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ABSTRACT

Lebesgue sampling-based fault diagnosis and prognosis (LS-
FDP) is developed with the advantage of less computation
requirement and smaller uncertainty accumulation. Same as
other diagnostic and prognostic approaches, the accuracy and
precision of LS-FDP are significantly influenced by the di-
agnostic and prognostic models. The predicted results will
show great discrepancy with the real remaining useful life
(RUL) in applications if the model is not accurate. In ad-
dition, the fixed model parameters cannot accommodate the
varying stress factors that affect the fault dynamics. To ad-
dress this problem, the parameters in the models are treated
as time-varying ones and are adjusted online to accommodate
changing dynamics. In this paper, a recursive least square
(RLS) based method with a forgetting factor is employed
to make the diagnostic and prognostic models online adap-
tive in LS-FDP. The design and implementation of LS-FDP
are based on a particle filtering algorithm and are illustrated
with experiments of Li-ion batteries. The experimental re-
sults show that the performance of LS-FDP with model adap-
tation is improved on both battery capacity estimation and
RUL prediction.

1. INTRODUCTION

Condition-based maintenance (CBM) becomes an important
function in the modern complex industrial systems to main-
tain reliability, safety, and availability. CBM utilizes sensing
data to monitor the occurrences of faults, estimate the fault
state, predict the remaining useful life (RUL), and provide
a time-based maintenance decision. The failure prognosis is
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one of the main challenges in the CBM system design be-
cause it projects the current fault state into future time instants
to predict the RUL without observations.

Prognostic approaches can generally be categorized into two
major classes: model-based (or physics-based) and data-
driven methods (Lee, 2007; Jardine, Lin, & Banjevic, 2006).
Model-based methods apply mathematical models, which de-
scribe the physical mechanism of the fault dynamics to fore-
cast the fault growth. Data-driven methods, on the other hand,
employ the collected data to derive the fault growth models.
Models for the two methods need to be accurate to ensure the
accuracy of the prediction of RUL. However, due to various
factors including the lack of understanding of the fault dy-
namics, the uncertainties from future loading, and measure-
ment noise, a model with fixed parameters is insufficent to
accurately describe the effects of varying operational and en-
vironmental conditions on fault growth and will result in per-
forance degradation. One of the solutions to overcome this
problem is to adopt the model parameter adaptation in the
algorithms, which adjusts the parameters in the model adap-
tively based on new measurements. The parameter adaptation
has been studied in traditional Riemann sampling-based fault
diagnosis and prognosis (RS-FDP), in which the samples are
taken in a periodic manner. Since fault diagnosis and progno-
sis (FDP) method based on Lebesgue sampling (LS) has been
developed (Zhang & Wang, 2014; Yan, Zhang, Wang, Dou, &
Wang, 2016) to overcome the high demands on computational
resources, it is necessary to study the parameter adaptation in
LS-FDP. LS-FDP divides the state axis by a number of pre-
defined states (also called Lebesgue states). The computation
of LS-based FDP is triggered only when the value of feature
changes from one Lebesgue state to another, or an event hap-
pens. This event-based FDP introduces the characteristics of
“execute only when necessary”, which significantly reduces

1



the computation demands by eliminating unnecessary com-
putation.

This paper thus develops a model based on data-driven
method and integrates it into the failure diagnosis and prog-
nosis architecture. Fault growth models are set in a parti-
cle filter (PF) framework where the real-time fault state dis-
tribution is compared with its baseline (healthy) counterpart
to detect a fault. The PF-based prognostic algorithm is then
implemented to achieve the prediction of RUL. During the
FDP process, a parameter adaptation algorithm is introduced
to optimize the parameters to ensure that the diagnostic and
prognostic models can describe the nonlinear fault dynamics
accurately.

The paper is organized as follows: Section 2 provides the
background of the Lebesgue sampling-based particle filter
and the recursive least square method. A case study of lithium
ion battery is presented to demonstrate the improvement on
the prediction result produced by parameter adaptation in
Section 3. Conclusions and future research topics are given
in Section 4.

2. BACKGROUND OF LEBESGUE SAMPLING AND RE-
CURSIVE LEAST SQUARE

Traditional PF is developed based on the Riemann sampling
framework, and it’s proved to be effective to deal with non-
linear systems, especially when the analytical solutions don’t
exist. PF adopts a set of particles with associated weights to
approximate the fault state. The objective is to obtain a new
set of particle by propagating the previous particles based on
the fault growth model (Gordon, Salmond, & Smith, 1993)
and represent the fault state estimation by the new set of par-
ticles. The details of PF are described as follows:

Assume a fault state X to be a Markov process with initial
distribution p(x0) and the evolution of the state is defined by
xk = fk(xk−1, ωk) with ωk being the process noise. The
subscript k represents the kth time instant. The measure-
ments Y are assumed to be conditionally independent given
X . The measurement model is given as yk = hk(xk, vk)
with vk as observation noise. Let x0:k = {x0, · · · , xk}
and y1:k = {y1, · · · , yk} represent the state and the avail-
able observations up to time k. The posterior distribution
p(x0:k|y1:k) can be achieved by Bayesian rule.

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(1)

where p(yk|y1:k−1) is the normalizing constant, p(yk|xk) is
the likelihood given by the measurement model, p(xk|y1:k−1)
is the prior distribution calculated via the Chapman-
Kolmogorov equation:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2)

In nonlinear cases, Sequential Monte Carlo (SMC) methods,
such as particle filter, are widely used to approximate the
posterior distribution πk(x0:k) = p(x0:k|y1:k). A set of N
particles (w

(i)
k−1, x

(i)
0:k−1) is available to approximate a de-

sired prior distribution πk−1(x0:k−1), where the superscript
i = 1, 2, · · · , N denotes N particles with location x

(i)
0:k−1

and weight w(i)
k−1 for the ith particle at the (k − 1)th time

instant. The mission of obtaining the posterior distribution
is transferred to efficiently obtain a new set of N particles
(w

(i)
k , x̄

(i)
0:k), where x̄(i)

0:k denotes location of N new particles.
In the context of SMC methodology, a Monte Carlo approxi-
mation can be obtained as:

πk(x0:k) =

N∑
i=1

w
(i)
k δ

(
x0:k − x̄(i)

0:k

)
. (3)

with
∑N
i=1 w

(i)
k = 1, where δ denotes the Dirac-delta func-

tion. The weight can be updated in a recursive formula as:

w
(
x̄

(i)
0:k

)
= w

(i)
k−1hk

(
y1:k|x̄(i)

0:k

)
and

w
(i)
k =

w
(
x̄
(i)
0:k

)
∑N

i=1 w
(
x̄
(i)
0:k

) . (4)

2.1. Lebesgue sampling method

With the development of modern technologies, the complex-
ity of system increases rapidly. The utilization of embed-
ded systems in those complex systems design becomes more
and more important. Distributed system design is widely ac-
cepted in engineering design, especially for complicated sys-
tems (Genc & Lafortune, 2007; Qiu, Wen, & Kumar, 2009;
Kumar & Takai, 2009; Liu, Qin, & Chai, 2013; Lefebvre,
2014). With this trend, more and more FDP functions are
deployed on local processors and embedded systems to alle-
viate the requirements on communication bandwidth, power,
and computation, thus to improve the reliability of the whole
system (Schwabacher & Goebel, 2007; Zhang et al., 2011;
Chen et al., 2012; Ren, Wang, & Wang, 2015). These em-
bedded systems have very limited computational resources.
However, traditional RS-based PF takes samples and executes
algorithms in periodic time intervals (Olivares, Cerda Munoz,
Orchard, & Silva, 2013; Pola et al., 2015; Xian, Long, Li,
& Wang, 2014), which requires significant computational re-
sources. This makes it difficult or even impossible to imple-
ment RS-FDP algorithms on the embedded systems.

To overcome this bottleneck, a novel Lebesgue sampling-
based FDP framework was developed (Wang & Zhang, 2014;
Zhang & Wang, 2014; Yan et al., 2016), in which FDP al-
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gorithms are implemented “as-needed”. In LS-FDP, the state
axis is divided into a number Lebesgue states, as shown in
Figure 1. The blue lines represent the Lebesgue state Fi, the
LS-FDP is executed only when the value of feature changes
from one Lebesgue state to another (an event happens). If the
new feature and the previous one stay in the same Lebesgue
state, there is no event and the FDP algorithm does not exe-
cute. If the new observation changes from one Lebesgue state
to another one, there is an event and the algorithm needs to
be executed. This philosophy significantly reduces the com-
putation demands by eliminating unnecessary computation.

The model of the fault growth can be described as follows:

â(tk+1) = â(tk) + ft(D(tk), â(tk), ˙̂a(tk)) + ωa(tk) (5)

where â(tk) is the fault dimension at tk time instant of the
k-th event, D(tk) is a set of Lebesgue state length adjusted at
tk, which is defined as the distance between the neighboring
Lebesgue states: Di(tk) = Fi+1(tk) − Fi(tk), ˙̂a(tk) is the
degradation speed, ωa(tk) is the noise, and ft(·) is a nonlinear
function that represents the nonlinear fault growth.

Different from RS-based prognosis, LS-based prognosis is
conducted along the state axis to calculate the distributions of
operation time to reach the defined Lebesgue states directly.
The model for LS-based prognosis is given as:

tk+1 = tk + gt(D(tk), â(tk), ˙̂a(tk)) + ωt(tk) (6)

where ωt(tk) represents the uncertainties, and gt(·) is a non-
linear function that describes the time distribution of the fault
state arriving at each Lebesgue states. The prediction horizon
is the number of Lebesgue states from the current Lebesgue
state Fd to the state defined as failure threshold Ff . Com-
pared to RS-based prognosis, this prediction horizon is usu-
ally small and will significantly reduce the computation cost.

The output of diagnosis is the estimation of fault state. Dif-
ferent from RS-FDP, it cannot be used as the initial distribu-
tion for the prognosis in the LS framework. The state dis-
tribution needs to be transferred into a time distribution by a
short-term prediction method, which is shown in Figure 2. At
time tk when an event happens on the current Lebesgue state
Fd, fault diagnosis is executed and each particle is processed
to calculate the state probability density function (pdf) at tk.
Note that at time instant tk, some particles does not reach the
current Lebesgue state. To get the time distribution on Fd, a
short-term prediction is used for those particles not yet reach
Fd. This short-term prediction produces future fault state dis-
tribution, which is compared against the current Lebesgue
state Fd through the law of total probability to achieve the
time distribution for fault state reaching the threshold defined
at Fd.

Figure 1. Illustration of LS with fixed Lebesgue state length

Figure 2. Conversion from state distribution to time distribu-
tion

3. APPLICATION WITH LITHIUM-ION BATTERY

In this section, the parameter adaptation based on a parti-
cle filtering algorithm is demonstrated with an application
to the capacity degradation Lithium-ion batteries. The re-
sults are compared against those from PF without parameter
adaptation to illustrate the advantages of parameter adapta-
tion. Lithium-ion battery is a safety critical component, and
is widely used due to the advantages in high energy density,
high cycle life, good resistance to memory, and less weights.
Since the life and state of the batteries are not directly ob-
servable, diagnosis and prognosis are critical for estimating
the battery state (Sidhu, Izadian, & Anwar, 2015; Orchard,
Hevia-Koch, Zhang, & Tang, 2013; Pola et al., 2015; Olivares
et al., 2013), such as state-of-health (SOH), state-of-charge
(SOC), and remaining useful life (RUL).

In this experiment, the SOH of a Lithium-ion battery with
1.1Ah rated capacity under 1.1A charge/discharge capacity
is used to verify the proposed parameter adaptation method
based on PF. The charge-discharge cycle of the battery is
tested by Arbin BT2000 system under room temperature. The
charging and discharging of the battery are cut off at the given
cutoff voltage. The capacity degradation curve vs charging-
discharging cycle is obtain by Coulomb counting. The failure
threshold is defined as 0.35Ah and the battery capacity de-
grades to this value at the 810th cycle.
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3.1. Recursive least square method

In the PF-based FDP method, a model is needed to project
the current particle set to a future particle set. To make the
model adaptive to changing operating conditions and envi-
ronmental factors that affect the battery degradation, model
parameter adaptation is adopted in the FDP process. Several
optimization methods have been developed in FDP (Lin, Lee,
Chen, & Tseng, 2008; Laosiritaworn & Chotchaithanakorn,
2009; Bergstra, Bardenet, Bengio, & Kégl, 2011; Fu, Fei,
Guangming, & Li, 2009). Due to its advantages of simplicity,
recursive least square (RLS) is used in this paper. The RLS
algorithm is implemented as follows (Zhang et al., 2011):

1. Define a cost function as:

J(θ) =
1

2
·
N∑
i=1

λN−i
[
C(i)− C

(
θ̂(i− 1)

)]2
(7)

where N is the length of the measurement, λ is a for-
getting factor, which is usually given in the range of
0 < λ ≤ 1, and θ̂(i) is the parameters to be optimized.

2. Calculate the derivatives φ(i) with respect to parameters
θ:

φ(i) =
dC(θ)

dθ

∣∣∣∣∣
θ=θ̂(i−1)

(8)

3. Parameters are updated as:

θ̂(i) = θ̂(i−1)+P (i)φ(i)
[
C(i)− C

(
θ̂(i− 1)

)]
(9)

and P (i) is given as:

P (i) =
P (i− 1)

λ

[
1− φ(i)φT (i)P (i− 1)

λ+ φT (i)P (i− 1)φ(i)

]
(10)

3.2. Models for diagnosis and prognosis

To implement the diagnosis in PF algorithm for the battery ca-
pacity degradation, 40 uniformly distributed Lebesgue states
are initially defined in the battery’s full capacity of 1.1Ah
based on the battery capacity and computation resource. With
this setting, the diagnostic algorithm is executed only when
the capacity degrades from one Lebesgue state to another. A
fault growth model is developed by data-driven method, and
is given as follows:

C(tk+1) =C(tk)− pd · C(tk) ·D(tk)·
sgn(C(tk)− C(tk−1)) + ωC(tk)

(11)

where C is the battery capacity, pd is the model parameter,
tk is the time instant when an event happens, sgn(·) is a
sign function that indicates the changing trend, and ωC is the
model noise.

To conduct prognosis in LS framework, the output of diagno-
sis needs to be transformed into the operation time distribu-

tion. The conversion from state distribution to the operation
time distribution is achieved as discussed in Figure 2.

LS-based prognosis is conducted along capacity axis to pre-
dict the time distribution when the capacity degradation ar-
rives each Lebesgue state directly. The model for prognosis
is given as (Yan et al., 2016):

tk+1 = tk+pp ·C(tk)·D(tk)·exp
(
−Ċ(tk)

)
+ωk(tk) (12)

where pp is the model parameter and ωk is the model noise.

Note that the Lebesgue length D(tk) is no longer a constant
after the execution of the FDP algorithm since it is adaptively
adjusted according to the fault growth speed to monitor the
system closer.

3.3. Experimental results comparison

For the diagnosis model, pd is the target parameter that needs
to be optimized. The flow chart of RLS based optimized
method is shown in Figure 3. The measurement and the mean
of the state estimation from diagnosis is used to produce the
error, which is used as the input of the parameter adaptation
algorithm and to adjust pd.

Figure 3. The flowchart of parameter adaptation in the diag-
nosis process.

Figure 4 shows the diagnostic results with/without parame-
ter adaptation at the 400th cycle. The particle filtering algo-
rithm uses 500 particles to approximate the state distribution.
The subfigure (a) shows the comparison of capacity from
Coulomb counting (blue) against the estimated mean value
from diagnosis (magenta) with/without parameter adaptation.
Note that the flat segments mean no event and diagnosis is not
executed.

The diagnosis is initially executed with pd = 1.2. The ex-
pected value of battery capacity with and without parameter
adaptation are 0.9476 and 0.9534, respecitlvey, and the corre-
sponding 95% confidence intervals are [0.8872, 1.0054] and
[0.8930, 1.0112], respecitlvey. As shown in Figure 4 (a), the
mean of the diagnosis result from the algorithm with parame-
ter adaptation shows a more accurate state estimation diagno-
sis. The real-time state distribution against the baseline dis-
tributions at the 400th cycle for the algorithm with/without
parameter adaptation are shown in Figure 4 (b). It shows that
the two distributions do not have significant difference. Note
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Figure 4. The comparison of diagnosis results with/without
parameter adaptation. a): The comparison of capacity from
Coulomb counting against the estimated mean values. b):
The capacity distributions from the algorithm with the pa-
rameter adaptation against the baseline distribution (green).

that, in the past 400 cycles, although 400 measurements are
received, there are only 53 events. Therefore, the LS-based
diagnosis only runs 53 times. Compared with traditional RS-
based diagnosis that needs to run 400 times, the reduction of
computation is (400-53)/400=86.8% and computation is 7.55
times faster in running numbers.

Parameter adaptation based on RLS method is also used to
adjust the prognosis parameters. The procedure of parame-
ter adaptation in prognosis is shown in Figure 5. The pre-
dicted time distributions to reach a selected future Lebesgue
states and the real time distribution to reach the same selected
Lebesgue state are needed as the reference. The details are
listed as follows:

1. At the current Lebesgue state FC , the prognosis program
is executed with the initial parameters. The time dis-
tribution for battery capacity degrades to reach the next
Lebesgue state FC+1 is produced and stored as P̂ rC+1.

2. When the measurement reaches FC+1, the diagnosis is
executed and a state distribution is achieved.

3. The achieved state distribution is converted to a time dis-
tribution PrC+1 by the method in Figure 2.

4. The difference of the mean values of P̂ rC+1 and PrC+1

is used as the error in the RLS optimization, which will
generate a new set of parameters to be used in the next
prognosis process.

5. Repeat the steps above to optimize the parameters during
the FDP process.

Figure 5. The flowchart of parameter adaptation in prognosis
process.

Figure 6 shows the prognostic results with 500 particles at
the 400th cycle. The predicted pdfs (magenta) for the fault
to reach each Lebesgue state are illustrated. Initially, the pa-
rameter in the prognosis model is set to be pp = 2. Figure
6 (a) shows the prognosis results without parameter adapta-
tion in the prognosis algorithm. The predicted time to failure
(TTF) for this battery is 1108.8 and the RUL is 708.8 cycles.
The 95% confidence interval of the TTF is [1083.0 1134.6].
Compared with the ground truth TTF of 810, the difference
is 298.8 cycles. This means that if the model parameters are
not accurate due to lack of knowledge or changing operating
conditions, the algorithm without parameter adaptation can-
not provide an accurate RUL for decision-making.

The prognosis results with parameter adaptation are shown in
Figure 6 (b). With the proposed method, the predicted TTF
for this battery is 802.8 cycles and the RUL is 402.8 cycles.
The 95% confidence interval of the TTF is [788.8 816.7].
Compared with the ground truth TTF of 810, the difference is
7.2 cycles. The prediction accuracy is highly improved from
298.8 cycles to 7.2 cycles by the RLS based parameter adap-
tation.

Figure 6. LS-based prognosis at the 400th cycle.
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Figure 6 shows that, without parameter adaptation, the prog-
nosis result shows significant prediction error (298.8 cycles).
When parameter adaptation is introduced, the prediction ac-
curacy is greatly improved and the prediction error reduces
to 7.2 cycle. The reduction of prediction error is (298.8-
7.2)/298.8=97.59%.

The comparison of diagnostic and prognostic results of FDP
algorithms with/without parameter adaptation are summaried
and compared in Table 1. Compared with FDP algorithm
without parameter adaptation, the diagnosis result with pa-
rameter adaptation has an accurate state estimation, the prog-
nosis with parameter adaptation has a much smaller predic-
tion error (298.8 cycles vs. 7.2 cycles).

Table 1. Comparison of the FDP algorithm with/without pa-
rameter adaptation for Battery

Diagnosis results Without para. adapt. With para. adapt.
Capacity expectation 0.9476 0.9534

Capacity 95% CI [0.8930 1.0112] [0.8872 1.0054]
Execution numbers 53 (100%) 53(100%)
Prognosis results Without para. adapt. With para. adapt.

True TTF 810 810
Estimate TTF 1108.8 802.8

95% CI of TTF [1083.0 1134.6] [788.8 816.7]

The above comparison of prediction accuracy is only illus-
trated in Figure 6 at the 400th cycle. To illustrate the im-
provement of prediction accuracy in the entire battery life,
the comparison of prediction accuracy is conducted in terms
of α − λ metrics (Saxena, Celaya, Saha, Saha, & Goebel,
2010) is adopted.

The metrics is defined as:

[1− α] · rt(tk) ≤ rl(tk) ≤ [1 + α] · rt(tk) (13)

where rl is the predicted RUL at the lth time instant, rt is the
ground truth RUL, α is the accuracy modifier (Saxena et al.,
2010).

Figure 7 shows the α-λ metrics with α=0.3 for the algorithm
with and without parameter adaptation. For the result from
the algorithm without parameter adaptation, the parameter pp
is set to be 2. Since there is no correction action to adjust
the initial pp, the algorithm is executed with pp = 2 for the
whole FDP process. The predicted RUL is longer than the
ground truth, which means that the results cannot provide
useful information for the CBM and decision-making. On
the contrary, the algorithm with parameter adaptation adjusts
the initial parameter automatically based on the error between
the means of the predicted time distribution and the posterior
distribution. At the 77th cycle, the parameter adaptation is
triggered for the first time, and pp is adjusted, which brings
the predicted RUL inside the accuracy zone and stay in the
zone in the future prediction.

Figure 7. Prognostic accuracy comparison for the algorithm
with/without parameter adaptation.

4. CONCLUSIONS

Many parameter adaptation methods have been developed
in traditional Riemann sampling-based framework with great
success in the past decades. A new Lebesgue sampling-based
FDP is introduced with a philosophy of “execution when
needed” to reduce the computation. Since the development of
LS-FDP there is no research on the parameter adaptation in
this area. This paper proposed a parameter adaptation method
based on recursive least square to optimize the parameters in
diagnostic and prognostic models to accommodate the uncer-
tainties from the unknown future change of fault mechanism.
A particle filtering-based algorithm is developed with an ap-
plication to the SOH of Lithium-ion batteries. Experimen-
tal results for LS-FDP with/without parameter adaptation are
presented and compared to demonstrate the effectiveness of
the proposed parameter adaptation scheme in enhancing the
state estimation accuracy and prediction accuracy.
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