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ABSTRACT

Tracking the variation in battery dynamics as a function of
health is presently attracting attention in academia and indus-
try due to the increased usage of expensive batteries in dy-
namic systems such as aircraft and electric cars. The online
adaptation of battery models to account for age-dependent
changes in dynamics is necessary to maintain accurate esti-
mates of the remaining system operations that can be sup-
ported under battery power. A novel method for the adapta-
tion of parameters in an electrochemical model of a lithium-
ion battery is presented here. An unscented Kalman filtering
algorithm is shown to enable the production of internal bat-
tery state estimates and age-dependent electrochemical model
parameter estimates using only battery current and voltage
data collected over randomized discharge profiles. The use of
only data collected over randomized discharge profiles distin-
guishes this work from other works that make use of reference
discharge cycles to judge battery health. The experimental
results presented here compare online model estimates pro-
duced by the proposed algorithm to offline model estimates
obtained by periodically taking batteries offline to run refer-
ence discharge cycles.

1. INTRODUCTION

Continued improvements in battery cost, efficiency, and
power density have resulted in their increasing use in crit-
ical applications such as aircraft and electric cars. In such
applications, it is necessary to maintain an accurate model
of battery capabilities over many years of use. With an ac-
curate model, precise predictions of end-of-discharge pre-
dictions can be made along with predictions of the remain-
ing system operational time that can be supported under bat-
tery power (Daigle & Kulkarni, 2013; Saha, Goebel, Poll, &
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Christophersen, 2009). However, batteries age with increased
use, and in order to continue to make accurate predictions, ap-
proaches to track of age-dependent changes in battery dynam-
ics are necessary (Saha et al., 2009). While some research has
been performed to understand the dynamics of battery aging
(Ning & Popov, 2004; Ning, White, & Popov, 2006), rela-
tively little work has been performed to develop approaches
for tracking battery age online (Saha & Goebel, 2009).

Modeling methodologies used to represent battery dynamics
are generally classified as follows: (i) empirical models; (ii)
electrochemical engineering models; (iii) multi-physics mod-
els; and (iv) molecular/atomist models (Ramadesigan et al.,
2012). Empirical models are based on fitting certain functions
to past experimental data, without making use of any physic-
ochemical principles. Electrochemical, multi-physics, and
atomist models incorporate progressively more fine-grained
representations of battery physics. Because more fine-grained
models generally increase the model development cost and
the cost of computation, it is desired to select a model gran-
ularity appropriate to an application’s accuracy requirements
and available resources (Daigle et al., 2011). In this paper,
we use an electrochemistry-based lithium ion (Li-ion) battery
model developed in (Daigle & Kulkarni, 2013). The electro-
chemical modeling used is at level of abstraction high enough
that the model is still efficient while improving upon the fi-
delity of previous approaches (Saha & Goebel, 2009; Daigle
et al., 2012; Oliva et al., 2013), which used empirical and
equivalent circuit battery models.

The use of unscented Kalman filtering (UKF) (Julier &
Uhlmann, 2004) to make online corrections to battery state
estimates based on online battery voltage measurements has
been described in several recent publications (Daigle &
Kulkarni, 2014; Bole et al., 2013; Oliva et al., 2013). The
addition of a filtering routine for closed-loop state estimation
mitigates the accumulation of model error over time as is seen
in open-loop state estimation methods such as the commonly
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used method of coulomb counting (Dai et al., 2006). This
paper demonstrates the use of UKF not only to estimate the
states in an electrochemistry model that vary over a charge-
discharge cycle, but also to adapt certain parameters in the
model that are known to change as a function of battery age.

While some research has been performed to understand the
dynamics of battery aging (Ning & Popov, 2004; Ning et al.,
2006), relatively little work has been performed to develop
approaches for tracking battery age online (Saha & Goebel,
2009). Generally, a progressive reduction in charge storage
capacity and an increase in internal resistance are both know
to occur as the battery ages. These changes are typically es-
timated by compairing the voltage dynamics of healthy and
aged batteries over a reference current profile (Broussely et
al., 2005). Estimating the state of age-dependent battery pa-
rameters from the current-voltage dynamics of batteries in op-
eration is a more challenging proposition than estimating pa-
rameters using reference cycles, because individual runs are
less able to be directly compaired. This paper introduces ex-
perimental results for an algorithm that uses only randomized
discharging data to track battery states and estimate model
parameters. The experimental results presented here compare
online model estimates produced by the proposed algorithm
to offline model estimates obtained by periodically taking bat-
teries offline to run reference discharge cycles.

This paper is organized as follows. The electrochemistry-
based lithium ion battery model is summarized in Section 2.
Battery deterioration modes are discussed in Section 3. Sam-
ple results from a set of experiments that age batteries using
randomized discharge profiles are introduced in Section 4. A
UKF algorithm for online state estimation and age-dependent
parameter identification over randomized battery usage peri-
ods is described in Section 5. Results generated by applying
the UKF algorithm to randomized discharging data sets are
summarized in Section 6. Finally, concluding remarks are
given in Section 7.

2. BATTERY CHARGE AND DISCHARGE MODELING

A battery converts chemical energy into electrical energy, and
often consists of many cells. A cell consists of a positive elec-
trode and a negative electrode with electrolyte in which the
ions can migrate. For Li-ion, a common chemistry is a pos-
itive electrode consisting of lithium cobalt oxide (LixCoO2)
and negative electrode of lithiated carbon (LixC). These ac-
tive materials are bonded to metal-foil current collectors at
both ends of the cell and electrically isolated by a micro-
porous polymer separator film that is permeable to Li ions.
The electrolyte enables lithium ions (Li+) to diffuse between
the positive and negative electrodes. The lithium ions insert
or deinsert from the active material depending upon the elec-
trode and whether the active process is charging or discharg-
ing, respectively.

This section introduces a battery model derived from a simpli-
fied set of electrochemical equations governing charge flow
and voltage drops at the cathode, anode, and separator lay-
ers of a Li-ion battery. This model is described in detail in
(Daigle & Kulkarni, 2013) and summarized here.

The voltage terms of the battery are expressed as functions
of the amount of charge in the electrodes (the states of the
model). Each electrode, positive (subscript p) and negative
(subscript n), is split into two volumes, a surface layer (sub-
script s) and a bulk layer (subscript b). The differential equa-
tions for the battery describe how charge moves through these
volumes. The charge (q) variables are described using

q̇s,p = iapp + q̇bs,p (1)
q̇b,p = −q̇bs,p + iapp − iapp (2)
q̇b,n = −q̇bs,n + iapp − iapp (3)
q̇s,n = −iapp + q̇bs,n, (4)

where iapp is the applied electric current The term q̇bs,i de-
scribes diffusion from the bulk to surface layer for electrode
i, where i = n or i = p.

q̇bs,i =
1

D
(cb,i − cs,i), (5)

whereD is the diffusion constant. The c terms are lithium ion
concentrations:

cb,i =
qb,i
vb,i

(6)

cs,i =
qs,i
vs,i

, (7)

Here, cv,i is the concentration of charge in electrode i, and
vv,i is the total volume of charge storage capability. We define
vi = vb,i + vs,i. Note now that the following relations hold:

qp = qs,p + qb,p (8)
qn = qs,n + qb,n (9)

qmax = qs,p + qb,p + qs,n + qb,n. (10)

We can also express mole fractions (x) based on the q vari-
ables:

xi =
qi
qmax , (11)

xs,i =
qs,i
qmax
s,i

, (12)

xb,i =
qb,i
qmax
b,i

, (13)

where qmax = qp + qn refers to the total amount of available
Li-ions. It follows that xp + xn = 1. For Li-ion batteries,
when fully charged, xp = 0.4 and xn = 0.6. When fully dis-
charged, xp = 1 and xn = 0 (Karthikeyan, Sikha, & White,
2008).
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Figure 1. Battery voltages.

The different potentials are summarized in Fig. 1 (origi-
nally presented in (Daigle & Kulkarni, 2013) and adapted
from (Rahn & Wang, 2013)). The overall battery voltage
V (t) is the difference between the potential at the positive
current collector, φs(0, t), and the negative current collector,
φs(L, t), minus resistance losses at the current collectors (not
shown in the diagram). At the positive current collector is the
equilibrium potential VU,p. This voltage is then reduced by
Vs,p, due to the solid-phase ohmic resistance, and Vη,p, the
surface overpotential. The electrolyte ohmic resistance then
causes another drop Ve. At the negative electrode, there is a
drop Vη,n due to the surface overpotential, and a drop Vs,n
due to the solid-phase resistance. The voltage drops again
due to the equilibrium potential at the negative current col-
lector VU,n. These voltages are described by the following
set of equations:

VU,i = U0 +
RT

nF
ln

(
1− xs,i
xs,i

)
+ VINT,i, (14)

VINT,i =
1

nF

(
Ni∑
k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
,

(15)

Vo = iappRo, (16)

Vη,i =
RT

Fα
arcsinh

(
Ji
2Ji0

)
, (17)

Ji =
i

Si
, (18)

Ji0 = ki(1− xs,i)α(xs,i)1−α, (19)
V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n, (20)

V̇ ′o = (Vo − V ′o)/τo (21)

V̇ ′η,p = (Vη,p − V ′η,p)/τη,p (22)

V̇ ′η,n = (Vη,n − V ′η,n)/τη,n. (23)

Here, U0 is a reference potential, R is the universal gas con-
stant, T is the electrode temperature (in K), n is the number

of electrons transferred in the reaction (n = 1 for Li-ion),
F is Faraday’s constant, Ji is the current density, and Ji0
is the exchange current density, ki is a lumped parameter of
several constants including a rate coefficient, electrolyte con-
centration, and maximum ion concentration. VINT,i is the ac-
tivity correction term (0 in the ideal condition). We use the
Redlich-Kister expansion with Np = 12 and Nn = 0 (see
(Daigle & Kulkarni, 2013)). The τ parameters are empirical
time constants (used since the voltages do not change instan-
taneously).

This model contains as states qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p,
and V ′η,n. The single model output is V . Parameter values for
a typical Li-ion cell are given in (Daigle & Kulkarni, 2013).

The state of charge (SOC) of a battery is defined to be 1 when
the battery is fully charged and 0 when the battery is fully dis-
charged by convention. In this model, it is analogous to the
mole fraction xn, but scaled from 0 to 1. We distinguish here
between nominal SOC and apparent SOC (Daigle & Kulka-
rni, 2013). Nominal SOC is computed based on the combina-
tion of the bulk and surface layer control volumes in the neg-
ative electrode, whereas apparent SOC is be computed based
only on the surface layer. When a battery reaches the voltage
cutoff, apparent SOC is 0, and nominal SOC is greater than
0 (how much greater depends on the difference between the
diffusion rate and the current drawn). Once the concentration
gradient settles out, the surface layer will be partially replen-
ished and apparent SOC will rise while nominal SOC remains
the same. Nominal (SOCn) and apparent (SOCa) SOC are
defined using

SOCn =
qn

0.6qmax (24)

SOCa =
qs,n

0.6qmaxs,n
, (25)

where qmaxs,n = qmax vs,n
vn

.1

3. BATTERY DETERIORATION MODELING

The rate of deterioration of a battery depends on the chem-
istry, charge-discharge cycling, temperature, and storage con-
ditions, among other factors. Some relevant physical aging
mechanisms observed in batteries are:

1. Solid-electrolyte interface (SEI) layer growth: The neg-
ative electrode degrades with the growth of the SEI layer
leading to an increase in the impedance. The layers are
formed during cycling and storage at high temperatures
and entrains the lithium.

2. Lithium corrosion: Lithium in the active carbon material
of the negative electrode corrodes over time leading to

1Note that SOC of 1 corresponds to the point where qn = 0.6qmaxs,n , since
the mole fraction at the positive electrode cannot go below 0.4, as described
earlier.
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degradation. This causes a decrease in the capacity due
to irreversible loss of mobile lithium ions.

3. Lithium plating: At low temperatures, high charge rates
and low cell voltages form a plating layer on the negative
electrode that leads to irreversible loss of lithium.

4. Contact loss: The SEI layer disconnects from the nega-
tive electrode, which leads to contact loss and an increase
in impedance.

5. Diffusion Stress: Changes in diffusion properties may
lead to changes in the charge and discharge times, appar-
ent capacity and impedance.

The various battery aging modes manifest in two major
changes to battery electrochemical dynamics. The first is a
loss of capacity due to parasitic and side reactions that re-
sult in a loss of active (mobile) Li ions. The second is an in-
crease in internal resistance due to SEI layer growth and other
factors. Other, less significant, changes to battery electro-
chemical dynamics are not considered here because the added
computational costs are considered to outweigh the benefit to
model accuracy. (Ning et al., 2006) looked into loss of active
lithium and increase in resistance under constant loading con-
ditions. In this work we look at degradation observed under
random loading conditions.

In the battery model, the total available charge in the battery
is represented through qmax. Therefore, the loss of active ma-
terial can be represented in the model through a change in
qmax (Daigle & Kulkarni, 2013). The Ro parameter captures
a constant ohmic drop that does not vary as a function of bat-
tery charge.

Figure 2 shows plots of model fitting with a new and aged
battery after adding adjustments to the qmax and Ro terms.
The figures clearly show the need to tune these parameters
to capture the modified electrochemical dynamics of a de-
graded battery. However, it should also be noted that the fit
shown in Figure 2(d) could be improved to a lesser extent by
adapting additional terms. The authors suggest that readers
interested in adapting additional terms in the electrochemi-
cal model start by considering the diffusion rate between the
bulk layer and surface layer (D in Eq. (5)). See (Park, Zhang,
Chung, Less, & Sastry, 2010) for a discussion of age-related
changes to the diffusion rate.

4. A BATTERY AGING EXPERIMENT

This section introduces a battery aging experiment. Battery
aging is performed here by repeatedly charging battery cells
to approximately 100% SOC (≈4.2 V) and then discharging
them to 3.2 V using a randomized sequence of current loads
ranging from 0.5A to 4A. The sequence is randomized in or-
der to better represent practical battery usage. After every
fifty randomized discharging cycles, an offline characteriza-
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Figure 2. Sample model fitting results for a new battery (a),
and an aged battery (b)-(d). The loading profiles used are
shown in (e).
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Battery Cycling Procedure:
top:

pulsed load characterization:
fully charge to 4.2V
while voltage > 3.2V

rest for 20 min
load at 1A for 10 min

end while
j = 0

random walk aging:
while j < 50

fully charge to 4.2V
while voltage > 3.2V

I = rand[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]
load at I for 5 min

end while
j = j + 1

end while
goto: top

Figure 3. Procedure used for battery aging and periodic char-
acterization

tion of the qmax andRo model parameters is performed using
the pulsed load cycle described in the previous section.

The battery cycling procedure that is used to age individual
battery cells and periodically recharacterize health dynamics
is outlined in Fig. 3. Fig. 4 shows battery current and voltage
for pulsed load characterization cycles taken periodically over
about 6 months of continuous battery cycling. Later pulsed
load cycles are plotted with lighter line shading.

Age-dependent changes in battery dynamics are denoted with
arrows in the figure. The battery voltage is seen to reach the
3.2V cutoff earlier as the battery ages. Aged batteries are
also seen to settle to a higher resting voltage after the pulsed
profile completes. Both phenomenon can be explained by a
decreasing trend in battery capacity and an increasing trend
in internal resistance.

Battery capacity loss will result in a decrease in available Li-
ions, and therefore a faster discharge time for a given output
current, which causes a lowering of surface and bulk battery
potentials, see Eqs. (11)-(23). An increase in internal resis-
tance will cause a proportional decrease in battery voltage,
see Eq. (16). An increased voltage drop due to an increase in
battery internal resistance will also cause the battery voltage
to reach the voltage cut-off threshold at a higher SOC, result-
ing in the higher resting battery voltage measurements seen
in Fig. 4.

Fig. 5 shows estimates of qmax and Ro obtained by perform-
ing an offline least squares fit of the actual and modeled bat-
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Figure 4. Pulsed voltage profiles recorded periodically over 3
months of continuous battery use.

Table 1. Statistics of linear regression fit for qmax and Ro

m0 m1 σ2 R2

qmax −8.11× 10−4 2.15 9.33× 105 0.96

Ro 1.25× 10−4 1.05× 10−1 1.4× 10−3 0.94

tery voltage over periodic pulsed load characterization cycles.
The fitted parameter values are plotted against the integral of
battery discharge current, in order to observe the relationship
between battery usage and parameter change.

A first-order regression model is considered here as a rough
approximation of parameter dependence on use. Table 1
shows the slope (denotedm0), y-intercept (denotedm1), vari-
ance (denoted σ2), and coefficient of determination (denoted
R2), for the fitted qmax andRo parameters. The coefficient of
determination is a normalized measure ∈ [0, 1] that indicates
how well the regression fits the data. A coefficient of determi-
nation greater than 0.9 indicates a fairly good model fit. The
R2 values for qmax and Ro linear regressions are both seen
to exceed this benchmark.

A discussion of battery deterioration modeling and end of
useful life prediction using such a model is beyond the scope
of this paper. The reader is also cautioned that the battery de-
terioration observed here is expected to be strongly dependent
on the design of experiments.
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Figure 5. Parameter fitting results for qmax and Ro captured
periodically over three months of continuous use.

5. ONLINE STATE ESTIMATION AND PARAMETER
IDENTIFICATION

An unscented Kalman filter (UKF) (Julier & Uhlmann, 1997,
2004) is introduced here to make corrective updates to the in-
ternal state estimates in the battery model in addition to the
age-dependent qmax and Ro parameters. Among nonlinear
filters, the UKF generally has better accuracy than the ex-
tended Kalman filter, and avoids the high computational cost
of particle filters (Arulampalam, Maskell, Gordon, & Clapp,
2002). We summarize the filter basics here; more details may
be found in (Julier & Uhlmann, 1997, 2004).

The UKF assumes the general nonlinear form of the state and
output equations, but is restricted to additive Gaussian noise.
First, ns sigma points X̂ k−1|k−1 are derived from the current
mean x̂k−1|k−1 and covariance estimates Pk−1|k−1. The pre-
diction step is:

X̂
i

k|k−1 = f(X̂
i

k−1|k−1,uk−1), i = 1, . . . , ns (26)

Ŷ
i

k|k−1 = h(X̂
i

k|k−1), i = 1, . . . , ns (27)

x̂k|k−1 =

ns∑
i

wiX i
k|k−1 (28)

ŷk|k−1 =

ns∑
i

wiYi
k|k−1 (29)

Pk|k−1 = Q+
ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(X i

k|k−1 − x̂k|k−1)
T , (30)

where Q is the process noise covariance matrix.

The update step is:

Pyy = R+

ns∑
i

wi(Yi
k|k−1 − ŷk|k−1)(Yi

k|k−1 − ŷk|k−1)
T

(31)

Pxy =

ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(Yi

k|k−1 − ŷk|k−1)
T

(32)

Kk = PxyP
−1
yy (33)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (34)

Pk|k = Pk|k−1 −KkPyyK
T
k , (35)

where R is the sensor noise covariance matrix.

The use of the UKF for closed-loop state updates of the 7
states in the battery model described in Section 2, was pre-
sented in (Daigle & Kulkarni, 2013). The UKF algorithm
presented in (Daigle & Kulkarni, 2013) was updated for use
here by considering the Ro parameter in Eq. 16 as an addi-
tional state to be updated online by the UKF.

An additional outer-loop process is then used to infer qmax

values that correspond to a given window of SOCn estimates
under known battery loading conditions. We elected to use an
outer-loop estimation process for qmax, rather than including
it in the UKF because it is straightforward to infer qmax from
SOCn estimates. This is seen by first rewriting the SOCn
definition, given in Eq. (24), in terms of a UKF-based esti-
mate of qn.

ŜOCn(t) =
q̂n(t)

0.6qmax
, (36)

where q̂n(t) represents an estimate of qn at time t, and
ŜOCn(t) represents a subsequently derived estimate of
SOCn. The difference in ŜOCn estimates of over a given
time window is then expressed as:

ŜOCn

∣∣∣t
t0

=
q̂n|tt0

0.6qmax
. (37)

Next, consider that the true value of qn|tt0 is equal to the
amount of charge flow into or out of the battery over the given
time window.

qn|tt0 =

∫ t

t0

iapp, (38)

where iapp represents the net current into or out of the battery.
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A substitution of Eq. (38) into Eq. (37) yeilds an inferred es-
timate of qmax.

q̂max(t) =
qn|tt0

0.6 ŜOCn

∣∣∣t
t0

, (39)

where q̂max(t) represents an estimate of the qmax model pa-
rameter at time t.

6. RESULTS

Fig. 6(a) shows an example of the online adaptation of bat-
tery state estimates and model parameters in order to match
the measured voltage response of an aged battery over a ran-
domized discharge cycle. The predicted voltage response for
a new battery, and the voltage estimation output of a UKF-
based observer initialized with the parameters of a new bat-
tery are also plotted in Fig. 6(a). Online UKF estimates of the
qmax and Ro parameters are shown in Figs. 6(b) and (c). The
randomized loading profile used in this example is shown in
Fig. 6(d).

The battery voltage output estimates from the UKF are seen
to converge to match the measured voltage estimates over the
40 minute randomized discharging cycle. The variation seen
in the qmax and Ro estimates from 0 to 40 minutes is due
primarily to the large initial disparity between the parame-
ters fitted for a new battery model and the model parameters
needed to explain the dynamics of an aged battery. Typically,
the model parameters estimated by the UKF over a previous
discharge cycle would be used to initialize the battery model
for the following discharge cycle. This would lead to a much
smaller error in the initial parameter estimates and less pa-
rameter variation would result.

Fig. 7 shows online qmax and Ro estimates produced by the
UKF observer over successive randomized discharge cycles.
The offline estimates of qmax and Ro that were originally
shown in Fig. 5 are also plotted in Fig. 7 for comparison.
The online qmax estimates are seen in Fig. 7 to track the of-
fline qmax estimates very closely. This indicates not only that
the UKF is able to track battery capacity over randomized
discharging cycles, but also that the online battery SOC esti-
mates that are used to calculate capacity (see Eqs. (36)-(39))
are also tracking the true battery SOC over randomized usage.

Online Ro estimates are seen in Fig. 7 to be noticeably lower
and more non-linear than the offline Ro estimates. Despite
this discrepancy, online Ro estimates display some similari-
ties to the offline estimates. Both sets of Ro estimates tend be
monotonically increasing with battery age, and both show a
slightly lower resistance estimate for battery B1 than for B2
and B3. The bias observed between offline and online esti-
mates can be attributed primarily to a difficulty in setting up
the process noise covariance matrix, Q, in the UKF to filter
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Figure 6. The measured voltage response of an aged battery
over a randomized discharge cycle, the predicted voltage re-
sponse for a new battery, and the voltage estimation output of
a UKF-based observer are shown in (a). Online estimates of
the qmax and Ro parameters are shown in (b) and (c). The
loading profile used is shown in (d).

out the effects of the Ro term from those of the other param-
eters in state vector. It is certain that a refinement of Q could
improve the tracking performances observed for the qmax and
Ro parameters. However, the non-optimized tracking perfor-
mance shown here is sufficient to demonstrate the feasibility
of the proposed approach for model adaptation over variable
battery usage.
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Figure 7. Online and offline estimates of qmax and Ro model
parameters.

7. CONCLUSIONS

An approach for the online tracking of age-dependent
changes in battery dynamics was presented. An
electrochemistry-based Li-ion battery model was shown
to relate known age-dependent electrochemical phenomena
to changes in battery input-output dynamics observed over
randomized battery usage. A battery aging experiment was
introduced, and an unscented Kalman filtering algorithm
was shown to track age-dependent changes in battery model
parameters over successive randomized battery discharging
profiles.

In future work the battery sate of health tracking approach
presented here may be extended to the online prediction of
remaining useful life. This would require additional modeling
of the underlying physics of battery degradation as a function
of usage. Linear regression models for battery capacity and
internal resistance change as a function of energy discharged
are analyzed here as a starting point for this future work.
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