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ABSTRACT

Deep learning has revolutionized many fields in recent years
by replacing expert-designed, handcrafted features with
learned representations. Gear health monitoring is a field
where expert-designed features are heavily used for predic-
tive modeling. This paper investigates how unsupervised
deep learning can be applied to gear health monitoring to
make predictions on low frequency scales using high fre-
quency data given small, sparsely labeled data sets. Deep
convolutional autoencoders are trained and used to generate
learned features. The learned features are compared with
relevant handcrafted features via their performance in train-
ing machine learning models to predict discrete gear fatigue
states. The learned features performed poorly against the
handcrafted features, however models trained on feature
sets tended to outperform those exclusively trained on hand-
crafted features. The top performing model was a multi-layer
perceptron trained on both feature sets that leveraged the
ability of the condition indicators to represent healthy and
failure states and the ability of the learned features to repre-
sent the intermediate worn state. This work demonstrates that
unsupervised deep learning techniques can be used to bolster
the performance of handcrafted features in small, sparsely
labeled data sets in gear health monitoring.

1. INTRODUCTION

Gear health in rotorcraft is critical to maintaining flight, and
is therefore a major concern in the field of rotorcraft health
monitoring. Rotorcraft and gear health testing are data inten-
sive processes, and the generated data are complex. There are
many relationships, both known and unknown, between the
features of the data set.

Gear health monitoring is an area where statistical and sig-
nal processing techniques have been the prevailing approach
to tracking damage (Vevcevr, Kreidl, & Smid, 2005). These
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techniques are used to tackle a dilemma in gear health mon-
itoring: the primary data measuring gears contains very high
frequency information, however, gear damage typically pro-
gresses on low frequency scales. Traditionally, to cope with
this issue, a class of signal processing techniques known as
condition indicators are used to transform high frequency in-
formation to lower frequencies. Subsequently, models can be
built on top of this new, transformed, low frequency infor-
mation. While condition indicators are effective tools, they
may underrepresent the inherent complexity of rotorcraft and
gear health data. Trends across many fields suggest that deep
learning may offer a more effective tool for representing raw,
high frequency data for the purposes of model building.

Deep learning has revolutionized many fields by replacing
domain-specific, expert-driven features with learned repre-
sentations of data. Deep learning has been successfully ap-
plied to image analysis (Krizhevsky, Sutskever, & Hinton,
2012), natural language processing (Collobert & Weston,
2008), and machine translation (Cho et al., 2014) to perform
similar tasks. However, their success has been bolstered by
the availability of large, labeled data sets. Gear health data,
on the other hand, is much scarcer, and when it is available, it
is often sparsely labeled. Data constraints pose serious con-
cerns to any application of deep learning. This issue is fur-
ther exacerbated in a research setting where the material and
structural properties of the gears often changes between ex-
periments.

Unsupervised learning offers a method for learning a repre-
sentation of the data without reliance on class labels. Success-
ful application of unsupervised deep learning would allow for
unlabeled data to contribute to the training of representation
learning algorithms, and thus allow for the algorithms to har-
ness much more of the available data than a traditional super-
vised approach which is limited to data that has been manu-
ally inspected.

This paper compares the ability of machine learning algo-
rithms to predict multi-class damage states when trained on
learned features, condition indicators, and a combination of
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the two. The paper is structured as follows. In Section 2
a brief background on condition monitoring of gears, condi-
tion indicators, representation learning, and deep learning is
given. In Section 3 the methodology is outlined, and spe-
cific motivations for using deep convolutional autoencoders
are described. Section 4 gives a description of the data set
and Section 5 descibes the testing process and the results.
Section 6 draws conclusions and Section 7 suggests future
related work.

2. BACKGROUND

Condition monitoring of gears primarily involves observing
oil debris, acoustic, or vibration data. Oil debris and acoustic
data are important and can be effective for monitoring rotor-
craft systems. For our work, however, we are concerned with
how best to interpret vibration data to predict the damage state
of a gear. Condition indicators are values computed from a vi-
bration signal that seek to help identify gearbox failures. To
calculate condition indicators, the time domain signal is syn-
chronously averaged to increase the signal to noise ratio, and
then condition indicators are computed on this new averaged
signal (Vevcevr et al., 2005). The specific condition indica-
tors in our data set are specified in the data set description.
In the research setting, these condition indicators are then fed
into a classifier which determines whether or not to send a
stop signal to the test rig to stop the gears before cracking
progresses. Researchers can then analyze where the crack ini-
tially formed, and designers can use their analysis to improve
performance.

We consider a different case than binary detection. We are
concerned with identifying progressive states of wear from
the vibration signal. Machine learning offers a powerful tool
for approaching this task.

The performance of machine learning algorithms depends
heavily on the representation of the data they are given. In
some cases, expert-designed features, such as condition indi-
cators, serve as sufficient representation for a given learning
task, however, in many cases, it is difficult to know what fea-
tures should be extracted, let alone how to accurately extract
them. A solution to this problem is to not only use machine
learning to discover a mapping from representation to output,
but also the representation itself. This is known as represen-
tation learning (Bengio, Courville, & Vincent, 2013). Repre-
sentation learning is a major area of interest in artificial intel-
ligence systems as it enables them to discover a good set of
features for complex tasks on the order of minutes and hours,
whereas handcrafted features can take decades of human time
and effort (Goodfellow, Bengio, & Courville, 2016).

In real-world applications, there are many factors that influ-
ence the raw data. Good features are those that can disen-
tangle these factors and discard unnecessary information. In
complex data sets, factors are difficult to identify, let alone

separate. Doing so requires sophisticated, nearly expert-level
understanding of the data set. Deep learning helps overcome
this problem by expressing representations in terms of other,
simpler representations, thereby enabling complex concepts
to be built from simpler ones (Goodfellow et al., 2016). This
hierarchical approach introduces the concept of depth to mod-
els, and thus the name deep learning.

Convolutional neural networks are a class of deep learning
models that have been successfully applied to signal process-
ing in the supervised setting, and have been shown to outper-
form expert-designed features (Janssens et al., 2016). In the
supervised setting, we have a large, robust, labeled data set
that we use to learn the parameters of the model. Convolu-
tional neural networks consist of two primary parts: convo-
lutional layers that learn a set of filters for feature extraction,
and fully connected layers that make a prediction using the
set of extracted features (LeCun & Bengio, 1995). Prediction
error is propagated through the entire network, and as such,
the representation learned by the filters is rooted in the pre-
diction task.

The success of supervised methods is heavily dependent on
the size and quality of the labeled data set. In many cases,
producing an accurately labeled data set is not necessarily an
inherent step in the data collection process. In gear health
monitoring, gears are inspected periodically. The timing of
these inspections is not necessarily ideal for interpolating the
labels in between them, and the periods between inspections
can vary. Furthermore, the inspections are judgmental, and
thus inherently imperfect.

To overcome these limitations, we would like our represen-
tation learning algorithm to have as little reliance on the data
labels as possible. Unsupervised learning methods involve no
data labels. In this paper we explore the use of deep convolu-
tional autoencoders, an unsupervised representation learning
algorithm, in gear health monitoring.

3. DATA SET DESCRIPTION

The data used in this research spanned multiple tests on dif-
ferent sizes of spiral bevel gears. Tests were performed in the
Spiral Bevel Gear Fatigue Test Rig at NASA Glenn Research
Center. A detailed description of this test facility is provided
in (Handschuch, 1995) and (Handschuch, 2001). Two sets
of gears are driven against each other by their respective pin-
ions, which act as a speed reducer for the left gear and a speed
increaser for the right gear. The result is increased fatigue in
the left gear. This process is measured with optical tachome-
ters that are mounted on the left pinion shaft and the left gear
shaft to produce a once-per-revolution tachometer pulse for
the pinions and gears. Additional details on the vibration data
collected during these tests can be found in (Dempsey, 2014).

The failure mode to be investigated was surface or contact
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Figure 1. Plot of manual labels relative to interpolated labels.

fatigue that occurs when small pieces of material break off
from the gear surfaces due to surface and subsurface stressors
(Townsend, 1991). The failure mode for these tests are de-
fined by American Gear Manufacturers Association (AGMA)
standards. They are AMGA class (contact fatigue), general
mode (macro pitting), and degree (progressive) in which pits
are observed in different shapes and sizes greater than 0.04 in
diameter (Appearance of Gear Teeth - Terminology of Wear
and Failure, 2014). Gear sets were tested until progressive
macropitting was observed on a significant area of two or
more gear or pinion tooth surfaces.

The testing process is as follows. The test rig is loaded with
gear sets and set to run. At intermittent periods researchers
shut down the test rig and visually inspect the damage state.
The decision to stop the process and inspect the gears is based
on the researcher’s judgement, and the interval between in-
spections varies. Gear sets are inspected multiple times over
the course of a test, and when there is sufficient indication of
failure, the experiment is ended.

Upon inspection the gears were labeled by the researcher
as having experienced (1) no damage, (2) micropitting or
edgewear, (3) 1 tooth macropitting, or (4) 2 or more teeth
macropitting. These measurements were interpreted as dis-
crete states, and to provide labels for periods outside of di-
rect observation, labels were interpolated. Time between suc-
cessive inspections varied. To minimize the effect of impre-
cise labeling, the labels were mapped to three damage states:
healthy (1), worn (2 and 3), and failed (4). A plot of the man-
ual and interpolated labels is shown in Figure 1.

The data set consists of vibration data drawn from four tests.
Each test observed gears of different sizes being driven by
a common gear size and lasted 1291, 2833, 6037, and 9578
minutes. These tests were parsed into 20 minute samples, and
labeled with the damage state 10 minutes into the future. The
collection of these samples defined the data set. The label was
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Figure 2. Plot of TSA signal.

chosen to be 10 minutes into the future in part to account for
the processing time between the event occurring, data acqui-
sition, and generating a prediction. A more domain-specific
reason for this choice was that rotorcraft operators need suf-
ficient time to react to damage information. A plot of one-
minute sample of the TSA signal is shown in Figure 2.

Vibration data were collected at sample rates that provided
sufficient vibration data for calculating time-synchronous-
averaged (TSA) data. TSA refers to techniques for averag-
ing vibration signals over several revolutions of the shaft, in
the time domain, to improve the signal-to-noise ratio (Martin,
1989). From the TSA data, several gear condition indicators
were calculated for this analysis: figure of merit 4 (FM4), root
mean square (RMS), sideband index (SI) and M8A (Martin,
1989). FM4, RMS and M8A are common time-domain,
statistically based, vibration algorithms used in commercial
HUMS (Stewart, 1977). The TSA and condition indicator
calculations were made for both the left gear and left pinion.

There were two frequencies at which this data set was rep-
resented: the high frequency TSA data set at 1024 sam-
ples/minute with 2 features and the low frequency condition
indicator data set at 1 sample/minute with 10 features. The
high frequency data was used for extracting learned features
at 1 sample/minute with 32 features, and the learned features
and condition indicators were used to build models and con-
duct comparative analysis. Models were tested on a subset of
the data, and trained on the rest. The testing subset contained
the manually inspected points as well as additional points
near inspection times to better balance the test set.

4. METHODOLOGY

In this section we present the methodology and motivations
for deep convolutional autoencoders, and describe their ap-
plication to gear health monitoring. Deep convolutional au-
toencoders act as powerful unsupervised learning tools for
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mapping vibrations signals at high frequencies to low fre-
quencies. The benefit of using convolutional layers instead
of a sequence based model when working in the time domain
is that the convolutional layers learn to extract features based
on the occurence of a pattern within a sequence, with a low
dependence on the patterns exact location therein.

4.1. Deep Convolutional Autoencoders

The autoencoder is a prime example of a representation learn-
ing algorithm. Autoencoders are comprised of two compo-
nents: an encoder function that converts input data into a dif-
ferent representation, and a decoder function that converts the
new representation back to its original form. Autoencoders
are trained to preserve as much information as possible and to
make the new representation have ideal properties (Vincent,
Larochelle, Bengio, & Manzagol, 2008). Once the algorithm
is trained, the encoder can be used to generate learned fea-
tures from new data.

Traditional autoencoders use fully connected networks sim-
ilar to multi-layer perceptrons as the encoder and decoder
functions. Convolutional autoencoders instead use convolu-
tional layers, an architecture found in convolutional neural
networks, as the encoder and decoder functions (Geng et al.,
2015).

Whereas multi-layer perceptrons use matrix multiplication
for all of their layers, convolutional neural networks use
the convolution operation for at least some of their layers
(Goodfellow et al., 2016). The convolution operation pro-
vides a way to obtain a smoothed estimate at a point by using
a weighted average that gives weight to different elements in
a sequence based their location in the sequence.

In the continuous case, the convolution operation takes the
form

s(t) = /m(a)w(t — a)da,

and in the discrete case it takes the form

o0

Z z(a)w(t — a),

a=—00

s(t) =

where s(t) is the smoothed estimate, z is the function being
smoothed, and w is the weighting function. In deep learning
our goal is to learn the optimal weighting function.

In convolutional neural networks, the length of the sequence
that is convolved over is typically set to be less than the length
of the greater sequence. This convolution operation thus acts
as a filter that is applied multiple times across the sequence.
That is, the same filter is used across the entire sequence. Our
goal is to optimize the effectiveness of this filter at distilling
useful information by optimizing the weighting function w.
Often times many filters are learned, and the what results is
that at each convolutional layer the input sequence is mapped

Input to Layer

Apply “filter’ to sequence;
Apply convolutions to sequence to
generate set of feature maps

Convolution Stage

Apply nonlinearity;
Apply nonlinear activation
function to each feature map
(feature map = linear activation)

Detector Stage —

Pooling Stage
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Replace output of net at a certain
location with a summary statistic
of nearby inputs, ex: Max Pooling

Convolutional Layer

Next Layer

Figure 3. Diagram of convolutional layer.
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Figure 4. Diagram of convolutional autoencoder.

to multiple sequences that are the result of applying multiple
smoothing functions to the original sequence. This process
can be generalized to higher dimensions.

Convolutional layers consist of a convolution stage, detec-
tor stage, and pooling stage. The convolution stage performs
several convolution operations on input data in parallel to pro-
duce a set of linear feature maps. The detector stage subse-
quently applies a nonlinear activation function to each feature
map. Finally, the pooling layer reduces the size of the feature
maps by replacing the output at a certain location with a sum-
mary statistic of nearby outputs (Goodfellow et al., 2016).
Figure 3 is a diagram of a convolutional layer. For the de-
coder function, the pooling layer is replaced with an unsam-
pling function.

Deep convolutional autoencoders define the encoder and de-
coder functions to consist of multiple convolutional layers
(Geng et al., 2015). This gives the autoencoders depth and
enables the aforementioned hierarchical approach to learning.
Figure 4 depicts a single layer convolutional autoencoder. A
deep convolutional layer would consist of more than one con-
volutional layer in between the input layer and the encoded
feature map.

4.2. Motivations

The use of the convolution operator and pooling give convolu-
tional neural networks and convolutional autoencoders a de-
sireable structure for pattern recognition in time series. Con-

Output Layer
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volution leverages a number of key ideas to improve machine
learning systems: sparse interactions, parameter sharing, and
equivariant representations (Goodfellow et al., 2016). Pool-
ing makes the representation approximately invariant to small
translations of the input (LeCun & Bengio, 1995).

Whereas traditional neural network layers use matrix mul-
tiplication and involve interaction between every input and
output unit, convolutional networks typically have sparse in-
teractions by making the size of the convolution operator
smaller than the input. This means fewer parameters need
to be stored, which improves statistical efficiency.

Because the kernel of the convolution is applied to every posi-
tion of the input, convolutional networks can be said to have
an element of parameter sharing. Sharing weights leads to
decreased model complexity, because instead of learning a
separate set of parameters for every location, the algorithm
only learns one set. Parameter sharing leads to more effi-
cient memory requirements and statistical efficiency than tra-
ditional neural networks.

The form of parameter sharing afforded by convolutions
causes the layers to have a property called equivariance to
translation. An equivariant function is one where changes to
the input result in similar changes in to the output. In time-
series data, this means that the convolution creates a timeline
that identifies when different features appear in the input. If
the event is moved later in time in the input, the same repre-
sentation of it will appear in the output, it will simply occur
later.

Pooling helps lead to invariance to translation, which means
that if the input is translated by a small amount, the values
of most pooled outputs will not change. Invariance to local
translation is useful when the occurrence of a feature is more
important than exactly where it occurs.

4.3. Application to Gear Health Data

The goal of applying these ideas to gear health monitoring is
to find sufficient representations from high frequency vibra-
tion data to perform model building at a lower frequency. Us-
ing a deep convolutional autoencoder aligns with these goals,
and affords many ideal properties for the task at hand.

The high frequency data set contains 20 minute sequences
with 1024 samples/minute for both the gear and pinion. The
goal is to find a representation at 1 sample/minute. The depth
of the model allows for features to be learned with a depen-
dence on information at different frequencies. The convolu-
tions operate along the time axis, and in combination with
pooling and the depth of the model, allow for features to be
built not only from local information at higher frequencies,
but also from sequence-level information at lower frequen-
cies. That is, because of successive down-sampling in the
pooling stages, the learning algorithm observes the data at

multiple, successively lower frequencies. By convolving ex-
clusively across the time axis, the gear and pinion are treated
separately.

The properties of equivariance and invariance to translation
lower the dependence of the learned representation on the se-
quence parsing method. The sequences are arbitrarily parsed
out of the data set with respect to the information represented
by a sequence, similar to how samples might be drawn in
real-world systems. Because of equivariance and invariance
to translation this is not a significant burden. The model will
be more focused on the existence of features or groupings of
features rather than the location within the sequence that they
occur.

Using an autoencoder approach to train the weights, as op-
posed to training the weights using a convolutional neural net-
work, makes deep learning a viable tool given the data con-
straints. The main difference between these two approaches
is that the convolutional neural network learns a representa-
tion rooted in the prediction task, whereas the encoder learns
a representation more akin to an identity mapping. While the
representation steeped in the prediction task would theoreti-
cally be more ideal, it requires more accurately labeled data
to train and tune.

It is important to note the need for more accurately labeled
data rather than just more data to make convolutional neural
networks viable. A major problem faced in the experimen-
tation done for this paper was that the data was not origi-
nally collected for the purposes of machine learning. As a
result, manually observed damage states were measured a-
periodically. The interpolated labels between these observa-
tions have inherent inaccuracies, and there are likely occa-
sional sequences with similar features but contradictory la-
bels. This is not an uncommon issue when applying machine
learning to gear health monitoring, and health monitoring in
general, due to the original purpose of data collection and
the cost of labeling. These occasional contradictions from
mislabelings are often irreconcilable in convolutional neural
networks trained on small data sets. The network can suf-
fer from divergence or the inability to learn. Autoencoders,
however, are unsupervised, which means that they are trained
without knowledge of input labels. This makes autoencoders
particularly useful when data and labeling constraints exist.

The final model architecture used is as follows. The encoder
condensed the input representation from 20480 samples x 2
features (gear and pinion) to 1 sample x n features. This
condenses 20 minutes of data into one sample. The num-
ber of learned features n was tuned for the prediction task,
with the goal of minimizing redundant features. The final en-
coder used condensed the representation to 32 features. The
encoder consisted of 3 convolutional layers and a fully con-
nected layer, where the pooling function used was max pool-
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Table 1. Accuracy score for each feature set.

Accuracy Score
Data RF | KNN | LSVM | MLP
Autoencoder 618 | .324 .556 294
Condition Indicator | .706 | .618 794 765
Both 765 | .618 794 853

ing, and the input shrank by similar factors in each convolu-
tional layer.

The deep learning model was built and tested using the Keras
library (Chollet et al., 2015).

5. RESULTS

The general workflow of the testing process is shown in Fig-
ure 5. The condition indicators are drawn from the low fre-
quency data set. The learned features are generated by pass-
ing the high frequency data set through the deep convolu-
tional autoencoder. The TSA time signal is the high fre-
quency data. This input iss 20 minutes worth of TSA data,
which equates to 20 concatenated sequences of 1024 TSA
time signals. These sets of features are combined, and the
condition indicators, the learned features, and the combined
set are used to train random forest, k-nearest neighbors, linear
support vector machine, and multi-layer perceptron machine
learning models. These models are tested and their results are
output for analysis.

The results from testing on autoencoder generated data, con-
dition indicator data, and a combined data set is shown in Ta-
ble 1 and Table 2. RF, KNN, LSVM, and MLP correspond to
the random forest, k-nearest-neighbors, linear support vector
machine, and multi-layer perceptron respectively. The AUC-
ROC is the area under the receiver operating characterisic and
acts as a heuristic measure of informativeness. The top per-
forming model is the multi-layer perceptron trained on the

Table 2. AUC-ROC for each feature set.

AUC-ROC
Data RF | KNN | LSVM | MLP
Autoencoder 730 .619 .637 722

Condition Indicator | .915 | .8545 .868 .859
Both .889 | .854 .868 987

MLP - Autoencoder: Normalized Confusion Matrix
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Figure 6. The confusion matrix for the MLP on autoencoder
features.

combined data set with a score of .853 and an AUC-ROC of
.987 which are bolded in their respective tables. The AUC-
ROC was calculated using a one-against-all approach.

The confusion matrices of the multi-layer perceptron on
the autoencoder, condition indicator, and combined data are
shown in Figure 6, Figure 7, and Figure 8 respectively. The
multi-layer perceptron failed to learn given only autoencoder
data as evidenced by the confusion matrix. However, the ex-
tra information supplied by the autoencoder data improved
the accuracy over the model trained exclusively on the condi-
tion indicators.

5.1. Discussion of Results

The autoencoder data was unable to train models to outper-
form condition indicator data. Autoencoders learn a function
for encoding the data such that it can be decoded. As a result,
the encoder is trained to be an approximate identity mapping.
Identity mappings can be poor features for predictive mod-
els. The encoder learns to discard information unnecessary
for compression taskhowever, the discarded data may be rel-
evant for the prediction task. This is likely compounded by
the fact that the autoencoder data condensed the input data
from 20480 samples to 32 features. This was done in an ef-
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Figure 7. The confusion matrix for the MLP on condition
indicators.

fort to align with the condition indicator data set for testing
purposes.

The autoencoder data, however, did show the ability to repre-
sent the input data. In particular, some of the models trained
exclusively on autoencoder data could better differentiate the
intermediate worn damage state than models trained exclu-
sively on condition indicator data. However, the autoencoder
models struggled to differentiate between healthy and failed
states. The models trained on both autoencoder and condition
indicator data seemed to leverage these trends. In particular,
the top performing model, the multi-layer perceptron, exem-
plifies this. The MLP trained on both data sets outperformed
the MLP trained on exclusively condition indicators in iden-
tifying worn test samples. The other machine learning algo-
rithms were unable to harness this benefit of the autoencoder
data.

The MLP may have outperformed the other models because
it is considered a deep learning algorithm. That is, the MLP
is a representation learning algorithm, unlike the others it was
tested against. The MLP may be able to better make use of the
autoencoder features because the training process continues
to learn features, while the other algorithms construct a model
and do not learn new features.

Taking a closer look at the confusion matrices for the MLP,
one can see that the worn-failed classification improved for
the combined set while the healthy-worn classification re-
mained unchanged. This result is dependent on both the of
training the autoencoder and the mapping function it learns
as well as the fact that the data was manually labeled, among
other things. That is, there is bias introduced in labeling and

MLP - Both: Normalized Confusion Matrix
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Figure 8. The confusion matrix for the MLP on both sets of
features.

in the mapping function and speculating the root cause of this
health-worn versus worn-failed improvement is difficult. It
may be that the healthy-worn misclassification comes from
data that is so similar that the additional features do not in-
crease performance. This similarity is possible because of
the process used to label the data.

6. CONCLUSION

Deep convolutional autoencoders demonstrated that deep
learning can successfully be used to make predictions on low
frequency scales using high frequency data in gear health
monitoring. Although the learned representation was outper-
formed by the condition indicators, the learned features bol-
stered the performance of the condition indicator data. The
top performing model was a deep neural network that learned
from both autoencoder and condition indicator feature sets.
This model using the combined feature set outperformed all
other model and feature set pairs. It had an accuracy of 0.853,
offering a 0.059 lift over the next best pair, and it had a near
perfect AUC-ROC of 0.987, offering a 0.072 lift over the next
best pair. This shows promise for the method, and for the use
of deep learning in gear health monitoring. The autoencoder
feature set seemed to represent information not expressed
by the condition indicators. However, the autoencoder fea-
ture set was useless without the condition indicators, whereas
the condition indicators were able to train models with re-
spectable performances without the autoencoder features.

The size of the data set and the labels were severe constraints
on the performance of the deep learning models. The au-
toencoder was able to leverage deep learning to benefit the
modeling of gear fatigue, however, the representation learned
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by the autoencoder was not routed in the prediction task, and
ultimately needed to be combined with condition indicator
data to be used for classification. The driving reason behind
using an autoencoder was that learning an identity mapping
did not require accurate labels. Other methods like convolu-
tional neural networks learned very little and converged very
quickly, or they diverged. While this could be due to the train-
ing set size, the inability to lower training error suggests that
contradictory labels played a role as well. This could have
also been exacerbated by inconsistent gear size across the
training sets.

7. FUTURE WORK

Deep learning is a viable approach in gear health monitoring
that can be leveraged to bolster existing techniques. There
are two main paths for further investigation: the data and the
algorithms.

The TSA time signal was used to build the convolutional au-
toencoder because the same time signal was used to calculate
the condition indicators. However, future work could include
exploring different techniques for processing the raw signal
data. We exclusively used vibration data; future studies could
draw on additional sources of data such as oil debris sensors.

Convolutional layers have many properties ideal for pattern
extraction from high frequency data. Unsupervised represen-
tation learning methods help to address the inherent difficulty
in labeling gear data. Unsupervised deep learning methods
are scarce, however, there are several ways that supervised
methods can be tweaked to make training more feasible and
deserve further investigation.

Autoencoders can be used to train the weights for the con-
volutional layers of a convolutional neural network (Masci,
Meier, Ciresan, & Schmidhuber, 2011). Then, the convolu-
tional layers can be either locked or minimally tuned when
training the fully connected layers. The idea would be to train
the parameters of the convolutional layers sufficiently enough
to learn a useful representation of the data using an autoen-
coder approach. These weights would then be loaded into a
convolutional neural network with a fully connected layer that
has randomized weights. The subsequent training can control
the evolution of the weights in the convolutional layers sepa-
rate from those of the fully connected layers by fixing them,
by tuning them in only a limited number of passes through
the data set, or by decreasing the learning rate so that they do
not update as quickly as the fully connected layers.

Similarly, randomized weights have shown significant per-
formance ability in tasks related to computer vision, where
model complexity can be controlled by tuning select layers
of a deep network, while other layers are locked (Saxe et
al., 2011). The general idea is that randomized or minimally
trained weights in early layers of the network may be suffi-

cient for basic feature extraction. If so, the overall complexity
of the model can be reduced, thus offering a direct benefit for
constrained training set sizes.

Transfer learning is used in deep learning to tune pre-trained
networks for a specific task (Pan & Yang, 2010). General
models could be trained on larger data sets or simulated
data and then tuned for specific problems. In computer vi-
sion, well-established models can be downloaded, and their
weights can be tuned for a new task related to image recog-
nition. To apply this concept to signal processing, one could
pre-train a convolutional neural network to make predictions
on a well-established data set, and then tune the network for
making predictions over a different data set. Another option
might be to first train on simulated data, and then tune the
network on real-world data. By testing performance on sim-
ulated data, one might be able to study the impact of differ-
ent factors on the effectiveness, training time, and architec-
ture of the model. For example, one could explore the noise
tolerance of a particular network architecture by varying the
amount of artificial noise in a signal. Naturally, the success of
using simulated data would likely be bounded by the ability
to ground the simulation in reality.
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