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ABSTRACT

Current-Pressure (I/P) transducers are effective pressure reg-
ulators that can vary the output pressure depending on the
supplied electrical current signal, and are commonly used in
pneumatic actuators and valves. Faults in current-pressure
transducers have a significant impact on the regulation mech-
anism, and therefore, it is important to perform diagnosis to
identify such faults. However, there are different sources of
uncertainty that significantly affect the diagnostics procedure,
and therefore, it may not be possible to perform fault di-
agnosis and prognosis accurately, with complete confidence.
These sources of uncertainty include natural variability, sen-
sor errors (gain, bias, noise), model uncertainty, etc. This
paper presents a computational methodology to quantify the
uncertainty and thereby estimate the confidence in the fault
diagnosis of a current-pressure transducer. First, experiments
are conducted to study the nominal and off-nominal behav-
ior of the I/P transducer; however, sensor measurements are
not fast enough to capture brief transient states that are in-
dicative of wear, and hence, steady-state measurements are
directly used for fault diagnosis. Second, the results of these
experiments are used to train a Gaussian process model us-
ing machine learning principles. Finally, a Bayesian infer-
ence methodology is developed to quantify the uncertainty
and assess the confidence in fault diagnosis by systematically
accounting for the aforementioned sources of uncertainty.

1. INTRODUCTION

Current-Pressure transducers (I/P transducer or IPT) are ef-
fective pressure regulators that vary the output pressure de-
pending on the supplied electrical current signal. They oper-
ate by throttling a nozzle to create a pressure difference across
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a diaphragm, which, in turn, controls the throttling of a valve.
These are often used for supplying precise pressures to con-
trol pneumatic actuators and valves. When such transducers
are subjected to wear, it may not be possible to efficiently reg-
ulate currents so that desired output pressures may be gener-
ated. Therefore, it is necessary to constantly monitor the per-
formance of the transducer using efficient health management
techniques and continuously perform diagnosis and progno-
sis, i.e., detect, isolate, and estimate faults and quantify the
remaining useful life of the transducer. Wear detection, esti-
mation, and prediction play a critical role in preventing fail-
ure, scheduling maintenance, and improving system utility.

An important challenge in health management is the pres-
ence of several sources of uncertainty that affect both diag-
nosis and prognosis. These sources of uncertainty are present
in measurement sensors, system models, and the system in-
puts. Due to these sources of uncertainty, it becomes neces-
sary to quantify the confidence in the results of diagnosis and
prognosis. This can be addressed by estimating the uncer-
tainty in the results of diagnosis (Sankararaman & Mahade-
van, 2011, 2013) by rigorously accounting for these sources
of uncertainty during health monitoring. While these prelimi-
nary methods for uncertainty quantification in diagnosis have
been developed from a statistical point of view, it is still nec-
essary to explore the applicability of these methods to differ-
ent types of practical applications where the impact of un-
certainty is extremely significant. While the above statisti-
cal methods can efficiently diagnose abrupt faults, wear in
practical applications is usually continuous and hence, more
challenging from the point of diagnosis and uncertainty quan-
tification.

This paper focuses on applying uncertainty quantification
methods to continuous wear estimation in the aforemen-
tioned current-pressure transducer. Previous studies at NASA
Ames Research Center (Teubert & Daigle, 2013) have ob-
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served that there is a significant amount of uncertainty during
the health monitoring of the aforementioned current-pressure
transducer; however, the effects of uncertainty on the IPT
steady-state diagnosis and prognosis were not studied be-
cause simplistic look-up tables had been used for fault esti-
mation. In order to apply rigorous uncertainty quantification
methods, it is first necessary to identify and address certain
application-specific challenges. In the case of the current-
pressure transducer, the challenge lies in obtaining useful in-
formation from the sensors used in the health monitoring sys-
tem. To begin with, there is a significant amount of noise
and uncertainty in the sensor measurements. More impor-
tantly, the sensors are not fast enough to capture brief tran-
sient states; this can either be a result of sensor technological
limits, or budgetary constraints on sensor selection (as sen-
sors with higher resolution and higher sampling frequencies
are generally more expensive). Many modern wear estima-
tion diagnostic techniques rely on the measurement of the
system’s transient states (Daigle & Goebel, 2013; Orchard
& Vachtsevanos, 2009; Saha & Goebel, 2009; Luo, Patti-
pati, Qiao, & Chigusa, 2008), and therefore, these techniques
cannot be used for diagnosis of the current-pressure trans-
ducer. In order to overcome this challenge, researchers at
NASA Ames Research Center (Teubert & Daigle, 2013) are
pursuing a diagnostic methodology that relies only on steady-
state measurements without using any transient information.
Therefore, it is necessary to rely on such steady-steady mea-
surements while quantifying the uncertainty in diagnosis.

The primary goal of this paper is to develop a computational
methodology to assess the impact of the different sources of
uncertainty on wear estimation in the current-pressure trans-
ducer, and in turn, quantify the uncertainty in diagnostics.
First, experimental data are collected to study the relation-
ship between the input currents, fault magnitudes, and the
output pressures, and the resulting data are used to develop
a Gaussian process model that can predict the output pres-
sures as a function of input currents and fault magnitude.
This model is built offline using principles of machine learn-
ing, and then used for diagnosis during online health monitor-
ing. A Bayesian inference-based methodology is developed
to quantify the extent of wear, and the associated uncertainty.
This analysis is continuously performed in order to continu-
ously estimate the wear and thereby, the fault magnitude can
be quantified as a function of time. The Bayesian inference-
based methodology provides a systematic framework for in-
cluding different sources of uncertainty and quantifying the
combined effect of the different sources of uncertainty on
fault estimation uncertainty, thus providing an estimate in the
confidence in diagnosis.

The paper is organized as follows. Section 2 describes the
current-pressure transducer in detail, and explains the various
modeling and experimental aspects of the transducer. Sec-
tion 3 describes the Gaussian process modeling methodology

Magnet A Open to
Assembly Atmosphere
Control Volume 1
Flexure e R s Control Volume 2
B Pilot Volume
R
Nozzle — H
Diaphragm /"7 . ‘

Valve —~H AHng

— Outlet:
E
20
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Figure 2. Current/pressure transducer.

that is used as a machine learning tool to model the nomi-
nal and off-nominal behavior of the current-pressure trans-
ducer, and in turn used for diagnosis. Section 4 describes the
Bayesian inference-based methodology for quantifying the
uncertainty in diagnosis, using the aforementioned Gaussian
process model. A simplistic metric for confidence assessment
in diagnostics is also presented. Finally, the numerical results
are described in Section 5, and conclusions are presented in
Section 6.

2. DESCRIPTION OF THE TRANSDUCER

This section describes the behavior of the current-pressure
transducer in detail, by exploring both nominal and off-
nomoinal (faulty) conditions. Consider a Marsh Bellofram
Type 1000 IPT, as shown in Figures 1 and 2. Some specifica-
tions for this IPT are included in Table 1 (Marsh Bellofram,
n.d.). This particular transducer was chosen because of its
use for cryogenic propellant loading applications, and, specif-
ically in the Prognostics Demonstration Testbed at NASA
Ames Research Center (Kulkarni, Daigle, & Goebel, 2013).

The IPT is divided into three distinct control volumes (CVs):
Control Volume 1 (CV1) at the inlet, Control Volume 2 (CV?2)
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Table 1. IPT specifications

Name Type 1000 IPT
Manufacturer Marsh Bellofram
Supply Pressure Range  18-100 psig
Input Signal Range 4-20 mA

Output Pressure Range  3-15 psig

Control Current

)
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Figure 3. IPT testing configuration

at the outlet, and the Pilot Control Volume (CVP) at the noz-
zle. Each control volume is marked in a different color and
pattern in Figure 1. The IPT output pressure varies with the
current supplied to the magnet assembly. When the current is
high, the magnet assembly throttles the flow out of the pilot
nozzle, allowing less air to escape through the nozzle. With a
low input current, more gas escapes from the nozzle thereby
lowering the pilot pressure. The pressure difference across
the diaphragm moves the valve, which adjusts the gas flow
between CV1 and CV2. Adjusting this flow changes the pres-
sure in CV2, and thus provides a direct mechanism to regulate
the outlet pressure. In past research efforts, the behavior of
this transducer has been modeled using a physics-based ap-
proach (Teubert & Daigle, 2013, 2014); however, this model
is not used in this paper. Instead, a completely data-driven
approach is used for both performance prediction and health
monitoring. The experimental set-up for generating data is
described in the next subsection.

2.1. Experimental setup

In order to study the nominal and faulty performance of the
transducer, a series of experiments were conducted using the
Prognostics Demonstration Testbed at NASA Ames Research
Center. The Prognostics Demonstration Testbed (Kulkarni et
al., 2013) was developed to demonstrate cryogenic refueling
valve prognosis. This testbed included an I/P Transducer that
was used to operate a large valve. The section of the testbed
including the I/P Transducer is illustrated in Figure 3.
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Figure 4. IPT outlet pressure with time

As seen in the figure, two bleed valves were installed on the
IPT line: one upstream, and one downstream. These valves
were used to simulate inlet and outlet leaks, respectively. A
pressure of 75 psig is supplied using a pump. Data were col-
lected from pressure sensors located before the inlet bleed
valve and after the outlet bleed valve at a frequency of 16.8
Hz using an 8-slot NI cDAQ-9188 Gigabit Ethernet chassis
data acquisition (DAQ) system (Kulkarni et al., 2013). A con-
trol input is supplied to the IPT. A separate control input is
supplied to the bleed valves to create a leak.

2.2. Nominal IPT Behavior

The IPT documentation indicated the IPT should produce an
outlet pressure of 3 and 20 psig when supplied a signal current
of 4 and 20 mA, respectively (Marsh Bellofram, n.d.). In this
range, the pressure changes linearly with input current.

In practice, IPT behavior is much more difficult to under-
stand. Noise as much as 10% was observed in measurements
of outlet pressure, as seen in the experimental data included
in Figure 4. This figure shows the measured outlet pressure
with time. This noise complicates the process of measuring
the steady-state pressure, and thereby complicates the diag-
nosis procedure. Hence, a rigorous diagnosis methodology
should be able to separate the effect of the noise; in fact, this
is a prominent feature of the diagnosis method proposed in
this paper (in Section 4).

Additionally, it was observed that the pressure at a given in-
put current would vary from day to day but was generally
constant over the course of one experiment. We will hence-
forth refer to this phenomena as “wandering set-point”. A
histogram showing the spread of steady state pressure mea-
surements over 676 cycles with an input current of 4mA is
included in Figure 5. In this figure, the input current predicted
by the model and documentation is indicated by a dashed red
line.
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Figure 5. Histogram of IPT steady-state outlet pressure for an
input current of 4 mA

An experiment was conducted to determine if wandering set-
point is observable over the course of one experiment. These
experiments found that after 200 minutes of consistent opera-
tion there was no observable wandering set-point. From this it
was concluded that this phenomena will not occur during the
course of a single experiment. In this paper, the wandering
set-points are directly included into the data-driven modeling
framework, and accounted for during diagnosis, as explained
in Sections 4 and 5.

2.3. IPT Wear

Through discussions with the manufacturers and with users
of I/P transducers and similar components four possible wear
modes were indicated. These wear modes are described be-
low:

1. Leaks A leak could occur at the inlet (inlet leak), at the
outlet (outlet leak), at the valve (valve seat leak), or at the
nozzle (pilot leak).

2. Spring Weakening A weakening of the valve spring, the
diaphragm, or the flexure. This will decrease the spring
coefficient of the effected system.

3. Valve Impediment A impediment or ”clog” at the valve
opening between C'V'1 and C'V2. This can be caused by
foreign object contamination.

4. Magnet Assembly Weakening A weakening of the
magnet assembly with use.

Though all these faults are possible, this paper focuses only
on outlet leak faults. Outlet leaks were chosen because they
are well understood and can be directly simulated while per-
forming experiments. Only this fault and inlet leaks can
be simulated in the laboratory with our current experimen-
tal setup. Studies show that introducing an inlet leak has very
little effect on IPT performance (Teubert & Daigle, 2013).
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Other faults will be considered in future work.

A bleed valve to the atmosphere was introduced into the ex-
perimental setup after the IPT to simulate outlet leaks. Each
bleed valve simulates a leak up to 3/64” in diameter. IPT Per-
formance with various levels of outlet leaks can be seen in
Figure 6.

As mentioned in the previous subsection on nominal be-
havior, between experiments the IPT behavior will change
slightly in the “wandering set-point” phenomenon. This phe-
nomenon also affects IPT wear behavior, and will be ac-
counted for during modeling in Section 3, and during diag-
nosis in Section 4.

3. GAUSSIAN PROCESS MODELING

The experimental data used to study the performance of the
current-pressure transducer is then used to train a Gaussian
process data-driven model. This model predicts the outlet
pressure as a function of input current, fault magnitude (out-
let leak fault), and the wandering set-points. The gaussian
process model is a powerful multi-dimensional interpolation
technique based on spatial statistics. It is increasingly being
used to build surrogates to replace expensive computer simu-
lations in order to facilitate efficient optimization and uncer-
tainty quantification (Rasmussen, 2004; Santner, Williams, &
Notz, 2003). The GP model is preferred in this research for
the following reasons: (1) it is not constrained by functional
forms; (2) it is capable of representing highly nonlinear re-
lationships in multiple dimensions; and (3) can estimate the
prediction uncertainty which depends on the number and lo-
cation of training data points.

The basic idea of the GP model is that the response values
Y evaluated at different values of the input variables X, are
modeled as a Gaussian random field, with a mean and co-
variance function. Suppose that there are m training points,

x1, T2, T3 ... Ty, Of a d-dimensional input variable vector



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

(d = 4 in this paper), yielding the output values Y (z1),
Y (z2), Y(x3) ... Y(2y,). The training points can be com-
pactly written as xp vs. yp where the former is a m x d ma-
trix and the latter is a m x 1 vector. Suppose that it is desired
to predict the response (output values yp) corresponding to
the input z p, where xp is n X d matrix; in other words, it is
desired to predict the output at n input combinations simulta-
neously. Then, the joint density of the output values yp can
be calculated as:

P(yP|£CP,£CT7yT;9) NN(ma S) ey

where O refers to the hyperparameters of the Gaussian pro-
cess, which needs to be estimated based on the training data.
The prediction mean and covariance matrix (m and S respec-
tively) can be calculated as:

m = Kpr(Krr + 021) tyr

2
S =Kpp— Kpr(Krr +02I)'Krp @

In Eq. 2, K77 is the covariance function matrix (size m X m)
amongst the input training points (x7), and K pr is the co-
variance function matrix (size p X m) between the input pre-
diction point (z p) and the input training points (x7). These
covariance matrices are composed of squared exponential
terms, where each element of the matrix is computed as:

e o 2
Kij = K(zi,2,;0) :—g[z (@i = i) lx”) )
q

q=1

Note that the above computations require the estimate of the
multiplicative term (6), the length scale in all dimensions (,
q = 1 to d), and the noise standard deviation (o,,). These
constitute these hyperparameters (© = {6,11,ls ... lg,0,}).
These hyperparameters are estimated based on the training
data by maximizing the following log-likelihood function:

T
log p(yr|xr;©) = — y7T(KTT + UZI)_lyT

1 d
- §ZOQ|(KTT +02I)| + 5109(277)
“)

Once the hyperparameters are estimated, the Gaussian pro-
cess model can be used for predictions using Eq. 2. Note
that the “hyperparameters” of the Gaussian process are differ-
ent from the “parameters” of a generic parametric model (for
e.g. linear regression model). This is because, in a generic
parametric model, it is possible to make predictions using
only the parameters. For the Gaussian process model, all the
training points and the hyperparameters are both necessary
to make predictions, even though the hyperparameters may
have estimated previously. For details of this method, refer
to (Rasmussen, 2004; Chiles & Delfiner, 1999).

Once the training points are selected and the Gaussian pro-

cess model is constructed, it can be used for diagnosis and
quantifying the uncertainty in diagnosis, as explained in Sec-
tion 4.

4. WEAR ESTIMATION AND UNCERTAINTY QUANTIFI-
CATION

Wear estimation is the process of estimating the current extent
of wear (i.e., quantifying the fault magnitude) on a system.
This is important for prognostics (predicting failure and re-
maining useful life), scheduling maintenance, and triggering
automated mitigation actions. This is often done using meth-
ods such as a Kalman Filter or Particle Filter (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Daigle, Saha, & Goebel,
2013). In this paper, recall that only steady-state measure-
ments have been used and the transients are completely ig-
nored. For this reason, tracking is not applicable and fil-
tering approaches will not be suitable for wear estimation.
Therefore, it is necessary to develop an algorithm that can
estimate the extent of wear. Previously (Teubert & Daigle,
2013), a lookup table method was used for fault estimation.
This method was chosen because of its fast, efficient nature
and its ability to be applied to both linear and non-linear sys-
tems. However, this method can neither systematically ac-
count for the different sources of uncertainty nor quantifying
the uncertainty in fault estimation. Hence, this paper uses the
previously described Gaussian process model and Bayesian
inference to quantify uncertainty in fault estimation.

As mentioned previously, this paper focuses on the outlet
leak. This fault has a definite and measurable effect on the
outlet pressure and can be simulated in the lab. As the leak
grows in size, more gas escapes through the outlet. For a leak
of 5 mm?, the outlet pressure decreases by 2.101 psig for a
high signal current and by 0.207 psig for a low signal current.

This paper focuses on quantifying the amount of wear by ap-
proaching fault estimation as a parameter estimation problem.
In this technique, input-output measurements (obtained from
the health monitoring sensors) are directly used to estimate
the magnitude of fault; the input corresponds to the signal
current (denoted by I) to the IPT, the output corresponds to
the outlet pressure (denoted by P), and the magnitude of fault
(wear) is denoted by . Further, the outlet pressure also de-
pends on the two set-points (denoted by «; and «) that are
measured during the course of health monitoring. The en-
tire procedure for fault estimation and uncertainty quantifica-
tion is described through the stepwise procedure, as shown in
flowchart in Fig. 7. Each of these steps are explained in detail
below.

4.1. Offline: Gaussian Process Model Development

Any parameter estimation technique relies on the existence
of a forward model that can compute the quantity being mea-
sured as a function of the fault magnitude. This forward
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Offline Analysis

1. Generate Experimental Data (P corresponding to I, 6, cv; and aip)

2. Use Data to Train GP Model: P = G(1,0, a1, o)

Online Monitoring

1. Measure wandering set-points «; and ae
2. Collect Current vs. Pressure Data: 17 vs P7 (j = 1 to n) over a small period of time
3. Separate noise in P’ by computing f(ppi,op;) using Eq. 6 —8
4. Use fy,; (1pi) to compute L(6) using Eq. 10 and 11
5. Use L(#) in Eq, 9 to estimate fault through the PDF f(6)

6. Repeat steps 2-4 to estimate 6 continuously as a function of time

Figure 7. Stepwise Diagnosis Procedure

model is represented as:
P:G(I,G,al,ag) (5)

The forward model can either be physics-based or data-
driven. In this paper, a fully data-driven approach is pur-
sued. Experimental data are used to train the Gaussian pro-
cess model as described in Section 3. While a rigorous de-
sign of experiments is not performed (due to the challenges
involved in the experimental set up and data collection), six
different runs are used to generate the training data. Each
experimental run corresponds to a single pair of set-points.
Within each experimental run, the fault magnitude increases
gradually (as shown in Fig 15); for each value of fault magni-
tude, two values of I and the corresponding values of P are
measured. All this data are used to train the Gaussian pro-
cess model offline. After training, the model can be used for
online diagnosis.

4.2. Online: Measurements and Set-Points

For performing diagnosis, the first step is to measure to set-
points (a; and as9); As mentioned in Section 2 IPT be-
havior can change over time (the ”"Wandering Setpoint Phe-
nomenon”). The set-points are the outlet pressure of the un-
damaged system given a control input of 4 and 20 mA (the
operational extremes). These values are used to quantize the
wandering setpoint magnitude. Wear behavior is then depen-
dent on the values of these set points.

Then, a small time period within which the fault magnitude
is likely to be constant is considered; the current values and
corresponding outlet pressure values are measured during this
time period. Let I7 and P7 (j = 1 to n) denote the measured
input-output data. The goal is to use these measurements to
estimate the magnitude of fault accounting for the noise in
the measurement data and other sources of uncertainty. This
is accomplished through the use of the above constructed sur-
rogate model and Bayesian inference (Sankararaman & Ma-
hadevan, 2013). The first step is to explicitly quantify the
amount of noise in the data, so that the actual steady state
value may be calculated.

4.3. Separating Noise from Steady State Pressure

Consider the input-output data, described in terms of I7 ver-
sus P7 (j = 1 to n). In the experimental setup, the input
current is treated as the independent quantity and can be con-
trolled fully, i.e., it is assumed that there is no uncertainty
regarding the current values. However, the P7 corresponds
to the steady state pressure that is measured. Typically, this
steady state pressure is contaminated with noise. It is impor-
tant to separate out the effect of such noise. A typical steady
state pressure consisting of 252 measurements is shown in
Fig. 8.

One way to quantify the actual steady state value is to sim-
ply compute the average of all the measurements; however,
this is not an effective treatment of uncertainty. Therefore,



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

10.51

107

9.57

Outlet Pressure (psig)

8.5 : : : :
0 5 10 15 20
Time (seconds)

Figure 8. Steady state outlet pressure values

this paper develops a new method to individually quantify the
constant value and the noise magnitude. To this end, consider
the separation of the steady state value into the constant term
and noise as:

P’ = pp; +€pi (6)

where i p; is the actual constant steady-state value and €p;
is the measurement error. Further, it is assumed that the mea-
surement error € p; follows a Gaussian distribution with zero
mean and standard deviation equal to op;. Then, based on
all the measurements in Fig. 8, Bayes theorem can be used to
estimate the probability distributions of both pp; and op;. If
the N; (equal to 252 in Fig. 8) measurements are denoted as
P,g (k = 1 to 252), then, the likelihood function L(up;i, op;)
is constructed as:

k:Nj

1 (pi — Pj)Q
L(upi,opi) II ——ex <— %)
e k=1 \/@W)U Y [ j }

Then, this likelihood function is used to estimate the joint
PDF of pp; and op; using Bayes theorem, as:

_ L(ppi,opi) ®)
J L(ppi,opsi)dupidop;

f(ppi,opi)

Note that the above equation is simply a variation of Bayes’
theorem; the prior distribution has been canceled in both the
numerator and the denominator (inherently assuming that a
constant prior has been used). It is not necessary to evaluate
the above integral explicitly; instead, slice sampling (Neal,
2003) is used to directly estimate samples of pp; and op;
from the posterior distribution on the right hand side of the
above equation. For the steady state in Fig. 8, the PDFs of
wps and op; are shown in Fig. 9 and Fig. 10.

4.4. Fault Estimation through Bayesian Inference

Having the steady state, this information along with the GP
model can be used to quantify the fault magnitude and the as-
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sociated uncertainty. In order to achieve this goal, let f§(6)
denote the prior probability distribution of the fault magni-
tude before collecting measurements; a uniform probability
distribution over the entire range of possible fault magnitudes
is assumed in this paper. Then, using the available input-
output data, the posterior distribution of the fault magnitude
(denoted by f§(6)) is computed as:

/

[ 18(0)L(6)do

where L(0) is the likelihood function of 6, defined as being
proportional to the probability of observing the given input-
output data conditioned on the value of the fault magnitude
6. The likelihood function, i.e., L(8) is constructed using the
estimated steady state pressure value. Recall that pp; de-
notes the constant steady state pressure value and f, (ps)
denotes the corresponding PDF.

Then, the likelihood function for the i*” input-output data-
point is expressed as:

L(0") o fu,, (nps = G(I7, 60,01, 02)) (10)
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Since the n measurements are independent of one another, the
combined likelihood can be calculated as:

=n

L(o) = [ L") (11)

i=1

Then, this likelihood function is substituted into Eq. 9, and the
posterior PDF of the fault magnitude 6 is computed. While
direct integration (Sankararaman, Ling, & Mahadevan, 2010)
is used in this paper, advanced MCMC sampling methods
such as slice sampling (Neal, 2003) can also be used. This
procedure is repeated continuously to estimate the PDF of
the fault magnitude as a function of time.

4.5. Metric for Assessing Confidence in Diagnostics

A common practice in health management is to not use the en-
tire PDF information and simply use some central tendency
of the above calculated PDF (say, mean, median, or mode) as
the final diagnostic estimate. However, this procedure loses
information regarding uncertainty and can lead to erroneous
results. That is why it is important to quantify the confidence
is diagnostic assessments. This paper discusses a simple con-
fidence metric to address this issue.

For example, consider the mode of the PDF f{(6). By def-
inition, the mode of a probability distribution has the high-
est likelihood of occurrence and hence is the most likely
value. Therefore, the mode of the PDF f/(#) would be the
most likely fault magnitude value. However, this implies that
the true fault value may have a smaller likelihood of occur-
rence. Therefore, a simple way to compute a confidence met-
ric would be to assess how far the mode (denoted by 6¢) is
probabilistically away from the true estimate (denoted by 7).
This can be computed mathematically using the likelihood ra-
tio:

2
M= 7%(%) (12)

6(0c)
This ratio will be equal to one when the estimated mode value
coincides with the true value, and in all other cases, the met-
ric will be less than equal to one. The metric provides a
probabilistic measure of confidence in the estimated fault by
comparing its likelihood against the true fault magnitude. For
practical purposes, the above metric can also be expressed in
terms of percentage, as illustrated later in this paper.

5. NUMERICAL RESULTS
This section presents the numerical results of diagnosis un-
certainty quantification on a current-pressure transducer.

5.1. Training the Gaussian Process Model

The first step is to use the experimental data to train the Gaus-
sian process model. This model has four input quantities:

1. Fault magnitude

2. Current magnitude
3. Set-point I

4. Set-point I

For every combination of the above four quantities, the out-
let steady state pressure needs to computed by the gaussian
process model (P = G(I,60, a1, az)). Hence, experimental
data that depicts the variation of output pressure with respect
to the four input quantities are collected and used to train the
GP model. There are seven sets of data, and each set cor-
responds to one value of set-point I and set-point II. These
experimental are shown in Figures 11—14
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Figure 11. Fault magnitude vs. output pressure
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Figure 14. Set-Point II vs. output pressure

All of the above information is used to train the Gaussian pro-
cess model using the procedure in Section 3. This model is
used for diagnosis and quantifying the uncertainty in diagno-
sis.

5.2. Diagnosis: Numerical Illustration

Consider a set of current versus (steady state) outlet pressure
measurements that are available through health monitoring,
as shown in Fig. 15. Note that the Gaussian process model is
useful for forward evaluation, i.e., to compute the outlet pres-
sure as a function of fault magnitude and input current, and
this model needs to be evaluated for multiple values of fault
magnitude in order to estimate the correct fault magnitude.
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Figure 15. Input vs. output monitoring data

Two values of current are applied in an alternating manner:
First, a current of 0.004 amps, and then a current of 0.02
amps. The fault magnitude is assumed to be constant over
this time window. This procedure is repeated as the fault
magnitude increases over time. The set-points for the above
monitoring data are found to be equal to 4.65 and 15.58 milli-
amps. Using the Gaussian process model, and the Bayesian
inference methodology explained earlier in Section 4, the
fault magnitude is estimated continuously as a function of
time. To estimate the fault magnitude, one low value of cur-
rent and one high value of current, and the corresponding out-
let pressures are considered. Since 198 sets of measurement

are available and every two correspond to a single value of
fault magnitude, Bayesian inference is applied 98 times to
quantify the fault magnitude.

An arbitrary set of current-pressure values is chosen for the
purpose of illustration; the outlet pressure values given signal
currents of 0.004 amps and 0.02 amps are equal to 2.68 Pa and
15.56 Pa respectively. For these set of values, the fault mag-
nitude is estimated using Bayesian inference; the estimated
PDF and the true value are indicated in Fig. 16. Note that the
mode does not correspond to the true fault magnitude.
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Figure 16. PDF of fault magnitude

Such computation is continuously performed with time, and
the mode of the distribution is plotted against the true fault
magnitude value, as shown in Fig. 17. While absolute time
is not meaningful, Fig. 17 shows the number of the instance
(1 through 99) in which diagnosis is performed. It can be
seen that the mode approximately matches well the true fault
magnitude (since the fault magnitude varies over a range, it
is not possible to see succinct differences between the mode
and true fault magnitudes). The methodology consistently es-
timates the fault magnitude and the true fault magnitude is
contained within reasonable bounds of the predicted uncer-
tainty.
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Figure 17. Fault magnitude: estimated (mode) vs. true

In addition to the mode of the fault estimate, the standard
deviation is also plotted in Fig. 18, similar to Fig. 17. Note
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that the standard deviation is small, as seen from Fig. 16 and
Fig. 18.
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Figure 18. Uncertainty in diagnosis

However, using the proposed statistical methods, it is possi-
ble to quantify the extent of agreement between the estimated
fault and true magnitude, thereby quantifying the amount of
confidence in diagnosis. The metric proposed earlier in Sec-
tion 4.5 (ratio of PDFs measured at the mode and the true
value) is quantified and plotted (as percentage) in Fig. 19.
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Figure 19. Confidence in diagnosis

As seen from Fig. 19, it is seen that the confidence metric is
always less than 100%, suggesting that it is practically im-
possible to precisely estimate the true fault magnitude. A
rigorous treatment of uncertainty addresses this issue by esti-
mating the entire PDF of the fault magnitude instead of using
any central tendency such as the mean, median, mode, etc.

6. CONCLUSION

This paper proposed a data-driven methodology for fault esti-
mation and uncertainty quantification in the steady-state diag-
nosis of a current-pressure transducer (IPT). Such transduc-
ers are efficient electromechanical devices that can be used to
control the output pressure depending on the signal current.
When faults are present in these transducers, the desired pres-
sure output may not be obtained. Therefore, it is necessary to
monitor to performance of these transducers, detect the pres-

ence of faults and estimate the fault magnitude.

This is a significant challenge in diagnosis due to several
sources of uncertainties associated with monitoring the heath
of the transducer. To begin with, the sensors used to monitor
the performance may be affected by sensor noise. Further,
it may not be precisely possible to predict the performance
of the transducer and this may add further uncertainty; there-
fore it becomes necessary to quantify the confidence in fault
diagnosis.

A Bayesian inference-based methodology was used for un-
certainty quantification in diagnostics, and the amount of
wear (fault) was quantified as a function of time. This ap-
proach can not only systematically account for the various
sources of uncertainty in the health monitoring but also quan-
tify the uncertainty in the fault estimate, resulting in a mea-
sure of confidence in diagnosis. Experimental data were col-
lected offline and used to develop a Gaussian process model
that can predict the outlet pressure as a function of fault mag-
nitude and input current. This Gaussian process model was
then used in online diagnosis; the probability distribution of
the fault magnitude and the confidence in diagnostics was es-
timated.

Numerical results show considerable promise of the proposed
methodology. Future work may include considering multiple,
simultaneous fault modes where it is necessary to quantify the
uncertainty in both fault isolation and fault estimation. It is
also necessary to study the effect of diagnostic uncertainty
on prognosis, by quantifying the uncertainty in the remaining
useful life of the transducer.
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