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ABSTRACT 

Bearings play a critical role in maintaining safety and 

reliability of rotating machinery. Bearings health condition 

prediction aims to prevent unexpected failures and minimize 

overall maintenance costs since it provides decision making 

information for condition-based maintenance. This paper 

proposes a Deep Belief Network (DBN)-based data-driven 

health condition prediction method for bearings. In this 

prediction method, a DBN is used as the predictor, which 

includes stacked RBMs and regression output. Our main 

contributions include development of a deep leaning-based 

data-driven prognosis solution that does not rely on explicit 

model equations and prognostic expertise, and providing 

comprehensive prediction results on five representative run-

to-failure bearings. The IEEE PHM 2012 challenge dataset 

is used to demonstrate the effectiveness of the proposed 

method, and the results are compared with two existing 

methods. The results show that the proposed method has 

promising performance in terms of short-term health 

condition prediction and remaining useful life prediction for 

bearings. 

1. INTRODUCTION 

Bearings are one of the most widely used components in 

rotating machinery. Not surprisingly, bearing failure is one 

of the major causes of breakdowns in rotating machinery 

(Sloukia et al., 2013). Bearing health condition prognosis 

predicts the future states of bearings based on current 

operating condition and maximizes the machine uptime to 

increase throughput and reduce maintenance costs. As a 

result, bearing prognosis has attracted extensive research 

efforts in recent years (Li et al., 2014).  

The bearing condition prognosis methods can be roughly 

classified into data-driven and model-based methods (Liu et 

al., 2012). Model-based methods attempt to setup 

mathematical or physical models to describe degradation 

processes of machinery, and update model parameters using 

measured data (Lei et al., 2016), such as the Markov process 

model (Dui et al., 2015), the Winner process model (Si 

et al., 2013), the Gaussian mixture model (Yu et al., 2013), 

etc. However, accurate mathematical or physical models for 

bearings are always difficult to obtain. Data-driven 

approaches have recently become a popular method because 

of its flexibility and easy operation. The commonly used 

data-driven methods include artificial neural network (ANN) 

(Huang et al., 2007), relevance vector machine (RVM) 

(Miao et al., 2012), neuro-fuzzy system (Zhao et al., 2009) 

and so on.  

Existing prognostics methods have made great 

achievements on bearing condition prediction. However, 

due to the diversity and complexity of bearings, existing 

methods show some limitations: (1) most model-based 

methods rely heavily on accurate physics-based model or 

complex signal processing techniques, which require 

extensive expert involvement; (2) In the age of Internet of 

Things and Industrial 4.0, massive real-time data are 

collected from various bearings and form a big data 

environment, which has the characteristics of large-volume, 

diversity, and high-velocity (Deutsch & He, 2016). 

Traditional data-driven methods are insufficient for feature 

extraction and health condition prediction. It is desirable to 
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develop generic and system-independent prognostic 

algorithms to meet the needs of big data. 

To address the above limitations, this paper proposes a Deep 

Belief Network (DBN)-based data-driven approach for 

bearing health condition prediction. In recent years, deep 

learning has attracted significant attention in fault diagnosis 

and prognosis because of its excellent performance on big 

data processing (Zhao et al., 2016). Although most of 

successes focus on fault diagnosis (Tamilselvan & Wang, 

2013; Lei et al., 2016), deep learning has demonstrated 

potentials in prediction and prognosis, such as time series 

forecasting (Kuremoto et al., 2014) and RUL estimation 

(Deutsch & He, 2016; Babu et al., 2016). In (Deutsch & He, 

2016) a deep learning based on a RBM is presented for 

bearing remaining useful life prediction. However, due to 

the RBM structure in existing works, the performance on 

prediction accuracy is not as good as traditional methods 

(Deutsch & He, 2016), which requires further research and 

advanced design. 

To address the limitations of existing works, the paper 

develops a DBN-based approach for bearing prognosis. 

Compared with existing data-driven methods, our main 

contributions are two-fold: 1). Inspired by deep learning, a 

new data-driven method for bearing prognosis is developed, 

which consists of stacked RBMs and a regression output 

layer. One significant advantage of the proposed method is 

that it doesn’t rely on explicit models or prognostic 

expertise, which greatly simplifies the design of prognosis 

and increases the flexibility. 2). Detailed analysis and 

experimental studies on five run-to-failure bearings are 

conducted to verify the proposed method. Performance of 

the proposed method in terms of short-term prediction and 

RUL prediction are discussed with experimental analysis. 

The results show that, the proposed method has promising 

performance on bearing health condition prediction. 

The rest of this paper is organized as follows: Section 2 

briefly introduces the basic principle of DBN. Section 3 

describes the proposed bearing health condition prediction 

method based on DBN. In Section 4, IEEE PHM 2012 

challenge dataset is used to demonstrate the effectiveness of 

the proposed method. Conclusions are drawn in Section 5. 

2.  PRINCIPLE OF DBN 

DBN is a generative model composed of stacked Restricted 

Boltzmann Machine (RBM) and a classifier or a regression 

(Hinton & Salakhutdinov, 2006). In this study, a logistic 

regression layer is used as the last layer to make the L-step 

ahead prediction for prognosis. Figure 1 shows an example 

of 3-layer DBN structure as a predictor, which consists of 

two stacked RBMs (Kuremoto et al., 2014). RBM is able to 

provide a learning model for unknown data distributions. 

Each RBM contains a visible layer and a hidden layer. The 

units in the same layer are not connected. The units in two 

adjoining layers have directed symmetrical connections. 

Note that the hidden layer in RBM1 works as the visible 

layer in RBM2. When the high dimension data are input to 

the visible layer of RBM1, the units of hidden layer of 

RBM1 extract features from input data according to the 

connection weights. The hidden layer of RBM2 gets “the 

feature of features (the outputs of RMB1)”. In this study, the 

input data for DBN is taken from the root mean square 

(RMS) degradation curve of bearings using a sliding 

window strategy. The output )(tx denotes the predicted 

RMS value with DBN, i.e. using the data of the previous d 

time instants to predict the next data, and the instances of 

training are  {[𝑥(𝑡 − 𝑑), 𝑥(𝑡 − 𝑑 + 1), … , 𝑥(𝑡 − 1), ] →
𝑥(𝑡)}. 

 
Figure 1. An example of 3-layer DBN structure 

 

The training process of DBN includes an unsupervised 

layer-by-layer pre-training stage of stacked RBMs and a 

global fine-tuning stage by back propagation algorithm 

(Hinton et al., 2006). The pre-training stage aims to fully 

extract features from low-level to high-level and, at the 

same time, avoid local optimum. The fine-tuning stage of 

network parameters is to further optimize the network 

capability. When both pre-training and fine-tuning stages 

are completed, the DBN model can be used for practical 

predictions. 

3.  DBN-BASED HEALTH CONDITION PREDICTION METHOD 

FOR BEARINGS 

This study proposes a bearing health condition prediction 

method based on DBN. The proposed method doesn’t 

require explicit model equations and is suitable for big data 

applications. Figure 2 illustrates the overview of bearing 

prognostic procedure using DBN, which consists of the 

following steps: 
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Step1: For a system under test, define the prognosis problem 

and identify the fault feature and health indicator. This 

paper considers a bearing and RMS of vibration signals is 

used as the health indicator to determine the bearing’s 

degradation over time. The RMS values serve as the input to 

the DBN. The RMS at each time interval (denoted as )(tx  ) 

is calculated as follows: 

𝑥(𝑡) = √
1

N
∑ 𝑓𝑡𝑖

2𝑁
𝑖=1                          (1) 

where tif represents the i-th raw vibration data point at time 

interval t  and N is the length of the signal. N is equal to 

2560 in this paper. Using Eq. (1), the time series of RMS for 

bearings can be obtained. Formally, for the L-step ahead 

prediction, the input of DBN can be denoted as: 

[𝑥(𝑡 − 𝑑), 𝑥(𝑡 − 𝑑 + 1), … , 𝑥(𝑡 − 2), 𝑥(𝑡 − 1)]         (2) 

and the predicted output as:  

[𝑥(𝑡 + 𝐿 − 1), 𝑥(𝑡 + 𝐿), … , 𝑥(𝑛)]              (3) 

where  𝑑 represents the embedding dimension and 

determines the number of units of the visible layer in the 

first RBM.   

 

Figure 2. Overview of DBN-based bearing prognosis. 

Step2: Construct the health indicator using the RMS feature, 

and obtain the degradation curves from vibration signals of 

learning and testing bearings. 

Step3: Smooth the raw RMS curves. Although the overall 

tendency of RMS curves is monotonous, their local values 

are oscillating. Therefore, a smoothing process is introduced 

to reduce the influence of noise. This paper employs a 

moving average algorithm to smooth RMS curves. 

Step4: Normalize the dataset to [0, 1] by 𝑥∗ = (𝑥 −

𝑥𝑚𝑖𝑛 )/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛), where 𝑥∗ is the normalized data, 𝑥  is 

the raw RMS values for a bearing, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛  are the 

maximum and minimum of 𝑥 , respectively. Then the 

normalized dataset is divided into training set and testing set.  

Step5: Construct a DBN model and use the training set to 

train this DBN model. In this step, parameters of DBN, such 

as the number of hidden layers, the number of units for each 

layer, the pre-training iterations, and the fine-tuning 

iterations, etc. need to be determined. After the training 

process of DBN, the predicted value is compared with the 

ground truth value. If the performance is acceptable, the 

trained DBN model is ready to be used for applications. 

Otherwise, Step5 is repeated to adjust the DBN parameters. 

Step6: Use the trained DBN model to predict the future 

condition of bearings. From the starting point of prediction, 

the trained DBN model is used to obtain predicted RMS 

step-by-step recursively until the RMS predicted from DBN 

reaches the failure threshold. 

4. EXPERIMENTS AND RESULTS 

In this section, the proposed method is verified and 

demonstrated by short-term and long-term condition 

predictions for bearings. For the short-term condition 

prediction, two prediction horizons of L=1 and 10 are used 

to predict 10 seconds and 100 seconds respectively into the 

future for bearings1_3 and 1_7. The long-term condition 

prediction performance is verified by RUL prediction. 

4.1. Experimental system and vibration data 

Experimental data comes from IEEE PHM 2012 prognostic 

challenge (Nectoux et al. 2012). This problem has multiple 

challenges including limited training samples, unknown 

failure modes, no fixed failure threshold, and a wide range 

of failure times (Sutrisno et al. 2012). The experimental 

system named PRONOSTIA is designed to test and validate 

methods for fault detection, diagnostic and prognostic of 

bearings. This experimental system is able to conduct 

accelerated degradation tests on bearing in a few hours.  

Three different operation conditions are provided in the 

challenge data. In this paper, bearings 1_1 and 1_2 under 

the first condition are used as training set, bearings 1_3 to 

1_7 under the first condition are used as testing set. The first 

condition is as follows: 1800 rpm and 4000 N. The 

sampling frequency is 25.6 kHz. Each sample contains 2560 

points, i.e., 0.1 s, and sampling is repeated every 10 s. 

Figure 3 shows the vibration signals of bearing1_1 during 

its whole life cycle. It can be seen that the amplitude of the 

vibration signals increases over time. 
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Figure 3.   Vibration raw signals of bearing1_1. 

4.2. Evaluation criterion 

Three evaluation criteria are used to measure the 

performance of the proposed method. 

1) RMSE: Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √1

n
∑  2)()( ixix 𝑛

𝑖=1                          (4) 

where )(ix is the i-th actual bearing RMS value, and )(ix  is 

the i-th predicted RMS value. 

2) Ern: Percent Error of Prediction Result for the 

bearing with index n 

%100



n

nn
n

ActRUL

RULActRUL
Er                       (5) 

where ActRULn is the actual RUL value for the bearing with 

index n, RULn is the predicted RUL value for the bearing 

with index n. In order to get the predicted RUL value, EOP 

(End of Point) and SP (Starting Point of prediction) need to 

be determined.  EOP is defined as the time instant when the 

predicted curve of bearing condition reaches the failure 

threshold, the remaining useful life is given by 

RULn=EOPn-SPn. 

3) Score: The Score is used to comprehensively 

evaluate the performance of the prediction method 

𝑆𝑐𝑜𝑟𝑒 =
1

N
∑ 𝐴𝑛

𝑁
𝑛=1                        (6) 

where 

𝐴𝑛 = {
exp (− ln(0.5) ∙ ( nEr /5))    𝑖𝑓 nEr ≤ 0

exp (+ ln(0.5) ∙ ( nEr /20))    𝑖𝑓 nEr > 0
    (7) 

4.3. Experiments results 

The method proposed in Section 3 is used to process the 

vibration signals. Note that the bearing data are truncated at 

the time when the vibration amplitude exceeds 20 g. Firstly, 

RMS curves are obtained from the raw vibration signals 

using Eq. (1). Figure 4 shows an example of the raw RMS 

curve for bearing1_3, it is clear that the raw RMS curve has 

big noise and their local values are oscillating. Therefore, 

the 15-point moving average algorithm is used to reduce the 

influence of noise. The smoothed RMS curves are then 

normalized in the range of [0, 1]. The RMS curves after 

smoothing and normalizing are shown in Figure 5. 

 

Figure 4. Raw RMS curve for bearing1_3  

 

Figure 5. RMS curves after smoothing and normalizing. 

Bearing health condition prediction experiments show that 

the number of DBN layers and the embedding dimension 

are critical to the performance of prognosis. Table 1 shows 

the impacts of the number of DBN layers on RMSE for 1-

step ahead prediction. Note that the RMSE values shown in 

this table are the averaged value from 10 experiments on the 

same data. In Table 1, 3-layer DNB has structure of 10-20-1, 

which means the input layer has 10 units, the hidden layer 

has 20 units, and the output layer has one unit. Same 

representation is employed for 4-layer and 5-layer DBN 

structure. These three models are used to conduct 1-step 

ahead prediction. From Table 1, it can be seen that the 4-

layer DBN is the best structure for this case. Table 2 

summarizes the best embedding dimension for L-step ahead 
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prediction. In this experiment, a 4-layer DBN structure d-

20-20-1 and the evaluation criteria RMSE are used to find 

the best embedding dimension using a grid search. DBN 

structure d-20-20-1 means the input layer has d units, the 

two hidden layers have 20 units, and the output layer has 

one unit. From Table 2, it is clear that the number of 

embedding dimension should increase with the increase of 

prediction horizon given by L. In addition, it also indicates 

that it is difficult to find the best unified embedding 

dimension for all bearings. 

Table 1. RMSE results under different number of DBN 

layers. 

Testing 

bearing 

RMSE(×10-3) 

3-layer 4-layer 5-layer 

DBN structure 10-20-1 10-20-20-1 10-20-20-20-1 

Bearing1_3 7.9620 4.798 11.917 

Bearing1_4 10.013 9.032 15.954 

Bearing1_5 10.637 6.201 13.615 

Bearing1_6 3.6400 2.251 9.6530 

Bearing1_7 5.2080 2.249 7.4070 

 

Table 2. Best embedding dimension for L-step ahead 

prediction for 4-layer DBN d-20-20-1. 

Testing bearing 
Best embedding dimension (d) 

L=1 L=5 L=10 

Bearing1_3 10 100 200 

Bearing1_4 5 45 100 

Bearing1_5 10 50 150 

Bearing1_6 3 15 45 

Bearing1_7 10 100 150 

Due to limited space, bearing1_3 and bearing1_7 are taken 

as examples to illustrate the RMS predictions. Figures 6 and 

7 show the comparison of DBN predicted RMS curve vs. 

actual RMS curve for bearing1_3 and bearing1_7 with L=1, 

respectively. Figures 8 and 9 show the same comparison 

with L=10, respectively. For 1-step ahead prognosis, the 

DBN structure is set as 10-20-20-1. The pre-training 

iterations of each RBM is 200, and the fine-tuning iterations 

is 200. For 10-step ahead condition prediction, the DBN 

structure is set as 150-20-20-1. The pre-training iterations of 

each RBM is 200, and the fine-tuning iterations is 200. Note 

that these parameters are selected based on trial-and-error. 

 
Figure 6. Performance of DBN 1-step ahead prognosis (L=1) 

for bearing1_3. 

 
Figure 7. Performance of DBN 1-step ahead prognosis (L=1) 

for bearing1_7. 

 
Figure 8. Performance of DBN 10-step ahead prognosis 

(L=10) for bearing1_3. 
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Figure 9. Performance of DBN 10-step ahead prognosis 

(L=10) for bearing1_7. 

Inspection of Figures 6-9 indicates that DBN predicted 

RMS values are very close to actual RMS values during 

their whole life cycle, which indicates that the DBN model 

is able to describe the fault dynamics and is very effective in 

short-term condition prognosis. 

To further evaluate the long-term prognosis performance, 

DBNs are used to estimate the bearing RUL. In this 

experiment, the DBN structure is set as 250-110-20-1. 

Based on the observation of health indicator, the failure 

threshold of bearings is set to 0.7. According to the PHM 

2012 challenge, the starting point of prediction (SP) for 

bearing1_3 and bearing1_7 is set as 18010 s and 15010 s, 

respectively. Figures 10 and 11 show the predicted curves 

for bearing1_3 and bearing1_7, respectively. The RMS 

prediction include two phases: Before the starting point of 

prediction, the trained DBN model is used to obtain “DBN 

fitted value” with 1-step ahead prediction. After the starting 

point of prediction, the trained DBN model is used to obtain 

“DBN predictive value” step-by-step recursively until the 

RMS predicted from DBN reaches the failure threshold. The 

EOPD is the intersection point of failure threshold line with 

DBN predicted curve, the EOL is the intersection point of 

failure threshold line with real RMS curve. In Figure 10, 

EOPD is very close to EOL, which indicates DBN predicted 

RMS values are very close to actual RMS values during 

long-term prediction. From Figures 10 and 11, it is obvious 

that DBN can predict the bearing degradation and estimate 

the remaining useful life. The predicted RUL for bearing1_3 

and bearing1_7 is 5170 s and 5960 s, which are 560 s and 

1610 s away from the ground truth RUL, respectively. 

Table 3 shows the RUL prediction results of the proposed 

method, and the results are summarized and compared with 

those of two existing studies (Lei et al., 2016; Sutrisno et al., 

2012) based on the same dataset. In Lei et al. (2016), a 

fusion health indicator called weighted minimum 

quantization error (WMQE) was constructed, and RUL was 

predicted using a particle filtering-based algorithm with 

model parameters initialized using the maximum likelihood 

estimation algorithm. Its prediction performance is one of 

the best in the existing works using the same dataset. The 

second one is the winner of the IEEE PHM 2012 prognostic 

challenge. It proposes a data-driven bearing condition 

prediction method based on anomaly detection, degradation 

feature extrapolation, and survival time ratio. From Table 3, 

it is obvious that most of the bearing RUL prediction results 

using the proposed method are promising, bearing1_4 is an 

exception. 

 
Figure 10. Prognosis of RUL prediction for bearing1_3. 

 
Figure 11. Prognosis of RUL prediction for bearing1_7. 
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score is, the better the performance of the prediction method. 
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Table 3. Comparison of RUL prediction results (10s). 

 

Table 4. Comparison of percent error and score. 

 

Testing 

bearing 

Percent Error of Prediction Result (Er) 

Proposed 

method 

Lei et al. 

(2016) 

Sutrisno et al. 

(2012) 

Bearing1_3 9.77% -0.35% 36.99% 

Bearing1_4 -94.12% 5.88% 79.41% 

Bearing1_5 8.07% 100% 8.70% 

Bearing1_6 21.23% 28.08% -4.79% 

Bearing1_7 21.27% -19.55% -1.98% 

Score 0.4853 0.4488 0.4711 

 

From Table 4, DBN achieves the highest score on the five 

testing bearings. Since there are 11 bearings for testing in 

IEEE PHM 2012 prognostic challenge, we can’t draw the 

conclusion that the proposed method outperforms the 

published works for all bearings. One of our future works 

will conduct the RUL prediction experiment on the other six 

bearings. Note that the proposed method does not require 

mathematical or physical model of the bearings, and the 

prediction performance may improve by using better health 

indictor. We can draw a conclusion that our proposed 

method is promising for long-term bearing RUL prognosis.  

5. CONCLUSION 

This paper proposes a data-driven method for bearing health 

condition prediction, which is based on Deep Belief 

Network. The design and implementation of the proposed 

method are discussed in detail. Experiments on the IEEE 

PHM 2012 prognostic challenge dataset are presented to 

demonstrate the effectiveness of the proposed method. The 

proposed method does not require mathematical or physical 

model of the bearings, and it has shown its promising ability 

for bearing health condition prediction with big data. Our 

future work will focus on RUL prediction experiment on 

more bearings and DBN parameters optimization. 
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