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ABSTRACT

Cascading failures in critical cyber physical systems such as
power systems are rare but lead to huge social and economic
implications. Timely diagnosis of faults in these systems is
a challenging task due to inherent heterogeneity and scale of
the system. In the past, we have successfully demonstrated
a robust technique for diagnosing independent component
faults using Temporal Causal Diagrams (TCD) at sub-system
level. In this paper, we present a systematic approach of using
the sub-system level fault models to auto-generate a system-
level fault model that helps in diagnosing cascading failures.
We show the time complexity of our model generation algo-
rithm using industry standard Power Transmission networks.
Further, we describe the updates to the existing TCD reasoner
algorithms and report the TCD diagnosis results for simulated
multi fault scenario on a standard power system.

1. INTRODUCTION

Cascading failures in networked systems are defined as a set
of one or more independent events that triggers a sequence
of dependent events. The cascading chain of failures suc-
cessively weakens the system resulting in total system col-
lapse. According to North American Reliability Corpora-
tion, (NERC, 2005), the uncontrolled loss of any system fa-
cilities or load, whether because of thermal overload, voltage
collapse, or loss of synchronism, except those occurring as a
result of fault isolation. Utilities are required by regulators
(NERC for the US) to ensure that the system does not oper-
ate at any time with a possibility of a critical outage (NERC,
2013). This makes the timely diagnosis of faults in power
systems operations and planning an important task for ensur-
ing the smooth running of the system.

Ajay Chhokra et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
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Power systems are large complex cyber-physical systems
that contain tightly coupled components of both continuous
and discrete nature. Physical components (continuous) are
transmission lines, loads, generators etc which are controlled
and protected by embedded implementations of control algo-
rithms such as Automatic Generation Control (AGC) and mi-
croprocessor based relays. The cyber infrastructure includes
protection devices along with Energy Management System
(EMS) and Supervisory Control And Data Acquisition de-
vices (SCADA).

The protection system helps in preventing failure propaga-
tion by isolating faulty components. However, these devices
rely on hard thresholds and local information, often ignoring
system-level effects. This has lead to scenarios wherein a lo-
cal mitigation in a subsystem could trigger a failure cascade,
possibly resulting in a blackout (North American Electric Re-
liability Corporation, 2012). Moreover, power systems are
going through transformational changes to account for dis-
tributed and decentralized generation (Jones, 2014), which
has increased the stress on the aging legacy devices, thereby
increasing the chances of failures (Di Fazio et al., 2013). The
large size, inherent complexity, dynamic environments and
software faults have deemed the manual diagnosis of faults
infeasible and at the same time has increased the need for a
robust and fast on-line management system that aids opera-
tors in failure diagnosis and prognosis.

There are number of challenges in creating an on-line man-
agement system. The foremost challenge is to create a fault
model to analyze the progression of different faults in physi-
cal system while accounting for faulty and nominal behavior
of components of cyber system. Creating a monolithic fault
model for power systems will be difficult to manage and its
more desirable to use a component based approach where a
system fault model is composed by connecting smaller fault
models. The other key challenge is imposed due to the geo-
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graphical size of the power system that causes timing delays
in failure progression between sub systems. The diagnosis
approach should be able to account for these delays.

A number of model based and data driven approaches exists
in the scientific literature (Ferreira et al., 2016). These ap-
proaches diagnose faults in components of both physical and
cyber systems. However, none of the approaches model the
causal relationship between the faults in one sub system to
another (Hare, Shi, Gupta, & Bazzi, 2016). This requirement
is essential for analyzing cascading scenarios in any domain.
Our approach uses Temporal Causal Diagrams (TCD-s) to
effectively model the dynamics of failures in both physical
and cyber sub systems. We use a component based approach,
where TCD models of different segments of power transmis-
sion network are connected together to represent a system
level model that appropriately models the cascading failure
progressions through out the system. TCD based diagnosis
system is hierarchical in nature where a set of local level dis-
crete diagnosers track the protection devices and feed their
hypothesis to a system level reasoner which produces system
level hypotheses.

The main contributions of this paper are as follows :-

1. Describing component TCD fault models.
2. Showcasing a systematic approach of generating compo-

nent TCD models from system topology.
3. Synthesizing system TCD model by connecting individ-

ual fault models.
4. Discussing the timing complexity of fault model genera-

tion algorithm by using standard IEEE test systems.
5. Modifying the TCD reasoner hypothesis structure and

reasoning algorithm to account for secondary faults.
6. Showing the efficacy of the diagnosis framework with

the help of simulated case study involving a multi fault
scenario.

2. RELATED RESEARCH

Fault diagnosis in power systems is an active area of research.
Many technical papers have focused on fault segment esti-
mation. The diagnosis approach can be broadly classified
into three categories based on their underlying technique: ex-
pert system (Yongli, Yang, Hogg, Zhang, & Gao, 1994;
Huang, 2002; Cardoso, Rolim, & Zurn, 2008; Jung, Liu,
Hong, Gallanti, & Tornielli, 2001), artificial neural net-
work (Cardoso, Rolim, & Zurn, 2004; Mahanty & Gupta,
2004; Thukaram, Khincha, & Vijaynarasimha, 2005; Bi et al.,
2002) and analytical model optimization (Wu et al., 2005;
Wen & Chang, 1997; He, Chiang, Li, & Zeng, 2009; Guo et
al., 2010). In addition, approaches based on petri networks
(Sun, Qin, & Song, 2004) and cause-effect bayesian net-
works (Chen, Liu, & Tsai, 2001; Chen, Tsai, & Lin, 2011;
Guo et al., 2009; Chen, 2012; Yongli, Limin, & Jinling, 2006)
have also been proposed.

Expert Systems are one of the earliest techniques to solve
the failure diagnosis problem in Power Systems. The di-
agnosis process in an expert system can be rule based or
model based. A comprehensive survey of such knowledge
based approaches is available in (Sekine, Akimoto, Kunugi,
Fukui, & Fukui, 1992). The expert systems in general suffer
from a number of drawbacks related to the maintenance of
the knowledge database and slow response time. These ap-
proaches are expected to work well if all the received alarms
are correct. Missing and incorrect alarms force the diagnosis
technique to produce wrong hypotheses.

Artificial neural networks (ANNs) are adaptive systems in-
spired by biological systems. ANNs model the complex re-
lationships between inputs and outputs without the explicit
description of rules to precisely define the power system pro-
tection schemes i.e. based on operational data. Multilayer
feed-forward perceptron with backward propagation is the
most commonly used neural network model (MPNN) for fail-
ure diagnosis (Cardoso et al., 2004). However, this learning
methodology suffers from slow training and low capability
of inference with limited training data. In (Bi et al., 2002;
Mahanty & Gupta, 2004) neural networks with radial ba-
sis function (RBF) are presented. (Thukaram et al., 2005)
discusses support vector machine (SVM) in order to avoid
the shortcomings of MPNN. The artificial neural networks
based approaches in general suffer from convergence prob-
lems. Further, the ANNs have to be retrained whenever there
is a change in network topology as the weights are dependent
upon the structure of the power system.

A number of model based analytical methods have been de-
vised over the years for diagnosing failures in power systems
(Wu et al., 2005; Wen & Chang, 1997; He et al., 2009).
Optimization techniques such as genetic algorithm (Wen &
Chang, 1997), particle swarm optimization (He et al., 2009)
and evolution algorithm (Wu et al., 2005), have been used to
generate optimal failure hypotheses that best explain all the
events/ alarms. The analytical model presented in (Guo et
al., 2010) not only estimates the faults in the physical compo-
nent but also hypothesizes the state of protections relays and
circuit breakers. But these techniques rely heavily on criti-
cal and computationally expensive tasks such as the selection
of an objective function, development of exact mathemati-
cal models for system actions and protective schemes, which
greatly influence the accuracy of the failure diagnosis.

Cause effect networks have also been used to diagnose faults
in power systems (Chen et al., 2001, 2011; Guo et al., 2009;
Chen, 2012; Yongli et al., 2006). A cause effect network con-
sists of nodes and edges where nodes represent failures and
relaying system actions. Edges imply the causal relationship
between faults and relay actions. The accuracy of the diagno-
sis approach presented in (Chen et al., 2001, 2011) decreases
if there is uncertainty in the behavior of protection relays
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(PR) and/or circuit breakers (CB). (Chen, 2012; Yongli et al.,
2006) considered the anomalous behavior of PR and CB by
extending the cause effect approach with fuzzy digraphs and
Bayesian networks. However these techniques do not provide
hypotheses related to the state of PRs and CBs. (Guo et al.,
2009) presents on-line alarm analyzer for diagnosing failure
modes in the physical plant as well as in a relaying system
based on a temporal causal network. But (Guo et al., 2009)
does not take into account the operating modes and conditions
of the system that influence the failure propagation.

TCD based diagnosis system is different from current
methodologies where fault mitigation depends upon logic-
based approach bound by hard thresholds and manual system
level analysis. Moreover, these approaches are able to di-
agnose faults in physical and cyber sub-systems but cannot
reason about the secondary physical faults induced in the sys-
tem as a consequence of protection system (mis)operation.
This is an important requirement for diagnosing cascading
outages and predicting secondary and tertiary failure effects.
Our approach can improve the situational awareness of sys-
tem operators and help in preventing failures in large-scale
systems such as Smart Electric Grids, by identifying im-
pending secondary failures, thereby, increasing the system
reliability and reducing the losses accrued due to power
failures.

Rest of the paper is organized as follows, section 3 provides
an overview of the relevant physical and cyber components
in power systems. In the same section, we describe the com-
ponent fault model of a section of transmission network, fol-
lowed by discussion on the systematic approach of generating
component and system level TCD models. Section 5 high-
lights hierarchical diagnosis framework by describing the be-
havior of low level diagnosers and TCD reasoner. It also
lists an updated reasoning algorithm followed by a case study
involving cascading failures in section 6 and concluding re-
marks in section 7.

3. TCD MODEL

A TCD model (Mahadevan, Dubey, Karsai, Srivastava, &
Liu, 2014) is a behavior augmented TFPG model where faulty
and non faulty behaviors of sensing, actuating and protection
devices are explicitly modeled. Thus, a TCD model captures:

• Failure modes, discrepancies and failure propagation
across the physical system including sensors, actuators
and protection devices.

• The nominal operation of the protection system in terms
of the observed effects, the control action and its applica-
tion on the modes that control the state of the actuators.

• The failure modes associated with protection system and
their effect on the operating modes of the system and
thereby altering the failure propagation in physical plat.
These failures include: 1) Missed detection faults: faults

in protection system when it does not act and 2) Spurious
detection faults: faults in protection system where it acts
unnecessarily.

A system-level TCD model is hierarchical and composed
of component fault models. A component model includes
Timed Failure Propagation Graphs (TFPG) and/ or Timed
Triggered Automata (TTA) models. The TCD model captures
the interactions between the TFPG and TTA models both
within the component, as well as across component bound-
aries. The interactions between the TFPG and TTA mod-
els are captured implicitly through the state changes in TTA
models as a response to changes in observed and hypothet-
ical states of discrepancy and failure mode nodes in TFPG
model. The state transitions associated with TTA models
leads to system mode change that enable or disable failure
propagation edges in TFPG model. These interactions ex-
tends through the boundaries of a component i.e activation of
a failure mode node in a TFPG model of one component can
influence state transition in TTA models of other components
and vice-a-versa. Similarly, TTA model of one component
can influence change in states of TTA models of the same
component as well as the others. Figure 1 shows an abstract
system TCD model composed of two sub-system level mod-
els that are composed of two component fault models. The
TFPG models of different components can be explicitly con-
nected to model physical failure propagation amongst TCD
components models.

Appendix provides a brief overview of the TCD model-
ing formalism, and for detailed description please refer to
(Chhokra, Dubey, Mahadevan, & Karsai, 2017). The follow-
ing sections give an overview of power transmission system,
describe component TCD model of a part of the system and
discuss the fault model generation algorithm in detail.

4. POWER TRANSMISSION NETWORK

Figure 2 shows a segment of power transmission network
with two transmission lines (TL1, TL2) and three buses (B1,
B2, B3). Every transmission line is protected by a pair of
protection assemblies attached to it’s ends. A protection as-
sembly is a collection of current and potential transformers
(sensors), protection relays (controllers) and breakers (actu-
ators) that help in arresting failures by isolating the faulty
component from the system. These protection assemblies are
installed at the sub stations labeled as SS1, SS2 and SS3. Ad-
ditionally, protection assemblies of the nearby transmission
lines act as backup or secondary protection devices. For in-
stance, the relays contained inside the protection assemblies,
PA1 and PA2, act as primary source of protection against
phase to phase, phase to ground faults in TL1 while protection
assembly PA4 acts as backup.

Distance relays (E. O. Schweitzer, Kasztenny, Guzmán, Sk-
endzic, & Mynam, 2014) detect fault conditions by inspect-
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Figure 2. A segment of power transmission network
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Figure 1. A TCD model of a system consists of interacting
subsystems containing components, where each component
consists of an interacting TFPG and TTA models.

ing the apparent impedance (V/I). When a phase to phase or
phase to ground fault is introduced in a transmission line, the
current flowing through the conductor increases and voltage
at the bus terminals drops resulting in decrease in impedance
seen by the distance relay. Distance relays depending upon
the value of the impedance detected conclude the location of
the fault. Typically, distance relays are configured to operate
in three zones. A distance relay infers a zone 1 fault when the
measured impedance is less than 0.8 times the impedance of
the transmission line. In zone 1, distance relay acts as a pri-
mary protection element and instantly commands a breaker to
trip. A zone 2 fault is detected when the measured impedance
is greater than 0.8 but less than 1.25 times of the transmission
line. In this zone, distance relay waits for 0.05 - 0.1 secs
before sending the trip signal. A zone 3 fault forces the ap-
parent impedance seen by the relay to be 1.25 - 2 times the
impedance of the transmission line and the relay waits for
1-1.5 secs before sending a trip signal to the breaker. Under
zone 2 and 3 fault conditions, a distance relay acts as a backup
protection element. (Chhokra et al., 2017) presents TCD fault
model involving faults in transmission lines by utilizing the
alarms signaled by the distance relays and the estimated state
of the breakers.

However, this fault model is incomplete as it does not show
how failure propagates from one TCD model of transmis-
sion line to another. Typically, in power systems, the sec-
ondary effects of isolating faults in physical components are
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bus voltage collapse, branch overloads and loss of synchro-
nism. These secondary effects, if not dealt with, can cause
serious damage, thereby injecting secondary physical faults.
Moreover, control actions taken by line operators to remove
these secondary effects have worsen the situation in the past
(North American Electric Reliability Corporation, 2012) as
these actions are solely based on local information, and have
caused same secondary effects in other parts of the system,
causing a domino effect.

For instance, increased power flowing through the conductor
can damage the insulation. To avoid any permanent dam-
age to the conductor, fuses or over-current relays are used
which opens the breaker to stop the flow of the power through
the transmission line. The opening of breaker causes change
in the flow of power and may over load some other part of
the system and causes overload protection to engage again.
Thus alarms that signal anomalies related to secondary effects
i.e overloads form a causal link between failure propagation
among different TCD models1.

4.1. Component TCD Model

Component TCD model for power transmission networks in-
clude TFPG model of a transmission line and TTA models
of its respective protection devices (controllers and sensors)
and breakers (actuators). Figure 3 shows an fault model of
transmission line, that contains an embedded TFPG model
and behavioral models of distance relays, over-current relays
and breakers that serve primary and secondary protection ele-
ments. The TFPG model shows the failure signature of phys-
ical faults associated with transmission line and also captures
the effect of isolating faults. The behavior models display the
working of relays and breakers in faulty and non faulty con-
ditions. The failure propagation depends upon the operating
modes which is a function of state of the breakers. The be-
havioral models are hand crafted by leveraging information
from the user manuals of the discrete devices while TFPG
model is automatically synthesized based upon the location
of the physical element and its respective protection devices.
The following sub sections describe the different parts of the
TCD model:

4.1.1. Distance Relay Behavioral Model

Figure 3 shows an abstract time triggered automaton of a
distance relay configured to operate in 3 zones of protec-
tion. We have considered 4 detection faults, F de1, F de2 z1,
F de2 z2 and F de2 z3 in this paper. Fault, F de1, is a missed
detection fault that forces the relay to skip the detection of
fault and F de2 z1, F de2 z2, F de2 z3 are spurious detec-
tion faults associated with zone 1, 2, 3 fault conditions re-
spectively. Relay produces Z1, Z2, Z3 alarms to signal the

1This paper only cover overloads as secondary effects but can be easily ex-
tended to include others

presence of zone 1, 2, 3 fault conditions respectively. For
more description of the distance relay behavior, please refer
to (Chhokra et al., 2017).

4.1.2. Breaker Behavioral Model

It is important to consider faults in the breaker behavior as
it’s faulty operation has contributed towards blackouts in the
past (North American Electric Reliability Corporation, 2012).
Figure 3 shows a simplified time triggered automaton of a
single phase circuit breaker. The automaton describes the op-
eration of breaker in nominal mode and in the presence of
stuck open and stuck close faults. The stuck open fault forces
the breaker to remain in open state while the stuck close
fault makes sure the breaker never transitions from close
to open state. The breaker responds to commands received
by relays, cmd open, cmd close and produces events st open
and st close to signify successful state transition from open
to close and vice-versa. For more information about the
breaker behavior, please refer to (Chhokra et al., 2017).

4.1.3. Over Current Relay Behavioral Model

The objective of the overload protection is to prevent dam-
age to a physical component in an electric circuit when the
component is subjected to a prolonged overload conditions.
Overload protection can be achieved using a variety of means:
fuses, low-voltage (LV) circuit breakers like miniature cir-
cuit breakers (MCBs) and molded-case circuit breakers (MC-
CBs), over-current relays used in conjunction with high-
voltage (HV) circuit breakers, etc.

Figure 3 shows time triggered automaton of a single step time
definite over-current relay. The automaton consists of two
failure modes F de1 and F de2. F de1 models missed detec-
tion fault and F de2 represent spurious detection fault. Fig-
ure also lists 3 different failure mode constraints, δ(F de1),
δ(F de2) and ¬ δ(F de1) ∧ ¬ δ(F de2). The presence of
failure modes F de1 and F de2 enables the first two failure
mode constraints while the third constraint evaluates to true
only if none of the detection faults are present. Four differ-
ent events are used to model the over-current relay behav-
ior. The event labeled as E1 is an un-observable that repre-
sents increase in current beyond permissible threshold (150%
- 300% of the maximum load current). The observable event
OR is an alarm produced by the relay to signal overload, and
cmd open marks the event when the relay sends a trip signal
to the breaker.

The state machine consists of 6 locations with idle being
the initial location. Every R seconds (1 milliseconds), the re-
lay looks for event E1 and evaluate failure mode constraints.
If E1 is present and both the failure modes are absent then it
transitions to waiting location. In waiting state, it waits
for a pre-defined amount of time (200 secs) ensured by the
instantaneous timing constraint, [WT], and transitions to chk
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6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

location. In chk location, it again checks for the overload
condition and presence of failure modes. If the overload con-
dition still exist it transitions to tripped location. The devi-
ation from the nominal operation is caused if either δ(F de1)
or δ(F de2) evaluates to true at any time. For instance, if in
idle state and constraint δ(F de1) evaluates to true (imply-
ing F de1 is present) then automaton moves to detError1
location and stays there until F de1 disappears. Similarly, if
F de2 is present then automaton transitions to detError2
location and jumps to tripped location without checking
E1.

4.1.4. TFPG Model

Figure 3 shows a generic TFPG model for a transmission line.
It consists of 4 different sets of nodes described as follows :

• F: It is a set of failure mode nodes that represent physical
faults such as phase to phase and phase to ground.

• D1: It is a set of observable discrepancy nodes. These
discrepancy nodes represent the reduction in impedance
due to fault f ∈ F. These discrepancies are signaled
by zone 1 or 2 alarms (Z1, Z2), triggered by primary
protection devices. Since there are two primary pro-
tection device per transmission line, the size of this set
is 2. For instance, the set D1 in a TFPG model for
line TL1 contains two discrepancies, (d TL1 PA1 DR,
d TL1 PA2 DR) where d, TLn, PAk and DR denote the
type of TFPG node (discrepancy), transmission line la-
bel, protection assembly label and component type in the
protection assembly (Distance Relay).

• D2: It is a set of observable discrepancy nodes similar
to D1 but are signaled by zone 2 or zone 3 alarms pro-
duced by backup protection elements. The size of this set
depends upon the number of backup protection devices.
For example, D2 in TFPG model of TL1 contains one
discrepancy, d TL1 PA4 DR.

• D3: It is a set of observable discrepancy nodes that imply
the increase in current flowing through the transmission
line. The discrepancy is signaled by alarms generated by
the over-current relays. The size of the set is 1.

The state of the breakers in primary protection assemblies
constraints the failure propagation from nodes in F to dis-
crepancy nodes in D1. For instance, in TFPG model of TL1,
the failure effect can only reach discrepancy d TL1 PA1 DR,
if the breaker, PA1 BR (in protection assembly PA1) is in
close state. The time taken by the failure effect to prop-
agate from nodes in F to D1 is equal to the time taken by the
respective relays to detect the fault. The fault detection de-
pends upon the sampling time of the relay and the frequency
of the microprocessor (E. Schweitzer, Fleming, Lee, Ander-
son, et al., 1997). Fast numerical relays with high sampling
rates (64 samples per cycle) can accomplish sub cycle2 fault

2One cycle equals 16.67 milliseconds

detection while relays with low sampling rate (2 samples per
cycle) can take upto 2 cycles for detecting fault conditions
(Venkatesh & Swarup, 2012). We consider 30 milliseconds
to be upper threshold on the failure propagation time interval,
as shown in figure. The edges between F and D2 have same
operating and timing constraints with an exception of being
uncertain, represented by dotted line in Figure 3. The uncer-
tainty arises due to the fact single failure node is representing
fault through out the length of the transmission line.

The failure edges between nodes in D3 and F model the sag-
ging or loss of insulation around the conductor that injects
secondary failure in the transmission line. The time duration
for the effect to propagate depends upon the thermal charac-
teristics of the transmission line and is of the order of minutes
(200 secs in our implementation). The operating conditions
for this effect to reach nodes in D3 also depends upon the
state of breakers along the path. The outgoing edges from
nodes, (D1, D2, D3) in TCD model of a line to D3 in other
TCD models capture the effect of corrective actions, thereby,
accounting for cascades.

4.2. Generation of TCD Model

Due to the large size of power systems, its advantageous to
automate the process of generating component TCD models
and synthesize a system TCD model by appropriately con-
necting them. Each component fault model contains replicas
of user created behavioral models and a TFPG model. There
are two keys requirements for generating system wide TCD
model :-

1. To identify primary and secondary distance relays that
are responsible for detecting physical fault in all lines.

2. To identify probable set of transmission lines that can be
overloaded by the control actions of the protection de-
vices associated with a given line.

A transmission line network can be considered as a con-
nected graph with nodes of types, {Generator, Line, Trans-
former, Load, Bus, Protection Assembly} and edges between
them implies power flow. The graph is stored as map,
adjacencyList, where keys are node labels and value is an
adjacency list. The underlying algorithm of finding the pri-
mary and secondary protection relays is based on recursive
graph traversal as listed in Algorithm 1. The algorithm update
two maps PPE and SPE, which store primary and secondary
protection elements associated with a branch (line or trans-
former) respectively. The keys are branch labels and value
associated with a key is set of protection element labels. The
input parameters3 of the algorithm include

1. node : Starting node object.
2. visited : Set of all visited nodes at a given iteration.
3. PA label : The label of starting node.

3The parameters, PA label, Bus label and max imp do not change.
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4. Bus label :The label of the bus to which node is attached.
This parameter is required in order to avoid traversing the
graph in the reverse direction.

5. imp : Cumulative impedance at each iteration, initially
the value is 0.

6. max imp : Impedance reach of the highest configured
zone, i.e. zone 3.

7. flag : Parameter to reflect that a branch has been identi-
fied for which PA label acts as primary protection. Initial
value is False.

The routine iterateGraph is invoked for every protection as-
sembly and recursively traverses the graph until imp reaches
the threshold of max imp (line 5). Depending upon the type
of the node, imp is updated (line 3-4). The relay, PA label is
considered as primary relay of the current node if it matches
the following three conditions

• The type of node is either Line or Transformer. (line 3)
• imp is less than max imp. (line 4)
• Boolean variable, Flag, is False. (line 6)

If only the first condition evaluates to true then SPE is updated
(line 9, 15). The routine calls itself for every child node (line
11-12, 19-21, 24-26) except

1. If the current node type is either Line or Transformer and
the condition imp < max imp evaluates to false i.e max
zone reach has reached. (line 4)

2. If the current node type is Bus and node label is
Bus label. This condition restricts traversal in the reverse
direction. (line 18)

There is one more map, CB where key value pair relates to a
branch outage and a set of probable branch outages that can
happen in future. Ideally, this map requires very large num-
ber of simulations to capture every cascading scenario in all
possible topology configurations (exponential in the size of
number of branches). We use a hybrid, off-line and on-line
approach to find all probable overloads of a given branch out-
age. In off-line mode, using graph theoretic appraoch, we
identify a set of branches that can never be overloaded as
a result of the given branch outage and at run time (on-line
mode), this set is further reduced by performing on demand
load flow calculation using steady state power flow solver,
OpenDSS (Dugan, 2016). The underlying graph theoretic al-
gorithm that updates the cascade map is shown in 2. The al-
gorithm is invoked for every branch and removes the branches
that cannot be overloaded. It recursively traverses each node
outwards from the given branch until its visits a node with a
degree more than two (line 4).

The generation algorithms are based on exhaustive search
that has exponential timing complexity. However, the graph
traversal is restricted by zone reach and degree of the com-
ponents. These constraints make the algorithms to have poly-
nomial time complexity. We performed the timing analysis

Algorithm 1 Algorithm for updating PPE and SPE system
maps: iterateGraph(node, visited, PA label, Bus label, imp,
max imp, Flag)
1: if node /∈ visited then
2: visited← visited ∪ node
3: if node.type ∈ {’Line’, ’Transformer’} then
4: imp← imp + node.Impedance
5: if imp < max imp then
6: if ¬ Flag then
7: PPE[node.label]← PPE[node.label] ∪ {PA label}
8: else
9: SPE[node.label]← SPE[node.label] ∪ {PA label}

10: end if
11: for all n ∈ adjacencyList[node] do
12: iterateGraph(node, visited, PA label, Bus label, imp,

max imp)
13: end for
14: else
15: SPE[node.label]← SPE[node.label] ∪ {PA label}
16: end if
17: else if node.type = ’Bus’ then
18: if node.label 6= Bus label then
19: for all n ∈ adjacencyList[node] do
20: iterateGraph(node, visited, PA label, Bus label, imp,

max imp)
21: end for
22: end if
23: else
24: for all n ∈ adjacencyList[node] do
25: iterateGraph(node, visited, PA label, Bus label, imp,

max imp)
26: end for
27: end if
28: end if

Algorithm 2 Algorithm for updating CB system map: iter-
ateGraph(node, visited, Branch label)
1: if node /∈ visited then
2: visited← visited ∪ node
3: neighbors← adjacencyList[node]
4: if neighbors.size ≤ 2 then
5: for all n ∈ neighbors do
6: if n.type ∈ {’Line’, ’Transformer’} then
7: CB[Branch label]← CB[Branch label] \ n.label
8: end if
9: iterateGraph(n, visited, Branch label)

10: end for
11: end if
12: end if

by generating fault models for standard IEEE test systems4 of
small, medium and larges sizes. Table 1 shows the parameters
of the test topology and the generated fault model. The last
column shows the time taken for model generation which in-
cludes, parsing of IEEE common data format (Group, 1973),
creating a graph in memory, generating fault model and seri-
alizing the fault model into a xml file.

5. TCD DIAGNOSIS FRAMEWORK

TCD diagnosis framework employs a hierarchical, discrete
event based reasoning methodology. Events related to zone
detection alarms, breaker commands, breaker state change
messages are consumed by lower level diagnosers, called Ob-
servers. The output of these Observers are passed to graph
based TCD reasoner which produces hypotheses consistent

4https://www2.ee.washington.edu/research/pstca/
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Table 1. TCD Models for IEEE Test Systems

Topology Name Topology Parameters TCD Model Parameters
Nodes Branches Failure Modes Discrepancies Alarms Modes (2n) Edges Generation Time (sec)

WSCC 9 Bus System 24 9 144 98 189 18 476 0.48
IEEE 14 Bus System 50 20 320 339 420 40 2059 1.65
IEEE 30 Bus System 98 41 656 883 861 82 7853 9.36
IEEE 118 Bus System 449 186 2976 5892 3906 372 145368 93.46
IEEE 300 Bus System 978 411 6576 14038 8631 822 691996 1968.08

with TCD model of the system. The following sub sections
give brief overview of Observers and TCD reasoner.

5.1. Observers

Observers are discrete, finite state machines that consume
events produced by their respective tracked devices. There
exists a number of approaches for generating discrete diag-
nosers for dynamic systems based on (Tripakis, 2002) and
(Sampath, Sengupta, Lafortune, Sinnamohideen, & Teneket-
zis, 1995). Figure 4 shows the observer models for the pro-
tection relays and breakers. These state machines accepts ob-
servable events, such as fault detection alarms and trip com-
mands, to estimate the presence of faults in both physical and
cyber components. These observers produce their hypothe-
ses in the form of observable events that are passed to TCD
reasoner. Following subsections give more detail about their
operation.

5.1.1. Observer: Distance Relay

The time triggered automaton model of a distance relay ob-
server can be seen in Figure 4. The state machine has 8
locations with idle being the initial state. The observer
machine consumes the observable zone alarms (Z1, Z2, Z3),
commands sent to breaker (cmd open) and reset events. It
produces h Z1, h Z2, h Z3 to indicate or confirm the pres-
ence of zone 1, 2, 3 faults. The observer also produces h Z1′,
h Z2′and h Z3′to indicate absence of zone 1, 2, 3 fault condi-
tions. , t3, z2wt, z3wt ∈ R+, are the parameters of relay ob-
server that model propagation delay, zone 2 and 3 wait times
respectively. For detailed information of observer behavior,
please refer to (Chhokra et al., 2017).

5.1.2. Observer: Breaker

The breaker observer model is also shown in Figure 4. It
consists of 4 states labeled as open, close, opening and
closing and correlate directly to the 4 states of the breaker
automaton. The observer consumes cmd open, cmd close
st open and st closeand produces h open, h close to signal
state change from close to open and vice-versa respectively.
The observer also emits (h stuck open; h stuck open′) and
(h stuck close; h stuck close′) to indicate the presence and
absence of stuck open and close faults. t4 ∈ R+ is a pa-
rameter of the breaker observer that models the delay associ-
ated with state transition due to it’s mechanical nature. The

detailed working of breaker observer model is presented in
(Chhokra et al., 2017).

5.1.3. Observer: Over-current Relay

The observer model tracking the behavior of over current re-
lay is shown in Figure 4. The automaton consists of 4 states,
idle, chk, waiting and tripped with idle being the
initial location. The observer consumes OR, cmd open and
c reset events from the relay and generates h OR, h OR′to
signal the presence and absence of overload conditions.
While in the idle state, the automaton periodically checks
for the OR event. After detecting the overload conditions,
the observer generates h OR and jumps to chk location. Af-
ter waiting for WT ∈ R+, the state machine transitions to
waiting state. While in waiting state, observer checks
for the cmd open even. If cmd open event is received with in
t3 seconds, then state machine moves to the tripped state
otherwise transitions to idle state while emitting h OR′to
signal the overload has disappeared. t3 is a parameter of the
observer machine that models propagation delay.

5.2. TCD Reasoner

The TCD reasoner relies on the fault propagation graph and
the output of various observers to hypothesize about the
anomalies observed in the system. In order to relate to the
alarms generated by observers with the failure graph few
modifications are performed. The alarms signaled by relays
are replaced by their corresponding observers i.e. Zn is re-
placed by h Zn. The reasoner attempts to explain the observa-
tions in terms of consistency relationship between the states
of the nodes and edges in the fault propagation graph. The
states of a node in a fault propagation graph can be catego-
rized as Physical (Actual), Observed and Hypothetical state
(Abdelwahed & Karsai, 2006).

• Physical state corresponds to the actual state of the nodes
and edges.

• An Observed state is the same as the Physical state, but
only defined only for observable nodes.

• A Hypothetical state is an estimate of the node’s physical
state and the time since the last state change happened by
the TCD reasoner.

Every reasoner hypothesis, h ∈ HSett consists of a map,
HNodet that associates to every node in the failure graph an
evaluation, (ON, OFF) and time estimate (t1, t2). The time
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Figure 4. Protection System Observer Models

estimate, (t1, t2) denotes the earliest and latest time estimates
for the state changes of node v i.e. from ON to OFF or vice-a
versa. The structure of a hypothesis is described as follows:

Hypothesis is a tuple, where elements are related based on
temporal consistency. Formally, hypothesis h={F, Scyber,
Fphysical , C, I, M, E, ES } where:

• F ⊆ Fphysical is a subset of physical failure modes pro-
jected by the hypothesis.

• Scyber ⊆ Fcyber is a set of faults active in the system.
These faults are related to detection faults and stuck
faults in relays and breakers.

• Sphysical ⊆ Fcyber is a set of secondary physical faults
caused due faults in F .

• C ⊆ Dphysical is the set of discrepancies that are con-
sistent with the hypothesis h, where Dphysical is the
set of physical discrepancies related with faults in F ∪
Sphysical ⊆ Fphysical. We partition the set C into two
disjoint subsets, C1, C2 where, C1 consists of primary
discrepancies and C2 contains secondary discrepancies.
A discrepancy, d w.r.t hypotheses h is called primary if
the fault propagation linking the discrepancy, d, is certain
otherwise its termed as secondary.

• E ⊆ Dphysical is the set of discrepancies which are ex-
pected to be activated in the future according to h. This
set is also partitioned into E1 and E2 that contain primary
and secondary discrepancies, respectively.

• ES ⊆ Fphysical is the set of expected secondary failure
modes to be activated in the future as per h.

• M ⊆ Dphysical is the set of discrepancies that are miss-
ing according to the hypothesis h i.e. alarms related to
these discrepancies should have been signaled. This set
is also composed of two disjoint sets M1 and M2 based
on primary and secondary discrepancies.

• I ⊆Dphysical is the set of discrepancies that are inconsis-
tent with the hypothesis hf . These are the discrepancies
that are in the domain of f but cannot be explained in the
current mode.

For every scenario, the reasoner creates one special hypoth-
esis (conservative), H0 that associates a spurious detection
fault with each of the triggered alarms.

The quality of the generated hypotheses are measured based
on four metrics defined as follows:

• Plausibility: It is a measure of the degree to which a
given hypothesis explains the current fault and its failure
signature. Mathematically, it’s is defined as

Plausibility =
|C1|+|C2|

|C1|+|C2|+|M1|+|I|
• Robustness: It is a measure of the degree to which a

given hypothesis will remain constant. Mathematically,
it’s is defined as

Robustness =
|C1|+|C2|

|C1|+|C2|+|M1|+|E1|+|E2|+|I|
• Failure Mode Count: is a measure of how many failure

modes are listed by the hypothesis. The reasoner gives
preference to hypotheses that explain the alarm events
with a limited number of failure modes (i.e., it follows
the parsimony principle).

There are three types of events that invoke the reasoner to
update the hypotheses. The first two are external physical
events related to a change in the physical state of a monitored
discrepancy and system mode. The third event is an internal
timeout event that corresponds to the expectation of an alarm.
(Chhokra et al., 2017) describes the underlying algorithms to
handle events but the monitored discrepancy state change al-
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gorithm has to be extended to include the effect of secondary
physical failure modes which is shown in 3.

Algorithm 3 HandleDsicrepancyStateChnageEvent(e,m):
Algorithm for handling discrepancy state change event

Input: (d, t), m
isExplained← FALSE
for all h ∈HSett do

if d ∈ Dcyber then
UpdateScyberSet(h,d)
isExplained← TRUE
continue .increment h to next hypothesis in HSet

end if
if TConsist(h, d) then

isExplained← TRUE
UpdateHNodeMap(h,d)
UpdateConsistentSet(h,d)
UpdateExpectedSet(h,d)
AddTimeOutEvents(h,d,t′)

else
UpdateInconsistentSet(h,d)

end if
end for
if ¬isExplained then

Hnew ← CreateNewHypothesis(d, t, m)
for all h′∈ Hnew do

for all h ∈ HSet do
h′′← h .Temporary placeholder
if h′′.ES ∩ h′.F 6= ∅ then

h′′.Sphysical← h′′physical ∪ h′.F
else

h′′.F← h′′.F ∪ h.′.F
end if
MergeConsistentSet(h′′, h′)
MergeExpectedSet(h′′, h′)
MergeScyberSet(h′′, h′)
UpdateInconsistentSet(h′′, d)
Addhypothesis(HSet, h′′)

end for
end for

end if

6. CASE STUDY

We validated the TCD fault model and diagnosis framework
with the help of a standard WSCC 9 Bus system5. WSCC 9
Bus system is a simple approximation of the Western System
Coordinating Council electrical network. It consists of 3 gen-
erators, 9 Buses, 6 transmission lines and 3 loads as shown in
Figure 5.

The test system is modeled in Simulink6, where Simscape
Power Systems7 toolbox provides models of physical compo-
nents and Stateflow8 charts are used to create time triggered
automatons of protection system. Different scenarios are sim-
ulated in Simulink and their outputs are serialized into XML
files. These XML files are parsed by python based TCD di-
agnosis prototype.

Tables 2,3 list the timed events produced by the protection
system along with output of various observers and TCD rea-
soner for a blackout causing multi fault scenario. The cas-
cading sequence initiates with a 3 phase to ground fault in
5http://icseg.iti.illinois.edu/wscc-9-bus-system/
6https://www.mathworks.com/products/simulink.html
7https://www.mathworks.com/products/simpower.html
8https://www.mathworks.com/products/stateflow.html
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Figure 5. Test System: WSCC 9 Bus System

line, TL B7 B8 followed by a secondary fault in the adjacent
line, TL B8 B9. The secondary fault is caused due line sag-
ging and coming in contact with nearby vegetation. In the
end, overload protection relays9 isolate lines TL B5 B7 and
TL B4 B5 causing more than two-third of the total load to
be de-energized (Blackout). TCD diagnosis system correctly
diagnose the cascading outages and lists a total of 4 hypothe-
sis. Hypothesis H3, perfectly explains the system events with
100% plausibility and least number of estimated component
failures.

7. CONCLUSION

In this paper we presented a component based approach to
model cascading outages using TCD formalism. We show-
cased the results of the generation algorithm. We also de-
scribed the TCD diagnosis framework by discussing in detail
the timed discrete models of protection devices and showed
the efficacy of the TCD reasoning scheme by accurately di-
agnosing primary and secondary failures in a multi fault sce-
nario in WSCC 9 Bus system. As a part of our future work ,
we would like to extend TCD diagnosis framework by adding
prognostics and cascade mitigation capabilities.
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Table 2. System Events

Time
Stamps
(secs)

Cyber-Physical System Events Observer Events Reasoner Hypotheses

1 A 3 phase to ground fault is injected in
transmission line, TL B7 B8

1.001

PA B7 TL B7 B8 DR,
PA B8 TL B7 B8 DR detect zone 1 fault
conditions, respective state machines
transition to tripped location after
producing Z1 and cmd open events.
PA B9 TL B8 B9 DR detects zone 3 fault
conditions, and transitions to chkZ3 state
after emitting Z3 event.
Breakers, PA B8 TL B7 B8 BR and
PA B7 TL B7 B8 BR acknowledge the
relay command and transition to opening
state.

The observers associated with
PA B7 TL B7 B8 DR and
PA B8 TL B7 B8 DR, first transition to
chkZ1 state and then jump to tripped
state. They produce h Z1 event. The
observer tracking the behavior of relay,
PA B9 TL B8 B9 DR, transitions to
chkZ2 location and emits h Z3 event.
The breaker observers move to opening
state after detecting cmd open event.

The TCD reasoner generates two
hypotheses, H0 and H1, where H1
hypothesizes fault in line, TL B7 B8 with
75% robustness, 100% plausibility and
failure count of 1. The second hypothesis,
H0, blames distance relays for incorrectly
detecting faults (spurious detection fault).
The failure count for H0 is 3. According to
law of parsimony H1 is more probable than
H0.

1.051
Breakers, PA B7 TL B7 B8 BR and
PA B8 TL B7 B8 BR change their state to
open and produce st open events.

On detecting state change events, the
corresponding observers also transition to
open state and produce mode change
(h open) and alarm state change
(h stuck close′) events.

The mode change event causes the
robustness of H1 to decrease from 75% to
50% as H1 expects over-current relay
alarms from protection assemblies of nearby
transmission lines.

1.052

The over-current relays associated with
lines, TL B5 B7, TL B8 B9 and
TL B4 B6, produce OR alarms to signal
overload conditions and update their state to
chk.

The observers tracking the behavior of these
over-current relays transition to chk state
after detecting OR event and produce h OR
to conclude overloading conditions.

Increase in robustness of H1 hypothesis,
from 50% to 100% and increase in the
number of spurious detection faults
estimated by H0, from 3 to 9.

2.001
The zone 3 wait time expires for relay,
PA B9 TL B8 B9 DR. The state machine
transitions to waiting2 state.

Associated observer also updates it’s state to
waiting2.

2.002
Since the fault in line TL B7 B8 has
already been isolated, the relay,
PA B9 TL B8 B9 DR moves back to
idle state.

2.031

t3 wait time expires for the observer
tracking PA B9 TL B8 B9 DR. The
observer does not detect cmd open event
and conclude the absence of zone 3 fault. It
produces h OR′alarm and moves back to
idle state.

The number of spurious detection fault
reduces to 8 in H0.

5.000
Due to increased current flowing through
the conductor, the transmission line,
TL B8 B9, sags and comes in contact with
the nearby vegetation.

5.001

Relays, PA B8 TL B8 B9 DR,
PA B9 TL B8 B9 DR detect zone 1 fault
conditions. These relay transitions to
tripped location and produce Z1 and
cmd open events.
Breakers, PA B8 TL B8 B9 BR,
PA B9 TL B8 B9 BR acknowledge the
relay command and transition to opening
state.

The observers associated with
PA B7 TL B7 B8 DR,
PA B8 TL B7 B8 DR, first transition to
chkZ1 state and then jumps to tripped
state. They produce h Z1 to conclude
presence of zone 1 fault conditions.
The breaker observers move to opening
state after detecting cmd open event.

Number of hypotheses increases to 4.
H0: Failure count increases from 8 to 10
H1: Alarms added to inconsistent set,
Robustness, Plausibility and Failure count
are 75%, 75% and 3 respectively.
H2(New Hypothesis): Lists physical fault in
TL B8 B9 as primary fault and active
alarms related to fault TL B7 B8 are added
to inconsistent set. Robustness, Plausibility
and Failure count are 25%, 28.57% and 8
respectively.
H3(New Hypothesis):Extension of H1, lists
fault in TL B8 B9 as a secondary fault.
Robustness, Plausibility and Failure count
are 100%, 100% and 2 respectively.

5.051
Breakers, PA B8 TL B8 B9 BR and
PA B8 TL B8 B9 BR change their state to
open and produce st open events.

On detecting state change events, the
corresponding observers also transition to
open state and produce mode change
(h open) and alarm state change
(h stuck close′) events.

A transmission line is labeled according to the buses that are connected at it’s two ends. For instance, TL Bi Bj is a transmission line connected between two
buses Bi,Bj, such that i, j ∈ Z, i 6= j and TL implies the component type. Similarly, a protection assembly is named as per the labels of the adjacent bus
and the transmission line. For instance, PA Bi TL Bi Bj is a protection assembly connected between bus Bi and transmission line TL Bi Bj. Distance relays,
over-current relays and breakers are labeled by appending DR, OR and BR to the label of their respective protection assemblies.
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Table 3. System Events - Contd.

Time
Stamps
(secs)

Cyber-Physical System Events Observer Events Reasoner Hypotheses

11.051
Wait time, WT of over-current relays
associated with lines, TL B4 B6,
TL B5 B7, TL B8 B9 expires. The relays
move from chk to waiting state.

Wait time for corresponding observers
expires and their states are updated to
waiting

11.052

Overloading condition persists only in line
TL B5 B7. Relays, PA B5 TL B5 B7 OR
and PA B7 TL B5 B7 OR update their
state to tripped and produce cmd open
events. While the over-current relays
associated with lines, TL B4 B6 and
TL B8 B9 move back to idle.
The breakers, PA B5 TL B5 B7 BR and
PA B7 TL B5 B7 BR update their state to
opening.

The observers tracking
PA B5 TL B5 B7 OR and
PA B7 TL B5 B7 OR relays update their
state to tripped.
The observers associated with
PA B5 TL B5 B7 BR and
PA B7 TL B5 B7 BR update their state to
opening.

11.081

t3 wait time expires for the observer
tracking relays, PA B8 TL B8 B9 OR,
PA B9 TL B8 B9 OR,
PA B4 TL B4 B6 OR and
PA B6 TL B4 B6 OR. Observers
transition to idle and produce h OR′ event
to indicate absence of overloading
conditions.

Robustness, Plausibility and Failure count
of Hypothesis H3 are updated to 87.5%,
100%, 2 respectively and Failure count in
H0 reduces to 6

11.102
Breakers, PA B5 TL B5 B7 BR and
PA B7 TL B5 B7 BR change their state to
open and produce st open events.

On detecting state change events, the
corresponding observers also transition to
open state and produce mode change
(h open) and alarm state change
(h stuck close′) events.

The mode change event causes a change in
the hypothesis H1, H2 and H3. Overload
alarms are expected from protection
assemblies associated with line TL B4 B5
instead of TL B4 B6

.
11.103

The over-current relays,
PA B4 TL B4 B5 OR and
PA B5 TL B4 B5 BR produce OR alarms
to signal overload conditions and update
their state to chk.

The observers tracking the behavior of these
over-current relays transitions to chk state
after detecting OR event. The observers
produce h OR to conclude overloading
conditions.

The hypothesis metrics of H3 are updated to
100%, 100%, 2 and failure count in H0
increases to 8.

21.103
Wait time, WT of over-current relays
associated with line, TL B4 B5 expires. The
relays move from chk to waiting state
and produce cmd open event.

Wait time for corresponding observers
expires and their states are updated to
waiting

21.104

Due to persistent overloading conditions,
relays, PA B4 TL B4 B5 OR and
PA B5 TL B4 B5 OR produce cmd open
event and transition to tripped.
The breakers, PA B4 TL B4 B5 BR and
PA B5 TL B4 B5 BR update their state
from opening.

The observers tracking relays
PA B4 TL B4 B5 OR and
PA B5 TL B4 B5 OR relays also update
their state to tripped.
The observers associated with breakers,
PA B4 TL B4 B5 BR and
PA B5 TL B4 B5 BR update their states to
opening.

21.154
Breakers, PA B5 TL B5 B7 BR and
PA B7 TL B5 B7 BR change their state to
open and produce st open events.

On detecting state change events, the
corresponding observers also transition to
open state and produce mode change
(h open) and alarm state change
(h stuck close′) events.

Most Probable Hypothesis is H3:
Robustness = 100%
Plausibility = 100%
Failure Count = 2 (F TL B7 B8,
F TL B8 B9)
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APPENDIX

A temporal causal diagram is a behavior-augmented fault
propagation graph. It comprises of a directed graph that cap-
tures the fault propagation across the whole system in dif-
ferent operating conditions. It is influenced by the behav-
ioral models of various cyber components (i.e. the protection
equipment). The following subsections describe the mod-
eling formalism for capturing the failure dynamics and the
model of computation used for representing the cyber com-
ponents.

Temporal Fault Propagation Graphs: A temporal fault
propagation graph is a labeled directed graph where nodes
are either failure modes or discrepancies. Discrepancies are
the failure effects, some of which may be observable. Edges
in TFPG represent the causality of the fault propagation and
edge labels capture operating modes in which the failure ef-
fect can propagate over the edge, as well as a time-interval
by which the failure effect could be delayed. Formally, the
TFPG is represented as a tuple {Fphysical, Dphysical, E, M,
ET, EM, ND}, where

• Fphysical is a nonempty set of fault nodes in physical
system. A fault node can be in two states either present
denoted by ON state or absent represented by OFF state.
A fault node represents a failure mode of the system or
a component, and its state represents whether the fail-
ure mode is present or not. In the subsequent discussion
we will use the terms fault node and failure mode inter-
changeably.

• Dphysical is a nonempty set of discrepancy nodes related
to fault effects of physical faults.

• E ⊆ V × V is a set of edges connecting the set of all
nodes V = Fphysical ∪Dphysical.

• M is a nonempty set of system modes. At each time in-
stance t the system can be in only one mode.

• ET : E → I is a map that associates every edge in E a
time interval [tmin, tmax] ∈ I that represents the mini-
mum and maximum time for fault propagation over the
edge.

• EM : E → M is a map that associates every edge in E
with a set of modes in M when the edge is active. For
any edge e ∈ E that is not mode-dependent (i.e. active
in all modes), EM(e) = ∅.

• ND : E → {True,False} is a map that associates an
edge, e ∈ E to True or False, where True implies
the propagation along the edge, e Will happen, whereas
False implies the propagation is uncertain and Can hap-
pen.

Discrete Behavior Models: The behavior of discrete devices
is modeled using extended time triggered automaton (Krčál,
Mokrushin, Thiagarajan, & Yi, 2004). The extension includes
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sets of failure modes and failure mode guards. Mathemati-
cally, an extended time triggered automaton is represented as
tuple (Σ, Q, q0, Qm, Fcyber, Dcyber, M, α(F ), Φ, T).

• Event Set: Σ is a finite set of events that consists of
observable and unobservable events partitioned as Σ =
Σobs ∪ Σunobs such that Σobs ∩ Σunobs = φ. Ob-
servable events are alarms, commands and messages ex-
changed between discrete components.Whereas, unob-
servable events are related to introduction of faults in
system components.

• Locations: Q is a finite set of locations. q0 ∈ Q is the
initial location of the automaton and Qm ⊂ Q is a finite
set of marked locations.

• Discrepancy Set: Dcyber is a finite set of discrepancies
associated with the component behavior, partitioned into
the sets of observable and unobservable discrepancies.

• Failure Mode Set: Fcyber is a finite set of unobservable
failure modes associated with the component. Similar
to a fault node in TFPG, failure mode also has ON and
OFF states. δt is a function defined over Fcyber × R+
that maps a failure mode f ∈ Fcyber at time t ∈ R+ to
True if the state of failure mode is ON and to False if the
state is OFF.

• Failure Mode Constraints: α(Fcyber) represents the set
of all constraints defined over members of set Fcyber. An
individual failure mode constraint, ωt ∈ α(Fcyber), is a
Boolean expression defined inductively as

ωt := δt(f) | ¬δt(f) | ω1,t ∧ ω2,t (1)

where f ∈ Fcyber is a failure mode and ω1, ω2 are failure
mode constraints. A failure mode constraint is True if

the Boolean expression is evaluated to be True and False
otherwise.

• Timing Constraints: Φ is a set of timing constraints de-
fined as, Φ = [n], (n)|n ∈ N+, where [n] denotes in-
stantaneous constraints and (n) represents periodic con-
straints. The timing constraints specify a pattern of time
points at which the automaton checks for events and fail-
ure node constraints. For instance, periodic constraint,
(4), on any outgoing transition from the current state
forces the automaton to periodically look for events spec-
ified by the edge, every 4 units of time whereas in the
case of instantaneous constraint, [4], automaton checks
only once.

• Mode Map: M : Q → 2m is a function that maps loca-
tion q ∈ Q to mode m ∈ M defined in the fault propa-
gation graph.

• Edge: T ⊂ Q × p(Σ) × Φ × α(Fcyber) × p(Σ) × Q
is a finite set of edges. An edge represents a transition
between any two locations. The activation conditions
of an edge depends upon the timing, failure mode con-
straints and an input event. For example, an edge < q1,
σ1, [n], δ(f1) ∧ ¬δ(f2), σ2, q2 > represents a transi-
tion from location q1 to q2 with an instantaneous time
constraint of n units of time and failure mode constraint
δ(f1) ∧ ¬δ(f2) ∈ α(Fcyber) defined over the failure
modes f1, f2 ∈ Fcyber. σ1 ∈ Σ, is the required input
event for this transition to be valid. σ2 ∈ Σ, represents
the event generated when the transition is taken. Syntac-
tically, a transition is represented as Event(timing con-
straint){failure constraint}/Event. If no event is men-
tioned, then the transition is valid only if the failure mode

constraint evaluates to true as per the timing constraints.
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