses D ⊆ F
that is consistent with O.

4. QUALITATIVE FAULT ISOLATION FOR HYBRID SYS-
TEMS

Generally speaking, for the purposes of diagnosis, we con-
sider an observation to be an event observed at a particular
time.

Definition 7 (Observation). An observation is a tuple (e, t),
where e is an observed event and t is the time of observation.

We consider two types of observable events: (i) fault signa-
ture events and (ii) mode change events. Section 4.1 reviews
the event-based fault modeling framework based on the con-
cepts of fault signatures (Daigle et al., 2009), and extends
it to hybrid systems, adding on to the framework developed
in (Bregon et al., 2016). Following that, Section 4.2 describes
how diagnostic reasoning can be performed under this new
framework in the presence of mode changes, and for both
parametric and discrete faults.

4.1. Event-based Fault Modeling

The basis of the qualitative fault isolation approach is the con-
cept of a fault signature.

Definition 8 (Fault Signature). A fault signature for a fault
f and residual r in mode m, denoted by σf,r,m is a set of
symbols representing changes in r caused by f at the point of
the occurrence of f in mode m. The set of all fault signatures
for a fault f over residualsR in modem is denoted as Σf,R,m.

In this work, we adopt a set of two symbols to define a fault
signature: the qualitative change in residual magnitude, and
the qualitative change in residual slope, each of which take
on the values + (increase), - (decrease), and 0 (no change).
These symbols are based on the transient that is produced
when a fault occurs (P. J. Mosterman & Biswas, 1999). We
write always the magnitude symbol followed by the slope
symbol, e.g., a signature +- represents an increase in mag-
nitude and a decrease in slope.

A fault signature is to be interpreted as a prediction as to what
observations will be made, given that we are in a particular
mode and some fault happens. For a parametric fault, this is a
straightforward concept. For discrete faults, the interpretation
remains the same even though a discrete fault will change the
mode. That is, if we are in mode m and a discrete fault oc-
curs from that mode (thus changing the mode), the signatures
in Σf,R,m for the discrete fault f will be those observations
predicted for the fault occurring in modem, and not the mode
in which the fault drives the system into. So, if we know the
system is in modem and fault signatures are observed, we al-
ways look in Σf,R,m for every f ∈ F to reason about which
fault has occurred.

Changes may be observed in each residual that responds to
the fault. Thus, when a fault occurs, we observe a sequence of
fault signatures. Relative residual orderings define a partial
order of signatures for a given fault, and thus define all the
possible fault signature sequences that can be produced by a
fault.

Definition 9 (Relative Residual Ordering). A relative resid-
ual ordering for a fault f and residuals ri and rj in mode m
is a tuple (ri, rj), denoted by ri ≺f,m rj , representing that
f always manifests in ri before rj in mode m. The set of all
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Table 2. Fault signatures and orderings for global model for
mode [0, 0].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 00 +- 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1

K−
3 00 00 +- q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

R+
12 00 00 00 ∅

R+
2 00 -+ 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1

R+
23 00 00 00 ∅

R+
3 00 00 -+ q∗3 ≺ q∗2 , q∗3 ≺ q∗1

Pipeon
12 0- 0+ 00 q∗1 ≺ q∗3 , q∗2 ≺ q∗3

Pipeon
23 00 0- 0+ q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeoff
12 00 00 00 ∅

Pipeoff
23 00 00 00 ∅

orderings for a fault f over residuals R in mode m is denoted
as Ωf,R,m.

Table 3. Fault signatures and orderings for global model for
mode [0, 1].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 00 +- 0+ q∗2 ≺ q∗3 , q∗2 ≺ q∗1 , q∗3 ≺ q∗1

K−
3 00 0+ +- q∗2 ≺ q∗1 , q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

R+
12 00 00 00 ∅

R+
2 00 -+ 0+ q∗2 ≺ q∗3 , q∗2 ≺ q∗1 , q∗3 ≺ q∗1

R+
23 00 0+ 0- q∗2 ≺ q∗1 , q∗3 ≺ q∗1

R+
3 00 0+ -+ q∗2 ≺ q∗1 , q∗3 ≺ q∗2 , q∗3 ≺ q∗1

Pipeon
12 0- 0+ 0+ q∗2 ≺ q∗3

Pipeoff
23 00 0+ 0- q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeoff
12 00 00 00 ∅

Pipeon
23 00 00 00 ∅

Example 5. Tables 2–5 show the fault signatures and order-
ings for the four modes of the tank system for the global
model residuals. For example, in mode [0, 1],R+

3 will cause a
-+ in rq∗3 , i.e., a decrease in magnitude and increase in slope.
Then on rq∗2 it will cause 0+, i.e, no change in magnitude
and an increase in slope. In this mode, the first tank is de-
coupled since the connecting pipe is turned off, so no effect
on rq∗1 will be observed. In the same mode, the fault Pipeon

12

will connect the first and second tanks, and so we will see 0-
on rq∗1 (since now flow is also exiting through the connect-
ing pipe), 0+ on rq∗2 , and 0+ on rq∗3 (since flow is entering
through the connecting pipe into the second tank).

Table 4. Fault signatures and orderings for global model for
mode [1, 0].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 0+ 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 0+ +- 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1 , q∗1 ≺ q∗3

K−
3 00 00 +- q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 0+ 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗2 , q∗1 ≺ q∗3

R+
12 0+ 0- 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗3

R+
2 0+ -+ 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1 , q∗1 ≺ q∗3

R+
23 00 00 00 ∅

R+
3 00 00 -+ q∗3 ≺ q∗2 , q∗3 ≺ q∗1

Pipeoff
12 0+ 0- 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗3

Pipeon
23 0- 0- 0+ q∗2 ≺ q∗1

Pipeon
12 00 00 00 ∅

Pipeoff
23 00 00 00 ∅

Table 5. Fault signatures and orderings for global model for
mode [1, 1].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 0+ 0+ q∗2 ≺ q∗3 , q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 0+ +- 0+ q∗2 ≺ q∗3 , q∗2 ≺ q∗1

K−
3 0+ 0+ +- q∗2 ≺ q∗1 , q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 0+ 0+ q∗2 ≺ q∗3 , q∗1 ≺ q∗2 , q∗1 ≺ q∗3

R+
12 0+ 0- 0- q∗2 ≺ q∗3

R+
2 0+ -+ 0+ q∗2 ≺ q∗3 , q∗2 ≺ q∗1

R+
23 0+ 0+ 0- q∗2 ≺ q∗1

R+
3 0+ 0+ -+ q∗2 ≺ q∗1 , q∗3 ≺ q∗2 , q∗3 ≺ q∗1

Pipeoff
12 0+ 0- 0- q∗2 ≺ q∗3

Pipeoff
23 0+ 0+ 0- q∗2 ≺ q∗1

Pipeon
12 00 00 00 ∅

Pipeon
23 00 00 00 ∅

Example 6. Tables 6–9 show the fault signatures and or-
derings for the four modes of the tank system for the local
submodel residuals. Consider the fault K−2 . In [0, 1], it will
cause +- on rq∗2 . No other residuals will be affected, since the
fault is decoupled from them due to the decomposition. In the
global model residuals, however, an additional residual (that
for q∗3) will deviate. In the same mode, the fault Pipeon

12 will
connect the first and second tanks, and so we will see 0- on
rq∗1 and 0+ on rq∗2 . We will not see any change in rq∗3 , since
the submodel generating that residual is decoupled from that
mode change.

A single sequence of fault signatures is termed a fault trace.

Definition 10 (Fault Trace). A fault trace for a fault f over
a set of residuals R in mode m, denoted by λf,R,m, is a se-
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Table 6. Fault signatures and orderings for local submodels
for mode [0, 0].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 00 +- 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1

K−
3 00 00 +- q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

R+
12 00 00 00 ∅

R+
2 00 -+ 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1

R+
23 00 00 00 ∅

R+
3 00 00 -+ q∗3 ≺ q∗2 , q∗3 ≺ q∗1

Pipeon
12 0- 0+ 00 q∗1 ≺ q∗3 , q∗2 ≺ q∗3

Pipeon
23 00 0- 0+ q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeoff
12 00 00 00 ∅

Pipeoff
23 00 00 00 ∅

Table 7. Fault signatures and orderings for local submodels
for mode [0, 1].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 00 +- 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1

K−
3 00 00 +- q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

R+
12 00 00 00 ∅

R+
2 00 -+ 0+ q∗2 ≺ q∗1 , q∗3 ≺ q∗1

R+
23 00 0+ 0- q∗2 ≺ q∗1 , q∗3 ≺ q∗1

R+
3 00 0+ -+ q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeon
12 0- 0+ 00 q∗1 ≺ q∗3 , q∗2 ≺ q∗3

Pipeoff
23 00 0+ 0- q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeoff
12 00 00 00 ∅

Pipeon
23 00 00 00 ∅

quence of fault signatures that can be observed given the oc-
currence of f in mode m.

Fault traces are grouped into fault languages.1

Definition 11 (Fault Language). The fault language for a
fault f and residual set R in mode m, denoted by Lf,R,m,
is the set of all fault traces for f over R in m.

For the purposes of this paper, we assume that signatures and
orderings are correctly observed.2

Assumption 3 (Correct Observation). If a fault f occurs in

1Fault languages can be automatically derived for certain classes of system
models (Daigle, 2008), obtained via simulation, or obtained experimentally.
In this work, we assume that the fault languages are given as input.

2Relaxation of this assumption has been explored for continuous systems
in (Daigle, Roychoudhury, & Bregon, 2014).

Table 8. Fault signatures and orderings for local submodels
for mode [1, 0].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 00 +- 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1

K−
3 00 00 +- q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 0+ 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗3

R+
12 0+ 0- 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗3

R+
2 0+ -+ 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗3

R+
23 00 00 00 ∅

R+
3 00 00 -+ q∗3 ≺ q∗2 , q∗3 ≺ q∗1

Pipeoff
12 0+ 0- 00 q∗1 ≺ q∗3 , q∗2 ≺ q∗3

Pipeon
23 00 0- 0+ q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeon
12 00 00 00 ∅

Pipeoff
23 00 00 00 ∅

Table 9. Fault signatures and orderings for local submodels
for mode [1, 1].

Fault q∗1 q∗2 q∗3 Residual Orderings

K−
1 +- 00 00 q∗1 ≺ q∗2 , q∗1 ≺ q∗3

K−
2 00 +- 00 q∗2 ≺ q∗3 , q∗2 ≺ q∗1

K−
3 00 00 +- q∗3 ≺ q∗2 , q∗3 ≺ q∗1

R+
1 -+ 0+ 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗3

R+
12 0+ 0- 00 q∗2 ≺ q∗3 , q∗1 ≺ q∗3

R+
2 0+ -+ 0+ ∅

R+
23 00 0+ 0- q∗2 ≺ q∗1 , q∗3 ≺ q∗1

R+
3 00 0+ -+ q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeoff
12 0+ 0- 00 q∗1 ≺ q∗3 , q∗2 ≺ q∗3

Pipeoff
23 00 0+ 0- q∗2 ≺ q∗1 , q∗3 ≺ q∗1

Pipeon
12 00 00 00 ∅

Pipeon
23 00 00 00 ∅

mode m, then if the system does not change mode after the
occurrence of the fault, the observed fault trace will belong to
Lf,R,m.

4.2. Hybrid Systems Diagnosis

For hybrid systems, fault signatures, residual orderings, fault
traces, and fault languages are a function of the system mode.
If the mode does not change between the point of fault occur-
rence and the diagnosis of the fault, then the problem reduces
to the continuous systems case. Otherwise, we will observe
some new trace that may not belong to any mode-specific
fault language, i.e., it may be a trace that is composed of par-
tial traces for a fault from the different modes encountered
during diagnosis.

Example 7. For example, consider the global model residu-
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als. Assume that the system starts in [0, 1] and R+
1 occurs.

Then we would observe r−+
q∗1

. So far, this partial trace can be
found as a prefix to a trace in LR+

1 ,R,[0,1]. Now, assume that

the system moves to mode [1, 1], now we would observe r0+
q∗2

followed by r0+
q∗3

.

Thus, the first challenge is that now observed fault traces
may contain some subtraces corresponding to one mode, and
other subtraces corresponding to other modes. Thus, the fault
isolation reasoning must span over several potential mode
changes. If we know the system mode, then we know which
fault language corresponds to the predicted observations for
each fault. If there are unobservable mode changes, this adds
another layer of complexity, because we must not only diag-
nose which fault has occurred but also what mode the system
is currently in. This is also complicated by discrete faults,
which are themselves unobservable mode changes. If we do
not know whether a parametric or a discrete fault has oc-
curred, then we do not know the true mode of the system.

We define mode change events specific to components.

Definition 12 (Mode Change Event). An event (κ,m) repre-
sents component κ changing to its mode m.

For the purposes of this paper, we assume that all com-
manded mode change events are observable. Since we as-
sume that discrete faults are permanent, commanded mode
change events for the faulty component will be ignored, and
so this must be taken into account within the diagnostic rea-
soning.

Assumption 4 (Mode Change Observability). All com-
manded mode change events are observable.

However, even if we know the current mode of the system,
there is another layer of complexity to consider: observation
delay. Specifically, in our framework, this corresponds to the
observations of fault signatures being delayed. The difficulty
is that the system may be in one mode, but when the observa-
tion arrives we have moved to a different system mode, and
thus we do not know in which mode the observation was ac-
tually made.

Example 8. Consider the global model residuals, with the
system in mode [0, 1], and R+

2 occurs. We observe r−+
q∗2

, and
then change to mode [0, 0]. Say that r0+

q∗3
occurred in the pre-

vious mode, but we only get the observation now. This obser-
vation is not consistent with R+

2 in mode [0, 0].

Observation delay can manifest in different ways. For exam-
ple, fault detection is usually performed by checking whether
a residual crosses some threshold. To make this approach
robust to noise, usually we check that the mean of the resid-
ual, computed over some small time window, has crossed that
threshold. This means that the signal could actually cross the

Algorithm 1 FaultIsolation
1: Inputs: Di, λi, σi+1,Mr,∆

2: Outputs: Di+1

3: Di+1 ← ∅
4: for all q ∈Mr,∆ do
5: for all f ∈ Di ∩ Fr,q do
6: if σi+1 ∈ Σf,rσi+1

,m and ¬∃r′ ∈ (R −
Rλi) s.t. r′ ≺ rσi+1 ∈ Ωf,R−Rλi ,m then

7: Di+1 ← {f}

threshold in one mode, but the mean of the signal could cross
only in the next mode. Thus, the observation of this signature
is delayed. In practice, we can assume that observation delay
is finite and bounded.

Assumption 5 (Bounded Observation Delay). The delay of
any observation is no greater than ∆.

Given our assumptions, the algorithm for a single step of fault
isolation for hybrid systems is shown as Algorithm 1.3 Be-
cause we reason about discrete faults through fault signatures,
the same as for parametric faults, this algorithm is the same
as that presented for only parametric faults in (Bregon et al.,
2016). As inputs, it takes the current diagnosis, Di, the previ-
ous sequence of fault signatures, λi, the new fault signature,
σi+1, and the set of recent modes that falls within [t −∆, t],
Mr,∆, for the model/submodel that generates residual r. The
change from the continuous systems case is that we need to
check signatures and orderings for each of the recent modes.

The set of recent modes is dependent on the model used for
isolation, and so is a function of the residual associated with
the signature. When using the global model to generate resid-
uals, the residual generator contains all system modes, but
for a local submodel generating r, it contains only the local
modes of that submodel, which is less than the number of
system modes. Thus, fewer modes must be searched and ef-
ficiency is improved.

If the signature it is consistent in any of the modes, it must
be added to Di+1. Here, for a given mode m, we need to
check only the subset of faults that are included in the current
diagnosis and can actually affect this residual in this mode,
denoted as Fr,m. To check consistency, we check that the
predicted signature for the residual associated with σi+1, de-
noted as rσi+1 , can be found in the signature set for that fault
and residual, and that the orderings, with respect to residu-
als that have not yet deviated (those in R − Rλi , where Rλi
denotes the residuals associated with the trace λi), are not
violated.

Algorithm 1 executes a single reasoning step, given a newly

3Because fault languages can become prohibitively large, we implement the
fault isolation step directly using the signatures and orderings, which is
more efficient (Daigle et al., 2009).
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observed fault signature. This would be placed within a pro-
gressive monitoring algorithm, that keeps track of the current
diagnosis, and computes the set of recent modes based on the
times events are observed.

4.3. Scalability

The complexity of the fault isolation algorithm is dependent
on the number of faults, |F |, the number of residuals, |R|,
and the number of modes, |M |. For the global model case,
all faults, residuals, and modes in Mr,∆ must be searched.
Because r is computed using the global model, it is a function
of the system-level mode. For an n-tank system, there are
n−1 switching components and so 2n−1 system-level modes.
Clearly, diagnosis in this case will not scale.

For the local submodel case, each residual is generated by a
minimal submodel. Each minimal submodel has only a sin-
gle residual that it produces, contains only a subset of the
faults, and has only a few modes. Thus, on average it will
scale much better. The more decomposition can be achieved,
the better it will scale. For an n-tank system, each residual
rq∗i for tank i will have at most 4 modes, because it depends
only on the switching behavior of the two adjacent connect-
ing pipes. So there will be at most 4 modes to search through
for each residual deviation, compared to 2n−1 for the global
model case. Here, then, this scales linearly with the num-
ber of tanks, not exponentially, and thus will have significant
efficiency gains as the system size grows.

5. DEMONSTRATION OF APPROACH

In this section, we demonstrate the approach through some
example scenarios using the three-tank system. In each exper-
iment, the system always starts in mode [0, 0], goes through
some mode changes, and a fault is injected. The complete
set of faults considered is that listed in Tables 3–6: 8 para-
metric faults and 4 discrete faults. In each case, we compare
the performance of the global model approach and the local
submodel approach.

The symbol generation approach described in (Daigle, Roy-
choudhury, et al., 2010) is used, which uses the Z-test for sta-
tistical fault detection and symbol generation. A window of
samples is used to compute the mean, and thus can produce a
delay that increases with window size. For the particular fault
detector settings, we consider the bounded observation delay
to be ∆ = 5 s.

In the first scenario, we consider the parametric faultK−1 . Ini-
tially, the system is in mode [0, 0], and moves to mode [1, 0]
at 10.0 s. At 15.0 s, K−1 occurs, with the value reducing by
50%. For the global model residuals, we detect first +- in
rq∗1 at this time, along with 0+ in rq∗2 . The signatures may
have come from either of the past two modes, since the fault
was detected within 5.0 s of the first mode change. The only
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Figure 3. Residual values with a decrease in K1 at t = 15 s.

consistent fault is K−1 , for both of these modes. Then, the
system moves to mode [1, 1] at 20.0 s. With this second mode
change, rq∗3 becomes connected to the fault and so at 21.0 s,
0+ is detected, which is still consistent with the diagnosis of
K−1 . For the local submodel residuals, we observe only +-
in rq∗1 . This residual’s submodel is different for the previous
two modes, so both must be considered. Again, only K−1 is
consistent, and is the diagnosis.

In the second example, we consider the discrete fault Pipeoff
12.

Initially, the system is in mode [0, 0], and moves to mode
[1, 0] at 10.0 s. At 15.0 s, Pipeoff

12 occurs. In the global model
residuals, we see first 0+ in rq∗1 and 0- in rq∗2 at 16.0 s. In
this case only mode [1, 0] needs to be considered as the mode
in which the fault occurred, and these signatures are consis-
tent only with Pipeoff

12. For the local submodel residuals, we
observe the same signatures and reach the same conclusion.

In the third example, we consider the parametric fault R+
2,3.
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Figure 4. Residual values with Pipeoff
12 at t = 15 s.

Initially, the system is in mode [0, 0], and moves to mode
[0, 1] at 10.0 s, and [1, 1] at 12.0 s. At 15.0 s, R+

2,3 occurs,
doubling in value. Here, we consider ∆ = 6 s. At 16.0 s, 0+
in rq∗2 and 0- in rq∗3 are detected in the global model resid-
uals, and both modes [0, 1] and [1, 1] must be considered. In
both cases, both R+

2,3 and Pipeoff
12 are consistent, and cannot

be distinguished further. For the local submodel residuals, 0+
in rq∗2 and 0- in rq∗3 are detected at 16.0 s. Because the local
submodel for rq∗3 only changes modes to Pipe23, which has
not changed in the last ∆ = 6 s, only the last known system
mode needs to be considered. The diagnosis is the same as in
the global model case, but it is arrived at with less computa-
tion (fewer searches over past modes).

In the fourth example, we consider the discrete fault Pipeon
12.

Initially, the system is in mode [0, 0], and moves to mode
[1, 0] at 10.0 s, and then to [1, 1] at 15.0 s. At 17.0 s, Pipeon

12

occurs. In this mode, however, it is not observable because
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Figure 5. Residual values with an increase inR2,3 at t = 15 s.

Pipe12 is already on. At 20.0 s, the system changes to mode
[0, 1]. At this point, the fault becomes observable. In both the
global model and local submodel residuals we observe 0- in
rq∗1 and 0+ in rq∗2 , consistent only with Pipeon

12. At 23.0 s, 0+
is observed in rq∗3 for the global model residuals, confirming
the diagnosis.

6. RELATED WORK

During the last decade or so, modeling and diagnosis for hy-
brid systems have been an important topic of researchers from
both the FDI and DX communities. In the FDI community,
several hybrid system diagnosis approaches have been devel-
oped. In (Cocquempot, El Mezyani, & Staroswiecki, 2004),
parameterized ARRs are used. However, the approach is not
suitable for systems with high nonlinearities or a large set
of modes. In the DX community, some approaches have
used different kind of automata to model the complete set
of modes and transitions between them. In those cases, the
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Figure 6. Residual values with Pipeon
12 at t = 17 s.

main research topic has been hybrid system state estima-
tion, which has been done using probabilistic (e.g., some
kind of filter (Koutsoukos, Kurien, & Zhao, 2003) or hy-
brid automata (Hofbaur & Williams, 2004)) or set-theoric ap-
proaches (Benazera & Travé-Massuyès, 2009).

Another solution has been to use an automaton to track the
system mode, and then use a different technique to diagnose
the continuous behavior (for example, using a set of ARRs for
each mode (Bayoudh et al., 2008), or parameterized ARRs
for the complete set of modes (Bayoudh, Travé-Massuyès,
& Olive, 2009)). Nevertheless, one of the main difficulties
regarding state estimation using these techniques is the need
to pre-enumerate the set of possible system-level modes and
mode transitions, which is difficult for complex systems. We
avoid this problem by using a compositional approach.

In (Alonso, Bregon, Alonso-González, & Pulido, 2013), the
authors present a qualitative fault isolation approach for hy-

brid systems that is based on structural model decomposition.
This approach, however, unlike ours, does not take into ac-
count observation delays. Moreover, the approach presented
in (Alonso et al., 2013) is applicable only to systems that are
modeled using hybrid bond graphs.

In (Bregon, Narasimhan, Roychoudhury, Daigle, & Pulido,
2013), the authors had developed an efficient model-
based methodology for diagnosis that integrated structural
model decomposition within the Hybrid Diagnosis Engine
(HyDE) architecture (Narasimhan & Brownston, 2007). The
HyDE architecture offers flexibility to choose the modeling
paradigm and reasoning algorithms for diagnosis of hy-
brid systems. The authors show how the integration of the
structural model decomposition reduces the computational
complexity associated with the fault diagnosis of hybrid
systems. In our paper, similar reduction in computational
complexity of fault diagnosis is observed, further bolstering
the support for using structural model decomposition for
hybrid systems diagnosis.

The approach presented in this paper is similar to that
in (Daigle, 2008; Daigle, Koutsoukos, & Biswas, 2010), but
differs in two major ways. First, the former work was based
on modeling using hybrid bond graphs (HBGs). The model-
ing framework used here is less restrictive and, in our opinion,
easier to work with. In fact, HBGs are a special case of our
modeling framework, as elements of HBGs can be modeled
directly as components in our framework. Second, that work
was based on a global system model. In this work, we have
demonstrated why using structural model decomposition is a
better approach.

7. CONCLUSIONS

In this work, we developed a qualitative fault isolation ap-
proach for diagnosing both parametric and discrete faults in
hybrid systems. We used structural model decomposition to
improve the computational complexity of this diagnosis ap-
proach. The fault isolation is performed by analyzing the
qualitative information of the residual signals. The approach
was demonstrated using a three-tank system. In this work,
we presented four experimental scenarios, in which the diag-
nosis based on structural model decomposition performed as
well as the diagnosis based on the global model in terms of
isolation accuracy, but improved in terms of efficiency and
scalability. As part of future work, we will further develop
the hybrid diagnosis approach for the diagnosis of multiple
faults. We would also like to relax the assumption about
all mode changes being observed using the ideas developed
in (Narasimhan & Biswas, 2007). Finally, we would like to
implement this hybrid diagnosis approach on large-scale real
systems to evaluate its efficiency and scalability.
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NOMENCLATURE

c constraint
C constraint set
ε equation
v variable
V variable set
κ component
m mode
M (sub)model
θ parameter
f fault
F fault set
d diagnosis
D diagnosis set
r residual
σ fault signature
λ fault trace
L fault language
∆ delay
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