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ABSTRACT 
This study examines the maintenance records for components 
necessary for the comfort and safety of the operators of heavy 
mobile equipment. The results show that air conditioners, 
ladders, driver’s seats and mirrors and other required 
operator-related components can have a significant impact on 
an asset’s reliability. Analysis was conducted on 10 years of 
work orders for five identical 1400HP shovels and three 
identical 1470HP shovels. The results suggest that removing 
operator-related components contribute to a 15% decrease in 
the number of work orders and an 8% increase in reliability. 
In an autonomous asset these components would not be 
required. The key to this analysis is a rule-based expert 
system used to clean more than ten thousand work orders and 
allocate events to specific sub-systems with associated failure 
modes. While the mining industry has moved to autonomous 
haul trucks and drills, there are as yet no autonomous shovels. 
For manufacturers looking at the business case for these 
units, the availability of data on the reliability increase from 
removing the operator-related components will be valuable 
information. 

1. INTRODUCTION 

The mining sector has and continues to be a significant factor 
in many national economies such as in Australia, Chile, South 
Africa and other countries. In the decade to 2012 the bulk 
commodity mining sector such as iron ore and coal 
experienced a boom. As a result mining companies expanded 
production and management focus was on moving tons rather 
than an emphasis on cost saving and efficiency. However 
starting in 2011/2012, prices for these commodities more 
than halved and cost cutting and capital efficiency are major 
concerns for mining leaders. As a result there is considerable 
emphasis on innovation. One focus area is the reduction of 

people on site through automation of mobile equipment. This 
has potential benefits in both health and safety, through 
reduced exposure of workers to site conditions and in cost 
savings by reduction in payroll costs (Hodkiewicz, 2015, 
Durrant-Whyte et al., 2015). As a result the mining sector has 
been a leader in the development of unmanned or 
autonomous haul trucks and more recently drill rigs.  

A mining operation can generally be broken down into five 
processes – drilling, blasting, loading, hauling, and 
processing. Once the ore is drilled and blasted into small 
fragmentations, it is loaded (typically using excavators and 
shovels) onto haul trucks where it is taken away for 
processing or to the waste dump. A shovel is a mobile mining 
machine used predominantly for extracting ore from the ore 
body using a ‘digging’ mechanism. A typical open pit mine 
site will have a small number, usually one to five, shovels. 
The purchasing costs of these heavy duty shovels is typically 
millions of dollars (approximately 3 million USD for the 
shovel used in this study). Shovels are primary production 
units and operate continuously unless they are taken down for 
planned or unplanned maintenance. Any downtime on the 
shovel means that production is halted and the trucks 
assigned to that shovel have to be rerouted or are idle. 

The automation of a shovel is a more complex task than haul 
trucks and drill rigs. The expertise of the shovel operator is 
believed to play a key role in terms of identifying ore and 
waste, and in managing the digging action of the shovel 
bucket to maximize material movement, achieve ore/waste 
separation and minimize wear and tear on the equipment. 
However there are a number of research projects aimed at 
monitoring and improving the performance of the operator. 
As these develop, it is conceivable that the concept of an 
autonomous shovel will be realistic.  

It is therefore appropriate to ask ourselves “what is the 
reliability cost of having an operator on a shovel?” A number 
of components are only installed on the shovel because we 
have an operator. These include operator-related components 
such as the seat, radio, air conditioning/ heating, mirrors, 
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ladders and so on. These would not necessarily be required 
on an autonomous unit. This work sets out to examine how 
the reliability of the shovel is affected by the reliability of the 
operator-related components.  

2. LITERATURE REVIEW 

Reliability block diagram models (RBD) are a tried and tested 
approach to modelling mobile equipment. In today’s mining 
sector both mining companies and original equipment 
manufacturers have developed RBDs however their structure 
and the values used in the individual reliability blocks are 
commercially sensitive. They are usually maintained by a 
reliability engineering group internal to the company using 
commercial software packages. One of the few peer-
reviewed publications on RBD for mobile mining assets is by 
(Kumar et al., 1989). This 1989 study examined the reliability 
of a load haul dump (LHD) truck used in a Swedish 
underground mine. Five major systems, the engine, 
transmission, hydraulics, brakes, and other, were considered.  
Operation and maintenance data was collected over one year 
on 19 LHD units; 3 sets of data are presented in the paper. 
The paper presents detailed analysis of the data including 
tests for trend and serial correlations, and maximum 
likelihood estimates of the Weibull parameters for the 
different sub-systems. Only a few recent studies in last 10 
years have been found that look at the reliability of open-pit 
shovels or their parts (Delghandi et al., 2014), and none on 
the reliability of the operator-related components of mobile 
mining equipment. That is not to say that these studies do not 
exist, it is plausible they have been conducted by mining 
companies and original equipment manufacturers (OEMs), 
but they have not been made public. 

Having said this, conducting studies based on failure data has 
been fraught with challenges due to the way maintenance and 
failure data has historically been collected in the mining 
sector (Ho et al., 2013, Hall and Daneshmend, 2003). 
Operational data, collected by the OEM’s proprietary may be 
available to the mining operator, depending on their 
agreement with the OEM. If the mining company does their 
own maintenance then they will know what failed and when 
from data in the computerized maintenance management 
system (CMMS). The mining company may or may not share 
this information with the OEM. The OEM will be able to 
infer failures have happened through the ordering of spare 
parts and requests for warranty but will not necessarily have 
this information for units that are out of warranty or if 3rd 
party spares are used. The mining company is best placed to 
determine inputs to an RBD from the data stored in their 
CMMS. Historically the CMMS data has been used 
reluctantly by reliability engineers. It is widely viewed as 
“dirty” data requiring considerable expertise to clean and 
analyze it.   

Every maintenance action on a shovel is initiated and tracked 
using a record, called a work order, in the CMMS. These 

records provide insight into what work was done and why, 
when, who did the work, how long it took, and what parts 
were used.  Records are kept by mining companies detailing 
an individual assets maintenance work orders and costs. The 
detail and consistency in how this data is recorded varies 
from company to company. Some of the data is structured but 
much of the potentially useful data is in unstructured fields, 
these are time consuming for engineers to analyze. Mobile 
equipment engineers have traditionally kept track of failure 
events on bespoke systems such as Excel spreadsheets but 
these often do not survive turnover of personnel making 
development of a whole of life view over a decade of 
operation difficult to accumulate. One solution is to relook at 
the CMMS and bring modern data analytics methods to 
examine the data within. Ontological and expert systems are 
now making access to insights from these fields possible.  

The aim of this paper is to understand the impact of operator-
related components on the reliability of a mining shovel over 
the life of the shovel. The motivation is driven by the need to 
understand if automation of the shovel might improve the 
reliability of a shovel unit through elimination of the need to 
maintain operator-related components.  

3. APPROACH 

The process of determining the influence operator-related 
components have on the overall reliability of a shovel system 
follows a number of steps. Two sets of shovel assets with 
failure data are identified for the case study. Maintenance 
records on several shovels were available through the Mobile 
Mining Equipment Reliability Database (Ho, 2015). Five 
1400 HP units (Shovel Set A) and three 1470 HP units 
(Shovel Set B) were selected. The data are cleaned using the 
DEST, Data Extraction and Cleaning tool, the process is 
described in  Hodkiewicz and Ho (2016). This is a 
customizable MATLAB script for a rule file containing 
conditions and actions to be performed based on keywords in 
the database.   Cleaning results in allocation of work orders 
to the correct functional location, categorizing what failed 
and/ or the work done, identifying the date the work 
commenced, and if the event qualifies as a failure or 
suspension. Both the raw and cleaned data files are being 
made available, see Section 6 for details. 

Data is compiled for each functional location and where 
possible by failure mode into data sets. The main functional 
location groups such as Engine, Hydraulics, Transmission, 
Miscellaneous and Operator Related Equipment (ORE). In 
the ORE subsystem, the components are sorted by Air 
Conditioner, Radio, Cabin, Ladder, Lights, Controls and 
Superstructure. Only maintenance events that result in the 
repair or replacement of components are considered, 
inspections and condition based maintenance are not 
included. As far as this study goes whether maintenance work 
was planned or unplanned is not relevant to the analysis. 
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All data sets are manually checked for misleading or 
erroneous data that has not been detected by the DEST tool.  
Maintenance work orders are entered using calendar days. In 
order to calculate time between events for each functional 
location, the days between maintenance events were 
determined and converted to hours based on a 24 hour day. 
The actual utilization time is less than 100% and varies by 
machine; the conversion of the calendar hours to operating 
hours is discussed in the results section.  

Failure data is examined graphically and statistically for 
outliers or evidence of a trend before fitting data to different 
distributions and evaluating goodness of fit (O'Connor, 
2012). Graphical methods included cumulative failures vs. 
total time plots and scatter plots of successive service lives. 
The potential presence of a trend is also assessed using the 
Laplace test (Ansell and Phillips, 1990) and Military 
Handbook Trend test (Caroni, 2010).  We followed the 
process presented by Louit et al. (2009). Testing for departure 
from trend is important as a number of components and sub-
systems on the shovels are repairable items.  There is 
sufficient evidence from the tests performed that there are no 
trends present in each failure time data set. 

The resulting data sets are fitted to Weibull distributions 
using Isograph’s Availability Work Bench (AWB) software, 
a widely used industry reliability software package. 
Parameters from these distributions inform the development 
of the reliability block diagram (RBD). The RBD is 
essentially a series system of all of the main components. 
Simulation is also conducted using the AWB package.  A 720 
hour period is selected for analysis. At 100,000 simulations 
the results for the system reliability converge. 

At the conclusion of the simulation the results of the shovel 
system reliability with and without the operator related 
components are compared and the failure probability of the 
main systems considered. The overall system availability 
results are compared with information provided by industry 
contacts to assess their validity.  

4. RESULTS 

The results for shovels in Set A and B are described below. 
The shovel set A data set had five identical 1400 HP units and 
shovel set B had 3 identical 1470 HP units. Shovel set A had 
8,264 work orders and shovel set B 6,430 work orders 
originally available at the top functional location level. Data 
is available over a 10 year period from 2002. Shovels A and 
B are from different original equipment manufacturers. They 
perform primary production digging duties at the same 
organization. The work orders for the two data sets were 
cleaned and sorted by two individuals working independently 
but using the same process as described earlier.  

4.1. Distribution parameter estimation 

Table 1 shows the results of the data cleaning, sorting and 
distribution fitting. 4515 of the 8264 work orders (55%) were 
used in the analysis for shovel set A and 54% for shovel set 
B. Work orders were discarded due to issues such as incorrect 
functional location allocation, duplication, an absence of 
hours or costs logged and if the work order did not result in 
the repair or replacement. This high number of non-included 
work orders is not unusual and illustrates the scale of the data 
quality challenge and the necessity of some sort of expert 
system assistance.  

Table 1. Results of analysis of cleaned and sorted data for 
Shovel set A showing number of work orders (N), failures 

(F), and suspensions (S), Weibull distribution location 
parameter (ƞ) in calendar hours and shape parameter (β). 

Sub-system N F S ƞ β 

Engine 858 829 29 276 0.99 

Hydraulics 693 672 21 340 1.01 

Transmission 106 91 15 1995 0.85 

Grease system 514 512 2 408 0.96 

Mounts/seals 475 468 7 450 0.94 

Bucket system 580 574 6 376 0.98 

Superstructure 59 56 3 3484 0.79 

Miscellaneous 586 578 8 157 1.25 

Sub-total non-
operator 
related 

3871 3780 91   

Air 
conditioner 

247 243 4 988 0.86 

Ladder 86 84 2 1845 0.85 

Radio 69 67 2 2304 0.74 

Controls 32 30 2 6457 0.70 

Driver’s Cabin 210 209 1 968 0.92 

Sub-total 
operator-
related 

644 633 11   

Total 4515 689 102  

% operator-
related events 

14.3%  

 

Of the 4515 work orders processed 14.3% are associated with 
operator-related components for shovel set A and 15.9% for 
shovel set B. The main contributions to unreliability are the 
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engine and hydraulic systems and the bucket system. There 
is a planned maintenance strategy in place for the engine with 
fixed interval repairs, replacements and inspections. The 
hydraulic system has fixed interval inspections and 
preventative work such as checking/ changing filters. 
However leaks are common leading to unplanned work. The 
bucket system includes work orders on ground engaging 
tools, these are a replaceable wear element with a relatively 
short and unpredictable life. 

Table 2. Results of analysis of cleaned and sorted data for 
Shovel set B showing number of work orders (N), failures 

(F), and suspensions (S), Weibull distribution location 
parameter (ƞ) in calendar hours and shape parameter (β). 

Sub-system N F S ƞ β 

Engine 280 203 77 768 0.99 

Hydraulics 787 687 100 222 0.88 

Transmission 153 143 10 968 0.67 

Induction & 
Exhaust 

128 116 12 1063 0.65 

Bucket system 945 897 48 219 0.96 

Superstructure 181 172 9 798 0.70 

Track 79 56 23 2374 0.91 

Miscellaneous 344 266 78 572 0.81 

Operator-
related 

546 492 54 421 0.91 

Total 3443 3032 411  

% operator-
related events 

15.9%  

 

Estimated values for the Weibull shape parameters show 
values close to or less than 1 for almost all data sets. This is 
not an uncommon result when data sets containing multiple 
components are pooled together. Please note the location 
parameter (ƞ) for the Weibull distribution is reported in 
calendar hours. Generally the mining industry will report in 
operating or utilized hours; converting from one time scale to 
the other is covered in the discussion section. 

4.2. System reliability modelling 

Two approaches to estimating system reliability are used. The 
first is a traditional RBD as described in (O'Connor, 2012). 
The second is to use the Monte-Carlo simulation in the AWB 
commercial software package.   As mentioned earlier, it is a 
series system with a reliability block for each subsystem as 
shown in Tables 1 and 2. A summary of the results is shown 
in Table 3 based on 100,000 simulations over a 24 hour 

period. The Reliability Block Diagram for the results shown 
in the Tables 3 and 4 is shown in Figure 1. 

 
Figure 1. Reliability Block Diagram for the Shovel. 

 

Table 3. System reliability using Monte-Carlo simulation 
over a 24hr period. 

 Shovel set A Shovel set B 

System reliability with 
operator-related 
components 

0.569 0.487 

Reliability of operator 
related components 

0.866 0.829 

System reliability 
without operator-related 
components 

0.657 0.557 

Difference in reliability 
due to operator-related 
components 

0.088 0.070 

 

Table 4. Traditional system reliability approach over a 24hr 
period. 

 Shovel set A Shovel set B 

System reliability with 
operator-related 
components 

0.524 0.489 

Reliability of operator 
related components 

0.858 0.929 

System reliability 
without operator-related 
components 

0.611 0.526 

Difference in reliability 
due to operator-related 
components 

0.087 0.037 

 

The results for the simulation show that there is a difference 
in system reliability due to operator-related components of 
0.070 – 0.088. This reliability loss translates into impact on 
the availability of this high capital primary production unit.  
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The results for estimating the difference in reliability due to 
operator-related components using the traditional approach 
(0.088) and the simulated approach (0.087) compare well for 
shovel set A. There is a wider difference for the estimated 
difference for shovel set B. We suspect this is due to the high 
number of suspensions in the operator-related data set for set 
B, these influence the simulated estimate for the operator-
related reliability block.  

4.3. Mean time between events 

As mentioned earlier the shovels do not operate for 24 hours 
a day. The mining industry uses standard time definitions to 
calculate metrics such as availability, utilized time and mean 
time between failures (MTBF). A typical example is shown 
in Figure 2.  

 

 
Figure 2. Standard time definitions for mobile mining 

equipment. 

A commonly tracked metric of shovel performance is MTBF/ 
utilized hour. MTBF is usually determined as a point estimate 
based on the ratio of utilized time to the number of 
breakdowns based on a count of unscheduled loss events. 
Back in 2012, when the data collection used in our study 
ended, the industry average mean point estimate for hydraulic 
shovels is 20 utilized hours. However the range is large with 
some shovels having MTBF values as high as 70 and others 
as low as 10 utilized hours.  

Determining how the reliability calculated by our analysis 
compares to the industry ranges given above is problematic 
as we do not have the actual utilized hours for the shovels in 
our example, just the maintenance records. For the industry 
values we only have the MTBF for a utilized hour but not a 
value for the number of utilized hours in a 24 hour period. 
Another issue is that our study is interested in all work done 
on the shovel not just unscheduled loss events. The aim of 
our work is to examine all work done on the operator related 
components, not just the unscheduled loss events. We are not 
developing an accurate simulation of the reliability of the 
shovels rather we are interested in the difference in two 
reliability estimates.  

4.4.  Contribution to operator-related events 

Table 1 shows the number of failures and suspensions in the 
data set and Table 5 shows the reliability calculation for a 
calendar month (720 hours) for the operator-related 
components for shovel set A. The main contributors to 
maintenance work are the air conditioner and driver’s cabin. 
There is a 0.53 probability that you will work on an air 
conditioner during a calendar month, the same for the driver’s 
cabin.  Collectively these units, the air conditioner, ladder, 
radio, operator controls, and driver’s cabin are not required if 
the unit is autonomous.  

These operator related components are not optional in current 
shovel models. Work, safety and health rules mandate that 
they are installed and functional. Malfunctioning air 
conditioners and damaged seats mean that the shovel cannot 
be used until they are repaired.  

Table 5. Proportion of operator-related events and 
probability of failure by location. 

Operator-related 
component 

% of total events 
in the data set 

Probability 
of failure 

in a 
calendar 
month 

Air conditioner 38% 0.53 

Ladder 13% 0.36 

Radio 11% 0.34 

Operator Controls 5% 0.19 

Driver’s Cabin 33% 0.53 

Operator-related 
components 

 0.93 

 

5. DISCUSSION 

This study used 7958 cleaned and sorted maintenance work 
orders collected over 10 years on eight hydraulic shovels (Set 
A and Set B).We found that operator-related components 
accounted for 0.070-0.088 of the system reliability. These 
components are only on the shovel to provide control 
capability, comfort, and safety of the operator. In an 
autonomous unit they would not be necessary. This data 
contributes to studies on the business value of autonomous 
shovels.    

Work orders for operator-related components are usually 
generated as unplanned work orders, less than 1% are 
planned. As they relate to the health, safety and comfort they 
need to be dealt with as soon as possible. This generally 
means they must managed outside of the weekly scheduled 
work plan. This requires taking the shovel down specifically 
or doing opportunistic repairs. In both these situations the 
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need to manage unplanned work draws supervisors, planner 
and their teams away from scheduled work. The cost of this 
is difficult to value although it can be seen in maintenance 
metrics such as % scheduled work and % scheduled work 
completed. These interruptions impact planned work such as 
inspections and condition monitoring and contribute to a 
reactive maintenance culture. 

To examine the business value of the increased shovel 
reliability we use a loose coal density (in bucket) of 1.2 
tonne/m3. The heaped capacity of a 15.4 m3 bucket is 20 
tonnes and typical cycle time is around 50 sec delivering 70 
cycles per hour. We assume an availability of 85% and 
utilization of that availability of 70%. Based on this a single 
shovel unit works ~ 5200 hours per year moving 7.28 million 
tonnes. Assume a sales price for coal at the mine of A$40 / 
tonne. If we could increase the availability by 1% by not 
having to stop for work on operator-related components, this 
would translate to an additional A$3.4m of income per 
annum per shovel. Each unplanned maintenance event 
associated with operator-related components impacts 
availability. For the eight shovels in this study there were 
1,190 unplanned maintenance events over a 10 year period, 
or 15 per year per shovel.  

Further savings would be realized from reduced labor costs. 
Each shovel requires a team of four operators to cover the 
rotating shift roster, wage, travel, and accommodation costs 
for fly-in-fly-out shovel operators exceed A$200,000/yr. 
From a health perspective, removing operators from the 
shovel also reduces exposure to heat, noise, dust and 
vibration. 

There is considerable work ongoing on the technology to 
support automation of shovels. Much has been learned from 
the automation of haul trucks and drills that is on-going but 
the shovel is a more complex operation. The unit needs to be 
moved and positioned appropriately with respect to the 
digging surface. The bucket needs to be lifted, oriented 
appropriately and driven into the digging surface, material 
loaded at the right payload, the bucket swung away from the 
surface to above the haul truck, emptied and returned to the 
face. Lidar, hyper-spectral imaging, haptic sensing are all 
playing a part in this automation journey. The mining 
industry is working towards moving people away from the 
front-line of the mining industry. It is only a matter of time 
before shovel automation becomes an engineering reality.  

6. DATA SHARING 

A major factor in enabling this work has been the ability to 
semi-automate cleaning the ~5000 raw maintenance work 
orders with our DEST tool. In order to promote the 
developments of other data cleaning tools, we are making our 
raw and cleaned data sets for Excavator Set A available 
through the Prognostics Data Library 
https://prognosticsdl.ecm.uwa.edu.au/ . Each data set (raw 
and cleaned) has an associated metadata file describing the 

fields. We have also included cost data, although it is not used 
in this paper. We hope that this encourages others to develop 
cleaning tools and compare their results for reliability with 
what we have presented here. This will enable conversation 
about the decisions made in data cleaning and how the 
influence resulting reliability distributions. 
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