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ABSTRACT 

Lithium-ion batteries play critical roles in many electronic 

devices. It is necessary to develop a reliable and accurate 

remaining useful life (RUL) prediction approach to provide 

timely maintenance or replacement of battery systems. A 

novel RUL prediction approach based on Long Short-term 

Memory (LSTM) Recurrent Neural Network (RNN) is 

proposed in this paper. LSTM is able to capture long-term 

dependencies and model sequential data among the capacity 

degradation of lithium-ion batteries. The advantages of our 

proposed method include: 1) obtaining high prediction 

accuracy without accurate physics-based model or expertise 

and 2) decreasing the cumulation errors by multi-step ahead 

prediction each time, while traditional RUL method predicts 

one-step ahead once and then uses the current estimated 

value to predict next one, which causes cumulation errors 

increased. The Center for Advanced Life Cycle Engineering 

(CALCE) battery datasets are used to demonstrate the 

effectiveness of the proposed method. The results show that, 

compared with echo state networks (ESN), the proposed 

method has higher accuracy, more stable and reliable 

performance for lithium-ion batteries RUL prediction. 

1. INTRODUCTION 

Lithium-ion batteries have many advantages, such as high-

energy density, long cycle life, high output voltage and low 

self-discharge rate. Lithium-ion batteries have been widely 

used in electric vehicles, consumer electronics, aviation, and 

aerospace technologies. As a result, battery degradation, 

prognostics and remaining useful life (RUL) estimation, 

have attracted much attention of researchers in the fields of 

energy, reliability engineering, and aerospace engineering 

(Liu, D., Xie, W., Liao, H., & Peng, Y., 2015).  

The prediction approaches for lithium-ion battery RUL can 

be classified into two typical categories: model-based and 

data-driven (Liu et al., 2015). Model-based approaches can 

well reflect the physical and electrochemical properties of 

batteries, but they are difficult to obtain. Data-driven 

approaches have become a popular method for its flexibility 

and easy operation. There are many data-driven methods to 

model lithium-ion battery degradation and to predict the 

RUL of lithium-ion batteries like artificial neural networks 

(ANNs) (Yang, W. A., Xiao, M., Zhou, W., Guo, Y., & 

Liao, W., 2016), relevance vector machine (RVM) (Li, H., 

Pan, D., & Chen, C. P., 2014), particle filter (PF) (Miao Q., 

Xie L., Cui H., Liang, W. & Pecht M., 2013), or some 

hybrid prognostic approaches (Hu, C., Youn, B. D., Wang, 

P., & Yoon, J. T., 2012; Dong H., Jin X., Lou Y. & Wang 

C., 2014).  

Existing prognostics methods have already made great 

achievements in lithium-ion battery RUL prediction. 

However, due to the diversity and complexity of lithium-ion 

batteries, existing methods show some limitations: (1) most 

methods rely heavily on accurate physics-based model; (2) 

the prediction performance should be further improved; (3) 

some methods like ANNs do not consider the sequential 

nature behind data, i.e., do not consider the order of the data.  
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The long short-term memory (LSTM) Recurrent Neural 

Network (RNN), which is a deep learning neural network, is 

able to remember information for long periods of time. 

Yuan, M., Wu, Y., and Lin, L. (2016) proposed an accurate 

fault location and RUL estimation method based on LSTM 

RNN model for aero engine. Zhao, R., Yan, R., Wang, J., 

and Mao, K. (2017) presented LSTM RNN to predict the 

actual tool wear, experiment results showed that the 

standard LSTM outperformed several state-of-the-art 

baseline methods like Linear Regression (LR), Support 

Vector Regression (SVR), Multi-layer neural network 

(MLP), and basic RNN. The capacity degradation data, 

which can cover thousands of charge/discharge cycles and 

represent the degradation evolution of batteries, can be 

regarded as long-term time series data. In this paper, LSTM 

RNN is firstly used to learn the long-term dependency of the 

degradation data of capacities and trained from several 

batteries data by cross-validation, and then the trained 

LSTM RNN is used to predict the RUL of lithium-ion 

batteries with its ability of accessing the previous context of 

each specific time step.  

The rest of this paper is organized as follows: Section 2 

briefly introduces related works of RNN and LSTM-RNN. 

Section 3 describes the LSTM-RNN-based RUL prediction 

method. In Section 4, CALCE battery datasets are used to 

demonstrate the effectiveness of the proposed method. 

Conclusions are drawn in Section 5. 

2. RELATED WORKS 

2.1. Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) were proposed for 

sequence data (Graves, A., Mohamed, A. R., & Hinton, G., 

2013). RNNs build connections between units from a 

directed cycle. The basic RNNs diagram is showed in 

Figure 1. 

A

xt

ht

 

Figure 1. The basic RNNs diagram. 

In Figure 1, A is a chunk of neural network, inputs xt and 

outputs a value ht. A loop allows information to be passed 

from one step of the network to the next.  

RNN is able to map target vectors from the entire history of 

previous inputs, while the basic neural network can only 

map from input data to target vectors. However, the 

vanishing gradient problem hinders the performance of 

RNN (Zhao, et al., 2017). Therefore, LSTMs were presented 

to prevent the vanishing gradient problem. 

2.2. Long Short-Term Memory Networks 

Long Short-Term Memory networks – usually just called 

“LSTMs” – are a kind of special RNN, capable of learning 

long-term dependencies. They were introduced by 

Hochreiter & Schmidhuber (1997), and were refined and 

popularized by many people in following work (Nair et al., 

2010). They work tremendously well on a large variety of 

problems, and are now widely used. 

The key to LSTMs is the cell state. The cell state is kind of 

like a conveyor belt. It runs straight down the entire chain, 

with only some minor linear interactions. It’s very easy for 

information to flow along it and remain unchanged. 

The LSTM is able to remove or add information to the cell 

state by structures called gates. Gates are a way to 

optionally let information through. They are composed out 

of a sigmoid neural net layer and a pointwise multiplication 

operation. A LSTM has three of these gates (forget gate, 

input gate, output gate), to protect and control the cell state. 

The LSTM diagram is shown in Figure 2. 
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Figure 2. The diagram of LSTM. 

Here, ct is the cell state of time t, ct-1 is the cell state of time 

t-1, 𝜎 is the gate. Forget gates were introduced in LSTMs to 

avoid the long-term dependency problem. These adopted 

forget gates are able to control the utilization of information 

in the cell states. Considering that LSTMs are able to 

capture long-range dependencies and nonlinear dynamics in 

time series data, LSTMs have been successfully applied in 

various applications, including speech recognition (Graves, 

et al., 2013), natural language processing (Wang, S., & 

Jiang, J., 2015), and image captioning (You, Q., Jin, H., 

Wang, Z., Fang, C., & Luo, J., 2016) etc. 
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3. LSTM BASED RUL PREDICTION METHOD FOR 

LITHIUM-ION BATTERIES 

It is essential to propose a robust prognostic solution that 

accurately predicts the RUL using data features extracted 

from battery degradation signals. For building such a RUL 

prediction framework, this paper proposes (i) a LSTM 

model constructing method which is trained by several 

batteries degradation data, and (ii) k-fold cross validation 

(CV) to evaluate the error metric associated with a candidate 

LSTM model. This section is organized as follows. Section 

3.1 describes the overall procedure of the proposed 

approach. Section 3.2 presents the LSTM model for the 

RUL prediction. Section 3.3 describes the background of the 

k-fold CV and how it can be applied for estimating the 

accuracy of a LSTM model.  

3.1. Overall procedure 

The overall procedure of the proposed approach is 

composed of the offline process and online process. In the 

offline process, the offline training/testing process with the 

three-fold CV is employed to get the best model. The online 

prediction process conducts the RUL predictions using the 

best model obtained from the offline process. The prediction 

diagram is showed in Figure 3.  

training  LSTM model

Select best model by 

three-fold CV

Offline process

Using best  LSTM model 

to test

Get the RUL prediction 

value

Online process

Training 

datasets of three 

offline battery 

datasets

Testing 

datasets of 

online 

battery

 

Figure 3. The lithium-ion battery RUL prediction diagram 

using LSTM. 

 

The detailed procedures of the proposed prognostics 

approach are as follows: 

STEP 1: Obtain the lithium-ion battery capacity degradation 

dataset regarding with charge/discharge cycle from 3 offline 

battery units, which are used as training datasets, and 

normalize the datasets to [0, 1].  

STEP 2: Perform the offline training and testing processes 

with the three-fold CV with the training datasets. 

STEP 3: Get the best model from the offline datasets. 

STEP 4: Acquire testing datasets from online system. 

STEP 5: Predict the online RULs of lithium-ion battery 

using the best model obtained from the offline training 

process. 

3.2. LSTM model Construction 

The core idea behind LSTMs lies in that at each time step, a 

few gates are used to control the passing of information 

along the sequences that can capture long-range 

dependencies more accurately. In LSTM, at each time step t, 

hidden state  ℎ(𝑡) is updated by current data at the same time 

step 𝑥(𝑡), the hidden state at the previous time step ℎ(𝑡−1), 
the input gate  𝑖(𝑡) and input node  𝑔(𝑡), the forget gate  𝑓(𝑡), 
the output gate  𝑜(𝑡) and a memory cell  𝑐(𝑡). The following 

updating equations are given as follows: 
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where W and b represent the layer weights and biases, 

respectively. 𝜎 is the sigmoid activation function. 

Dropout was introduced during model training (Hinton et al., 

2012). Via dropout, parts of the hidden outputs are 

randomly masked so that these neurons will not influence 

the forward propagation during training procedures. When it 

comes to testing phases, the dropout will be turned off, and 

the outputs of all hidden neurons will have effects on model 

testing. In our models, we adopt one dropout layer between 

LSTM models and the first fully-connected layer, and 

another dropout layer between the first fully-connected layer 

and the second fully-connected layer. Their masking 

probabilities are both set to 1. 

Firstly, the LSTM is constructed to process the sequential 

data in time order. The output at the terminal time step is 

used to predict the output by a linear regression layer, as 

shown in the following equation. 

    ,1
tout

outpred relu dropout W h b                (2) 

where 𝑊𝑜𝑢𝑡  and 𝑏𝑜𝑢𝑡  are the weights and biases of the 

output. In our tasks, the output is the battery capacity. For 

model training, the predicted battery capacity value is 

compared with the true battery capacity value y to obtain the 

Mean Squared Error (MSE) as model loss. 

2

1

1
( )

n

i i

i

MSE y pred
n 

                            (3) 
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where n is the training sample size. 

3.3. Three-fold cross validation 

The Three-fold cross validation is used in the offline process 

to evaluate the accuracy of a given model. We choose three 

offline batteries datasets (or folds) Y1, Y2 and Y3 for training 

and validating different models. Among the three datasets, 

one is selected as the test set and the other two datasets are 

used as training sets, for example, if Y1 and Y2 are used as 

training datasets, so Y3 will be testing datasets. The CV 

process is performed three times, with each of the three 

datasets used exactly once as the test set. Thus, the best 

model can be obtained by comparing the MSE on three test 

sets.  

4. EXPERIMENTS AND RESULTS 

4.1. Datasets Description 

The lithium-ion battery experiment datasets are derived 

from Center for Advanced Life Cycle Engineering (CALCE) 

in University of Maryland (He W., Williard N., Osterman 

M., & Pecht M., 2011). In this experiment, the lithium-ion 

batteries were tested to discover battery capacity 

degradation. The test was implemented on the Arbin 

BT2000 battery testing system under the room temperature. 

The experiment datasets with 1.1 Ah rated capacity are used 

in this paper. Figure 4 shows the capacity degradation 

curves of #35, #36, #37 and #38 lithium-ion batteries.  

 

Figure 4. The capacity degradation curves of #35, #36, #37 

and #38 batteries. 

In this paper, the capacity is selected as the health indicator 

of lithium-ion batteries, and we set the same value of end of 

life (EOL) as literature (Liu et al., 2015), 501th cycle of #37 

battery EOL, 522th cycle of #36 battery EOL and 482th 

cycle of #35 battery EOL. 

4.2. Evaluation criterion 

RUL predicted errors is used to measure the performance of 

the proposed method. 

RULerror: RUL predicted errors 

error pred trueRUL RUL RUL                         (4) 

Where, RULpred is the predicted RUL value using the 

prediction method. In order to get the RULpred, we need to 

get EOP (End of Point) and SP (Starting Point of prediction), 

the EOP is the intersection point of two lines (one is the 

failure threshold line, and the other is our predicted curve), 

then RULpred = EOP-SP. RULtrue is the actual RUL value. 

4.3. Experiment results 

Table 1 shows the parameters of LSTM model used in this 

paper. Note that these parameters are selected based on trial-

and-error. 

 

By setting the unit number of input layer for LSTM to 50, it 

means each sample consists of 
1 49{ , , , }i i ix x x 

as the 

inputs and 50 51 99{ , , , }i i ix x x    as the output, where ix  

is the actual battery capacity value of i th cycle. Taking #38 

battery as an example, there are 900 charge/discharge cycles 

totally. If the SP is set to 700, the prediction process is 

described as follows:  
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At SP 700, if the EOP is between the 701 and 750, then the 

RUL prediction result can be got by compute the 

intersection point of two lines (one is the failure threshold, 

and another is our prediction curve). On the other hand, if 

the EOP is not in the range of (701, …, 750), we need to 

conduct the next prediction cycle, and in the next prediction 

cycle, we use the predicted data (
701 702 749 750

, , , ,x x x x ) to 

predict the capacity values between 751th cycle and 800th 

cycle, and so on, finally we can get the final RUL prediction 

result. 
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Table 1. The parameters used in experiments. 

 

Algorithm Parameters Value 

LSTM 

Input size 50 

Time steps 50 

Cell size 10 

Output size 50 

Learning rate 0.001 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

5 

In this experiment, in order to compare the experiments 

results with existing works (Liu et al., 2015), we use the 

same parameters, i.e., the Starting Points of prediction for 

#37 are set to 301 and 401, the Starting Points of prediction 

for #36 are set to 322 and 422, the Starting Points of 

prediction for #35 are set to 282 and 382, respectively. The 

End of Life (EOL) of three batteries is 501 cycles (#37), 522 

cycles (#36) and 482 cycles (#35), respectively. Figures 5-

10 show the predicted curves using the proposed method. 

Inspection of these six figures indicates that the predicted 

curves of the proposed method are very close to the real 

degradation curves. The results show that the proposed 

method has stable performance on the RUL prediction of 

Lithium-ion batteries.  

It is worth noting that, compared with the RUL estimation 

methods before, our proposed method can both predict 

single-step and multi-step, in this experiment, our method 

can once predict 50-step ahead. So, we can see from the 

figures that the predicted curves are not far away from the 

actual curves when the time steps increased. In other words, 

the cumulated errors are very small for the proposed method. 

On the contrary, most of the existing RUL estimation 

methods predict one-step ahead, and the predicted value is 

used to replace the actual value to predict the next step, 

which results in big cumulated errors. 

 

Figure 5. The predicted results by LSTM on #37 battery at 

starting point of 301. 

 

Figure 6. The predicted results by LSTM on #37 battery at 

starting point of 401. 

 

Figure 7. The predicted results by LSTM on #36 battery at 

starting point of 322. 

 

Figure 8. The predicted results by LSTM on #36 battery at 

starting point of 422.  
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Figure 9. The predicted results by LSTM on #35 battery at 

starting point of 282.  

 

Figure 10. The predicted results by LSTM on #35 battery at 

starting point of 382.  

 

 

Table 2 summarizes and compares the proposed method 

with ensemble ESN (Liu et al., 2015) in terms of RUL 

prediction errors, which is shown with RULerror. The smaller 

the RULerror value is, the higher the RUL prediction 

accuracy. It is clear that the proposed method achieved the 

higher RUL prediction accuracy on all of lithium-ion 

batteries except the #36 battery at SP 422. The reason of the 

exception is discussed as follows. This issue can be 

explained by the degradation curve of #36 battery in figure 

8. From figure 8 we can see that there are three intersection 

points, ie three EOPs. Obviously the third EOP is much 

closer to the real EOL, but we should choose the first EOP 

to obtain RUL prediction result according to the application 

situation. The cause of this problem is due to the fluctuating 

of #36 battery degradation curve. There is a steep increase 

on the degradation curve near the point of 500th cycle, 

before that the LSTM model does not have the similar 

memory until the new sample data come. In summary, our 

proposed LSTM model has the ability of remembering long 

short-term information of degradation tendency of lithium-

ion battery, and can predict multi-step ahead with high 

accuracy, has more stable and reliable prediction 

performance. 

5. CONCLUSION 

This paper proposes a LSTM-based RUL prediction method 

for lithium-ion battery, which is a data-driven battery RUL 

predictor. The design and implementation of the proposed 

method are discussed in detail. Experiments on CALCE 

lithium-ion battery datasets are presented to demonstrate the 

effectiveness of the proposed method. The results show that 

the proposed method has higher prediction accuracy, more 

stable and reliable prognostic performance than ESN. Our 

future work will focus on the improvement of training speed 

and the uncertainty expression of predicted results. 
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