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ABSTRACT 

This paper presents a novel application of failure prognosis 
to shorten the time of reliability testing. Typically, 
prognostic outcome is used to make real time health 
management decisions such as modify mission plan, change 
system operation parameters to reduce stress and increase 
remaining useful life, and more. In this work we 
demonstrate the use of prognostics to reduce the duration of 
lengthy and expensive tests, such as power temperature 
cycling and high temperature endurance in the automotive 
electronics validation process. 

1. INTRODUCTION 

Accelerated stress testing is an integral part of the 
automotive electronics reliability assessment process.  Its 
goal is to replicate the stress conditions that will accumulate 
the same damage as is expected during the product’s 
mission life (in the automotive industry it is 15 or more 
years in predominantly harsh environment) but in a shorter 
time.  In the automotive and several others industries this 
process is referred as Product Validation, which typically 
consists of two stages, design validation (DV) and process 

validation (PV).  DV is quantitative and qualitative 
verification that is usually performed on prototype or pilot 
parts to ensure that the component design meets the 
requirements for environmental stress, durability, and 
reliability.   

PV pursues the same goals, assessing the effects of 
production manufacturing and is conducted on production or 
production intent parts.  Readers interested in automotive 

validation process are referred to General Motors standard 
GMW3172 (2004) and Kleyner and Nebeling (2016).  
Furthermore, during the qualitative stages of DV and PV the 
product is expected to demonstrate certain reliability that is 
predefined based on customer engineering requirements.  
This goal is achieved by either testing the product to failure 
or conducting a success-based testing.  In the case of test to 
failure, the life data (times to failure) are analyzed and a 
statistical distribution (often two or three parameter 
Weibull) fit to the data allowing an estimation of the 
reliability and confidence level for the mission life of the 
product. In the case of test to success, the product is 
subjected to a test representing one mission life (test to a 
bogey) where all the test units are expected to pass the test 
without failure.  The reliability and confidence level are 
then calculated based on the sample size using the binomial 
distribution, for more details see (see O’Connor and Kleyner 
(2012)). 

A typical product reliability test flow consists of several 
environmental stresses that include temperature cycling, 
vibration, mechanical shock, high temperature operation, 
high humidity exposure, exposure to dust, low pressure 
operation (induced by high elevation) and more (see 
GMW3172 (2004)).  Some of these tests duration can be in 
the order of months. For example, a temperature cycling test 
designed to adequately represent the automotive field life of 
10-15 years can span 2-5 months and high temperature 
endurance test (HTE) can also take months to accumulate 
the damage that is the same as the damage expected in 
product’s service life. 

The situation with long temperature cycling tests is even 
worse for power electronics, such as inverters, converters, 
rectifiers, battery chargers and others used in hybrid and 
electric vehicles, since those devices typically have higher 
weights and sizes compared to the ‘conventional’ 
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automotive electronics.  Figure 1 shows a general power-
temperature cycling (PTC) diagram with the required 
temperature dwell time ������  at the top and the lag time 
�����	
��  required for the device temperature to reach the 

ambient temperature.  The higher the thermal mass of the 

system the longer the �����	
��, which further increases the 

test duration, sometimes adding extra months to the overall 
validation schedule. 

 

 

Figure 1: Temperature cycling profile indicating the 
difference in chamber to device/system temperature. 
 
Systems such as battery chargers and the electronic devices 
that are connected to them are expected to be in powered 
state much longer than the ‘conventional’ automotive 
electronics due to overnight charging. This results in 
significant increase in the duration of the temperature 
operation tests which puts strain on the product validation 
process with mounting cost and time reduction pressure.  An 
additional issue with testing power electronic products, such 
as inverters and converters is the use of liquid cooling for 
high power ICs, which makes the test acceleration very 
difficult due to high sensitivity of those ICs to the ambient 
and junction temperatures.  In some of the applications, the 
maximum operating temperatures are approaching 
maximum allowable temperatures for the operation of 
silicon circuits, making test acceleration more difficult and 
sometimes impossible. Thus, the only way to accumulate 
the same amount of damage anticipated in the field is by 
increasing the accelerated stress testing duration.  

An additional complicating factor is a frequent need to re-
run some of the reliability tests, in the cases when product 
fails the first round of tests or when last minute product 
design changes are introduced after the validation process is 
complete.  Even though program management plans only on 
one round of DV and PV, this best-case scenario seldom 
happens thereby prompting additional iterations of 
validation testing (e.g. DV2, DV3, etc.)  Product knowledge 
accumulated at the first iteration is rarely utilized to make 
the following test iterations shorter.  Here is where 
degradation analysis and prognostics offer additional 
opportunities of reducing the test duration by utilizing the 
knowledge accumulated during the previous phases of 

product testing. The application of prognostics to product 
validation (or qualification) has been discussed in the past 
(Pecht and Gu (2009), Challa, Rundle, and Pecht (2013), 
Pecht, George, Vasan, and Chauhan (2014)). However, the 
crux of these articles is to utilize the knowledge first 
accumulated at Failure Modes, Mechanisms and Effect 
Analysis (FMMEA) stage to define the accelerated testing 
duration and further utilizing in-situ test data and/or physics 
of failure (PoF) models to capture early degradation and 
intermittent faults. In this paper, a case study involving a 
power electronic controller and data driven prognostics 
approach is demonstrated to show the capabilities of 
prognostics-based product qualification. 

2. PROGNOSTICS-BASED TEST DURATION REDUCTION 

The above-mentioned challenges with automotive 
electronics validation testing are forcing us to search for 
alternative solutions and prognostics presents one of the 
possible alternatives to a long, expensive, and repetitive 
testing.  Application of prognostics to automotive 
electronics validation was discussed in general terms by 
Braden and Harvey (2014), who also suggested the use of 
data monitoring. Traditionally, the monitoring expectations 
were focused on failure identification by observing the 
system parameters and triggering an alarm when any of the 
monitored parameters cross their upper or lower limits as 
defined by an engineering specification document. 
However, in prognostics-based approach those parameters 
would need to be viewed in terms of characteristics of the 
state of health and used to detect a degradation pattern. 

Once a failure prediction method is established using the 
data obtained through accelerated stress tests, the duration 
of subsequent tests can then be shortened to a time at which 
reliable failure time estimates can be obtained. For 
illustration purpose (see Figure 2a), let us assume a product 
that fails at time � and a suitable prognostic algorithm exists 
that can predict the product’s time to failure with 
uncertainty bounds 
� at time ��. Now instead of running 
tests until the product fails, one could run a test until �� and 
use the prognostic algorithm to estimate the time to failure.  

Not all tests are run till product failure. Even in success 
based testing, test time can be shortened to a time �� and 
one could use prognostic algorithm to check whether the 
product would have survived until the actual pass target 
time �. This concept is illustrated in Figure 2. In both cases, 
a and b, there will be a time saving of  � � ��. 

In this paper we will demonstrate how prognostics can be 
used to reduce the duration of the longest and most 
expensive tests, such as PTC and HTE providing an 
opportunity for a significant test reduction. Clearly, it would 
be a tremendous cost, time and resource saving if any of the 
‘long test’ times can be shortened.  The total cost savings 
would vary from program to program depending on the 
complexity of the system, duration of the test, monitoring 
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and test equipment, engineering support, and other factors.  
The tangible savings can be in tens of thousands of dollars 
per validation-round (DV1, DV2, DV3, etc.)  The cost 
would involve test and monitoring equipment usage, floor 
space, engineering and technician time. Intangible savings 
would include shortening of the development program time, 
meeting the customer deadlines, reducing the waste time in 
the cases of repeat validation, customer goodwill, and being 
first to market. 

 

 

Figure 2: An illustration demonstrating the reduction of test 
time by incorporating prognostic capability for tests (a) 
requiring and (b) not requiring “test-to-failure.” 

3. APPLICATIONS TO AUTOMOTIVE TESTING 

The prognostics problem involves the prediction of a system 
end-of-life (EOL) from which the remaining useful life 
(RUL) is estimated. Figure 4 diagram shows a general 
framework for product prognostics and diagnostics and 
illustrates the process flow utilized in this case study. Figure 
5 shows the typical steps involved in prognostics approach 
such as (1) health estimation, (2) prognostic modeling, and 
(3) failure prediction steps (see). 

In the health estimation step, product’s degradation in health 
is quantified and expressed as a health indicator (HI). The 
HI could be an estimate of the accumulated damage or a 
drift in in-situ monitored parameter reflecting degradation in 
the product. In many prognostic applications, a system or a 
component parameter that generally exhibits parametric 
deviation with system degradation is used as a health metric. 
For some systems, such a pre-cursor parameter(s) reflecting 
product’s health might not exist. In such cases, parameters 
contributing to system degradation will be identified and 
ranked (i.e. parameter selection), and fused to build an HI 
metric. This will be the case for the proposed study, where 
in-situ monitored parameters are investigated to construct a 
system health indicator. 

In the degradation-modeling step, a PoF or a data driven 
model is developed to estimate the progression of 

degradation in system/component health based on the 
current health and operating conditions. In the failure 
prediction step, the time to failure is estimated by 
integrating the degradation model with the knowledge about 
future operating conditions using an appropriate regression 
technique. 

The data used for this prognostic study is system dependent 
and contains information pertaining to ‘time in test’, 
system-monitoring parameters, temperature measurements, 
and fault flags. The key for health metric identification is 
the positive correlation with ‘time in test’. Some of the 
challenges encountered while developing prognostics 
method for automotive electronic systems are: 

• Large number of parameters is typically being 
monitored (in hundreds) 

• System parameters that specifically monitor the 
functionality of the electronic unit, do not always 
reflect the degradation of the system 

• Degradation process in electronic systems is usually not 
as apparent as in mechanical systems and sometimes 
exhibit a ‘binary’ attribute in terms of the monitored 
parameters. 

3.1. Case Study 1: Power Electronic Controller (PEC) 

The system considered for this case study is a Power 
Electronic Controller (PEC) module, which is a high voltage 
electronic module operating in the range of 270-360V, 
containing 5 printed wiring assemblies with more than 1400 
components that are part of a traction inverter (50kW output 
and 250A), starter inverter (20kW and 80A) and DC-DC 
converter (2800W). 

Figure 3: PEC Monitoring system 

The data acquisition system, which is part of the accelerated 
stress testing setup Figure 3, monitors 371 parameters. 
Some of these parameters represent the operational (e.g. 
input/output currents and voltages) and test conditions of the 
unit (e.g. chiller flow rate, battery voltage etc.), the system 
performance in real time, and some parameters are fault 
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flags for diagnostic purpose. Some of the system 
performance parameters had predefined limits that are often 
established based on experience and product specifications 
rather than on a PoF approach. 

 

 

 

 
Figure 4: Framework for product diagnostics and prognostics. 
 

 
Health Estimation Degradation Modeling     Failure Prediction 

 
Figure 5: Typical steps involved in prognostics approach. 
 

3.2. Health Estimation 

The first step in the prognostic development process is to 
develop an HI. Typically, one or more of the monitored 
system parameters are used as an HI vector. To verify the 
presence of such parameters, a GUI was first created in 
MATLAB to initially investigate the trend exhibited by 
individual parameters with respect to system degradation. 
None of the system-performance parameters were found to 
exhibit monotonic trend, which would be a highly desirable 
characteristic for a health metric to facilitate prognostics. 
However, several system parameters were found to 
correlate, either negatively or positively with temperature 
cycling conditions as shown in Figure 6. Hence, for each 
unit under study, the first 20 hours for each parameter was 

Pearson correlated i.e., 
�����,����
��� ��

 with the temperature 

cycling conditions; where !  and ��"  denote the system 
parameter and chamber temperature respectively. The 
parameters that exhibited high correlation with temperature 
were then subjected to normalization with respect to 
chamber temperature. 

Normalization with respect to chamber temperature ��" was 
achieved by first, identifying the linear relationship of a 

system parameter !, with chamber temperature as shown in 

Eq. (1). Second, for a given chamber temperature �	�"  at 

time �  the system parameter value !#$��"% is estimated using 
the linear relationship established in Eq. (1), where &�and 
&'represent the first order polynomial coefficients. Finally, 
the difference between the actual measurement and 
estimated system parameter is used as the normalized 

parameter value	!)�*�,	 at time � as shown in Eq. (2). 

!#$��"% + &'��" , &�     (1) 

!)�*�,	 + !���-,	 � !#$�	�"%.        (2) 
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Figure 6: Example of a system parameter that is positively 
correlated with chamber temperature. 

Some of the system parameters that were correlated with 
chamber temperature exhibited monotonic trends on the 
macro-level, but were noisy. Thus, moving average 
technique was used to smoothen a noisy data set. The 
principle behind this technique was adopted to smoothen the 
fluctuations in actual data set due to temperature cycling 
conditions and non-linear monotonic trend estimation was 
used to classify trend-able parameters. The moving average 
was performed by convolving the normalized system 

parameters with a weight vector of length &./ , 1, 

1� + 2$2&./%�' $&./%�' ⋯ $2&./%�'5$6�*7'%8' (3) 

where &./ denotes the data length of one temperature cycle. 
Trend estimation was performed next by evaluating the 
Spearman correlation of the resulting system parameter with 
time in test. Spearman correlation was chosen for trend 
estimation, so that even parameters that do not change 
linearly with time, but change in a monotonic fashion can be 
identified. Spearman correlation follows the Pearson 
correlation with the only difference that the rank of the input 
data is used instead of the raw data itself. For PEC system, 
two parameters out of the 371 monitored parameters were 
found to exhibit monotonic trend after preprocessing for 
trend estimation.  

Figure 7 shows one such system parameter before (blue) and 
after (red) moving average smoothening. These two 
parameters were used as the health state vectors for the PEC 
system. 

 

Figure 7: Example of a system parameter that is processed 
and trend estimation 

3.3. Degradation Modeling 

Once the health indicators were constructed from monitored 
parameters, the next step (step 2 in Figure 4) in prognostics 
method development is to establish a degradation model to 
capture a degradation trend in system parameters. Since no 
PoF knowledge is available at the time of this study, we 
resort to a data driven model using a curve fit. The best 
curve fit was found to be a sum of double exponential 
process. This is because, the degradation trend of the two 
health vectors exhibits a slow variation phase, followed by a 
rapid degradation phase. This type of behavior has been 
encountered in multiple applications e.g. diminishing 
battery capacity or resistor degradation, where a sum of 
double exponential process was found to provide accurate 
RUL estimates. Hence, we use a sum of double exponential 
process to capture degradation trend in preprocessed and 
trend estimated system parameters, as shown in Eq. (4): 

9	 + :	.9&$;	 < �% , �	.9&$=	 < �%  (4) 

where 9	 	 denotes the preprocessed and trend estimated 
system parameter of interest at time �, and we will designate 
>	 + 2:	 ;	 �	 =	5�  as the unknown parameter vector 
that is estimated along with the state. The initial values for 9 
and > are estimated from the first set of DV tests. 

3.4. Prognostics 

The final step in prognostic method development is the 
RUL estimation step, where the goal is to predict the time 
when the health state vector will evolve beyond a certain 
desired region of acceptable performance. This region 
represents the condition where the system performance no 
longer guarantees reliable system operation and is expressed 

through a set of requirements ?/
@
A')B . For example, C* could 

represent the length of the health vector, indicating a failure 
threshold for each identified monotonically trending system 
parameter and, /
: E → G  denotes a function that maps a 
subspace in the actual health state space to the Boolean 
domain,  G ≜ ?0,1@. These individual requirements can be 
combined into a single threshold function for a system 
�JKL: E)M → G that is defined as follows  
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�JKL�9$�%� + N1,0,			
0 ∈ ?/
@
A')B
P�Q./1RS.        (5) 

where �JKL + 1 denotes that at least one of the system’s 
subsystem or sub-assembly has violated a set requirement. 
Now, EOL and RUL are defined as 

TUV$�W% ≜ RCXY� ∈ E: $� Z �W% ∧ ��JKL�9$�%� + 1�\(6) 

]^V$�W% + TUV$�W% � �W  (7) 

where EOL represent the shortest time from the time of 
prediction at which the system has failed. In practice, 
uncertainty in modeling, measurement, and choice of initial 
state for _$��%  leads to uncertainty in the estimation of 

�_$�%, `$�%�. Thus, it is reasonable to model EOL and RUL 

as probability distributions, instead of point estimates. 
Hence, the goal of prognostics is to calculate the conditional 

probability, &�]^V$�W%|b$��: �W%�, at time �W (see Figure 8). 

The variables with a cap and without a cap denote estimates 
and the actual values, respectively.  

 

 

Figure 8: Prognostics uncertainty model. 
 

The conditional probability &�]^V$�W%|b$��: �W%�  is 

estimated in two steps. First step is the damage estimation 
step, where both state and parameter vectors are estimated 

i.e., &�9$�%, `$�%|b$��: �%�  is computed. Many stochastic 

filtering algorithms such as unscented Kalman filter or 
Particle filter can be used to jointly estimate state-parameter 
vectors with nonlinear system models. Particle filter is 
widely used in the prognostic community for its capability 
to estimate the state of a nonlinear system with non-
Gaussian noise without having to apply a constraint on the 
state and parameter vector’s pdf. For the same reason, a 
particle filter is used in this study. 

In particle filters, the state-parameter pdf is represented 
using a set of discrete weighted samples, typically referred 
to as particles 

Y�9	
 , `	
�, 1	
\
A'
c

   (8) 

where d  denotes the number of particles, and for each 

particle R, 9	
 denotes the health state estimate, `	
  represents 

the parametric deviations estimate, and 1	
 	 denotes the 
weight at time �. At each time instant, the particle filter uses 
the past estimates of state and parameter along with real 
time measurements to estimate the current state. To realize 
this multi-step computation, first the parameter vector `� is 
estimated from the previous time instant parameter 
estimates using some process that is independent of the state 
9	 . The typical solution is to use a random walk process, 
i.e., `� + `��∆� , f��∆� , where f  is sampled from a 
distribution such as zero-mean Gaussian. Once the 
parameter vector is updated, the system health is estimated 
based on Eq. (4) after which the associated weights are 
computed using the principle of importance resampling. At 
the end of an iteration the estimated state and parameter 
vector, particles are studied for degeneracy and resampled if 
necessary. During resampling, the particles with least 
weights are eliminated thereby allowing us to concentrate 
on the particles with larger weights. 

The second step in model-based prognostics involves the 
RUL prediction, where the goal is to compute 

&�]^V$�W%|b$��: �W%�  at time �W  using the joint state-

parameter estimate �9$�W%, `$�W%|b$��: �W%�.  The idea to 

solve the RUL prediction problem is to simply let the state 
and parameter vector – particles to evolve without Bayesian 
updating, until the threshold function evaluates to 

�hiL�9	
� + 1 for each particle. The predicted time �: � Z �W 

at which �hiL�9	
� + 1 provides the EOL, from which RUL 

is estimated using Eq. (7). 

The failure prediction results for two PEC system is shown 
in Figure 9 and Figure 10. The plots in Figure 9 and Figure 
10 have the time of prediction in x-axis and the RUL at that 
predicted time on the y-axis. The green (outer) lines 
represent the uncertainty bounds in the RUL estimates. The 
graph in Figure 9 suggests that even after 750 hours of 
testing, the model and algorithm predict the RUL >100 
hours i.e., the Unit 1 will survive for another 100 hours 
before reaching the failure threshold. Similar interpretation 
can be made for the graph in Figure 10. Both PEC systems 
did not reach functional failure. Hence, by assuming the end 
prediction is accurate, we can see that reliable RUL 
estimates can be generated as early as 400 hours into PTC 
testing. With design target close to 900 hrs, an accurate 
predictions as early as 400 hours indicates that prognostics 
methodology can be used to predict EOL as soon as 50% of 
the damage is accumulated (assuming Miner’s rule for 
damage accumulation), where damage is estimated using, 

j + 	k
hiLl	. This means, there is a significant test time saving 

opportunity. 
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Figure 9: RUL prediction result for PEC - Unit 1. 

 

Figure 10: RUL prediction result for PEC - Unit 2. 
 

3.5. Case Study 2: Engine Controller Unit (ECU) 

A prognostic approach, similar to the one implemented in 
the previous case study was employed to conventional 
engine controller units (ECUs). However, unlike the PEC 
system, the ECU accelerated test data contained only 5 
parameters (chamber temperature, input voltage, output 
frequency, output voltage, and duty cycle). It was identified 
that the system output voltage was linearly related to the 
chamber temperature, and the corresponding voltage 
intercept with respect to the chamber temperature was 
changing with degradation in system health. This attribute 
was utilized to construct an HI and a simple linear 
degradation model  

9	 + 9	�∆	 , $m	 < ∆�%  (9) 

was applied along with a particle filter to estimated EOL 
and predict the system RUL. Here, m  is the unknown 
parameter similar to > in Eq. (4). The RUL prediction result 
for one ECU unit is shown in Figure 10. This system failed 

on the 20th day of the PTC test. Accurate RUL prediction 
results were generated as early as 12 days into the PTC test. 
Thus, significant number of days can be saved in repeated 
testing cycles by using failure prognostics methodology. 

 

Figure 10: RUL prediction result for ECU. 

4. CONCLUSION AND FUTURE WORK 

In this paper we demonstrates how prognostics can be used 
to reduce the duration of the longest and most expensive 
product validation tests with a case study of an automotive 
PTC testing.  Implementation of a real time prognostic 
engine into existing monitoring systems presents several 
benefits:   

1. Prognostic based validations are expected to significantly 
reduce life demonstration test time, resulting in significantly 
reduced execution costs, since it will no longer be needed to 
run a test to a bogey (equivalent of one mission life) or to 
run a test to failure, which takes even longer than a success-
based testing. 

2. The proposed application of prognostics has potential to 
shorten the design life cycle by significantly reducing the 
duration of the ‘long tests’, such as temperature cycling and 
high temperature endurance and therefore saving thousands 
of dollars in development cost.  

3. The methodology outlined offers a comprehensive 
approach to understanding overall product reliability and 
presents a viable alternative to validation testing where test 
acceleration is difficult or impossible due to the products 
already operating close to their operating limits. 

4. Application of prognostics to validation testing also 
presents a lot of challenges.  Future efforts will need to be 
directed at studying how particular failure modes and failure 
mechanisms affect the parameters of the automotive 
electronics during monitoring. Data fusion offers potentially 
the best performance results especially since it is a holistic 
approach 
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A wider debate is required within the automotive reliability 
and test community on the acceptance of such 
methodologies and more importantly how it may be 
standardized so that test results are repeatable globally 
within an organization and between different organizations. 
This arises from the fact that the decision to terminate 
testing early rests on a prognosis, the accuracy of which is 
dependent upon the product monitoring data quality and 
proprietary expert knowledge databases. 
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NOMENCLATURE AND ACRONYMS 

>  unknown parameter vector in degradation model 
9	 system health at time �  
n  process noise for random walk 
�  time  

��" chamber temperature 
DV Design Validation 
EOL End of Life 
GUI Graphical User Interface 
HI Health Indicator 
HTE High Temperature Endurance 
pdf Probability Density Function 
PEC Power Electronics Controller 
PoF Physics of Failure 
PTC Power Temperature Cycling 
PV Process Validation 
RUL Remaining Useful Life 
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